Header menu link for other important links
The effect of wall heating on instability of channel flow
Published in Cambridge University Press
Volume: 577
Pages: 417 - 442
A comprehensive study of the effect of wall heating or cooling on the linear, transient and secondary growth of instability in channel flow is conducted. The effect of viscosity stratification, heat diffusivity and of buoyancy are estimated separately, with some unexpected results. From linear stability results, it has been accepted that heat diffusivity does not affect stability. However, we show that realistic Prandtl numbers cause a transient growth of disturbances that is an order of magnitude higher than at zero Prandtl number. Buoyancy, even at fairly low levels, gives rise to high levels of subcritical energy growth. Unusually for transient growth, both of these are spanwise-independent and not in the form of streamwise vortices. At moderate Grashof numbers, exponential growth dominates, with distinct Poiseuille-Rayleigh-Bénard and Tollmien-Schlichting modes for Grashof numbers up to ∼ 25 000, which merge thereafter. Wall heating has a converse effect on the secondary instability compared to the primary instability, destabilizing significantly when viscosity decreases towards the wall. It is hoped that the work will motivate experimental and numerical efforts to understand the role of wall heating in the control of channel and pipe flows. © 2007 Cambridge University Press.
About the journal
JournalJournal of Fluid Mechanics
PublisherCambridge University Press
Open AccessNo