Header menu link for other important links
X
Effect of post-weld heat treatments on microstructure and mechanical properties of friction welded alloy 718 joints
R. Damodaram, , K. Prasad Rao
Published in Elsevier Ltd
2014
Volume: 53
   
Pages: 954 - 961
Abstract
The effect of post-weld heat treatments on the microstructure and mechanical properties of friction welded joints of alloy 718 was studied in the present work. Alloy 718 rods were friction welded with two prior heat treatments - solution treatment and solution treatment and aging. Solution treatment was done at 995 °C for 1 h. Aging was done at 720 °C for 8 h followed by furnace cooling to 620 °C and holding at 620 °C for 8 h followed by air cooling. After friction welding, the joint samples were subjected to two types of post-weld heat treatments - direct aging (aging after welding, the same aging treatment mentioned above) and solution treatment and aging. Electron back scattered diffraction technique and transmission electron microscopy were used to study the development of microstructure. Hardness and tensile properties of the weld joints were evaluated. In the as-welded condition, samples welded with prior solution treatment and aging condition exhibited lower hardness at the weld zone and inferior tensile properties compared to the base material due to the dissolution of strengthening precipitates in the weld zone. On the other hand, formation of fine grains due to dynamic recrystallization led to higher hardness at the weld zone compared to the base material welded with prior solution treatment condition. Solution treatment and aging post-weld heat treatment resulted in an abnormal grain growth in the weld zone and thermomechanically affected zone. Owing to the formation of strengthening precipitates, solution treatment and aging post-weld heat treatment resulted in a significant increase in tensile strength of joint samples compared to that of as-welded friction weld joints. However, solution treatment and aging post-weld heat treatment done on friction weld joint samples with prior solution treatment or solution treatment and aging heat treatment condition resulted in inferior tensile properties compared to those of samples subjected to direct aging post-weld heat treatment. This may be attributed to grain coarsening that occurred during the post-weld solution treatment. Therefore, direct aging after welding is the recommended post-weld heat treatment for friction welded alloy 718 joints as compared to solution treatment and aging after welding. © 2013 Elsevier Ltd.
About the journal
JournalData powered by TypesetMaterials and Design
PublisherData powered by TypesetElsevier Ltd
ISSN02613069
Open AccessNo
Concepts (20)
  •  related image
    Alloys
  •  related image
    Dynamic recrystallization
  •  related image
    Friction welding
  •  related image
    Grain growth
  •  related image
    Hardness
  •  related image
    Heat treatment
  •  related image
    Microstructure
  •  related image
    Stainless steel
  •  related image
    Tensile strength
  •  related image
    Transmission electron microscopy
  •  related image
    Welding
  •  related image
    Abnormal grain growth
  •  related image
    Aging heat treatment
  •  related image
    ELECTRON BACK SCATTERED DIFFRACTION TECHNIQUES
  •  related image
    FRICTION-WELDED JOINTS
  •  related image
    Microstructure and mechanical properties
  •  related image
    POST WELD HEAT TREATMENT
  •  related image
    SOLUTION TREATMENTS
  •  related image
    THERMOMECHANICALLY AFFECTED ZONES
  •  related image
    Welds