Header menu link for other important links
X
Wedge radius effects in mechanical exfoliation of HOPG: A molecular simulation study
B. Jayasena, , C.D. Reddy
Published in Web Portal ASME (American Society of Mechanical Engineers)
2014
Volume: 1
   
Abstract
We study the effects of wedge bluntness in mechanically exfoliating graphene layers from highly ordered pyrolytic graphite (HOPG), a layered material. Molecular dynamics simulations show that the layer initiation modes strongly depend on the wedge radius. Force and specific energy signatures are also markedly affected by the radius. Cleaving with a larger wedge radius causes buckling ahead of the wedge; larger the radius more the buckling. A critical depth of insertion of 1.6 Ao is seen necessary to cleave a single layer; this is also found to be independent of wedge radius. Hence, with accurate positioning on an atomically flat HOPG surface it is possible to mechanically cleave, using a wedge, a single sheet of graphene even with a blunt wedge. Copyright © 2014 by ASME.
About the journal
JournalASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
Open AccessNo