Header menu link for other important links
X
Fabrication of double recess structure by single lithography step using silicon-nitride-assisted process in pseudomorphic HEMTs
Published in Elsevier
2014
Volume: 127
   
Pages: 61 - 67
Abstract
Monolithic microwave integrated circuits (MMICs) play an important part in today's wireless communication electronics. GaAs-based pseudomorphic High Electron Mobility Transistor (pHEMT) is used in MMIC-based low noise amplifier (LNA) and power amplifier (PA) stages. The latter requires high device current (Ids) and high reverse breakdown voltage (BVgd). In addition, the ON-state breakdown voltage should be high enough to operate the device at higher source-drain voltage (Vds). Double gate recessing is a well-established technique used to increase the ON and OFF-state breakdown voltages of a pHEMT device for power applications, which requires two levels of masking and recessing. In this paper, we present a single mask processing technique for realizing double recess structure with the help of silicon nitride layer. The new process involves deposition of silicon nitride after mesa isolation step of device fabrication. After gate lithography, two etching steps of silicon nitride and GaAs, followed one after the other, generates the double recess structure, wherein the various etch times decide the width and shape of double recess structure. The electric field distribution at the Schottky interface as well as along the channel has been simulated using ATLAS for the double recess structure used in this work. The fabricated recess structure showed improvement in breakdown voltage of the device which has been correlated to the effective redistribution of electric field in the device, as shown by simulation. © 2014 Elsevier B.V. All rights reserved.
About the journal
JournalData powered by TypesetMicroelectronic Engineering
PublisherData powered by TypesetElsevier
ISSN01679317
Open AccessNo
Concepts (19)
  •  related image
    Electric breakdown
  •  related image
    Electric fields
  •  related image
    Gallium arsenide
  •  related image
    Lithography
  •  related image
    Low noise amplifiers
  •  related image
    Monolithic microwave integrated circuits
  •  related image
    Power amplifiers
  •  related image
    Semiconducting gallium
  •  related image
    Silicon nitride
  •  related image
    Wireless telecommunication systems
  •  related image
    DOUBLE RECESS
  •  related image
    ELECTRIC FIELD DISTRIBUTIONS
  •  related image
    Gaas
  •  related image
    MONOLITHIC MICROWAVE INTEGRATED CIRCUITS (MMICS)
  •  related image
    OFF-STATE BREAKDOWN VOLTAGES
  •  related image
    PHEMT
  •  related image
    PSEUDOMORPHIC HIGH ELECTRON MOBILITY TRANSISTORS
  •  related image
    WELL-ESTABLISHED TECHNIQUES
  •  related image
    High electron mobility transistors