Header menu link for other important links
X
Lattice-dictated conformers in bis(pyrazolyl)pyridine-based iron(II)complexes: Mössbauer, NMR, and magnetic studies
K. Padmakumar, Babu Varghese, Periyakaruppan Thangiah Manoharan
Published in
2001
PMID: 11754274
Volume: 40
   
Issue: 27
Pages: 6930 - 6939
Abstract
Iron(II) complexes [FeL2](ClO4)2·CH3CN, [FeL2](BPh4)2·2CH3CN, and [FeL2](PF6)2 with an FeN6 chromophore of the same ligand L (2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine) and differing counterions have been made and their crystal and molecular structures determined. The first two crystallized in triclinic space group P 1, and the third, with PF6- anion in Ibca space group. The FeL2 complex ions in all lattices have similarly distorted octahedral geometry. Variable-temperature Mössbauer spectra of [FeL2](ClO4)2·CH3CN and [FeL2](PF6)2 measured in the temperature range 1.7-300 K reveal temperature-dependent populations of two different spin states with increased amount of low-spin form at high temperatures, a phenomenon unlike the normal spin crossover behavior; this abnormal behavior is interpreted here as due to the presence of two different conformations. It is very interesting to note that the two different compounds have similar spectra, Mössbauer parameters, and temperature dependence. But the variable-temperature Mössbauer spectra of [FeL2](Bob4)2·2CH3CN in the range 20-300 K do not show the presence of such different species but exhibit a clear phase transition at ̃200 K. This phase transition is further supported by SQUID measurements. The results of variable-temperature 1H NMR in CD3CN and the solution susceptibility measurement of all complexes also support the presence of high-spin and low-spin forms in solution. Hence, the complex ion [FeL2]2+ exhibits a thermally driven interconversion between low-spin and a high-spin structural forms - A phenomenon observed in the solid and solution states due to ligand dynamics. This is not due to the well-known spin crossover phenomenon. These results are compared with the case of normal spin crossover seen in [FeL′2](C1O4)2 (L′ = 2,6-(bis(pyrazol-1-ylmethyl)pyridine)).
About the journal
JournalInorganic Chemistry
ISSN00201669
Open AccessNo
Concepts (19)
  •  related image
    2,6 BIS(3,5 DIMETHYLPYRAZOL 1 YLMETHYL)PYRIDINE
  •  related image
    Iron complex
  •  related image
    Ligand
  •  related image
    Pyridine derivative
  •  related image
    Unclassified drug
  •  related image
    Acceleration
  •  related image
    Article
  •  related image
    Chemical structure
  •  related image
    Chromatophore
  •  related image
    Complex formation
  •  related image
    Conformational transition
  •  related image
    Crystal structure
  •  related image
    Crystallization
  •  related image
    Magnetism
  •  related image
    Molecular dynamics
  •  related image
    Mossbauer spectroscopy
  •  related image
    Nuclear magnetic resonance spectroscopy
  •  related image
    Proton nuclear magnetic resonance
  •  related image
    Temperature dependence