Header menu link for other important links
Strong edge coloring of Cayley graphs and some product graphs
S Dara, S Mishra, , Z Tuza
Published in
Volume: 718

A strong edge coloring of a graph G is a proper edge coloring of G such that every color class is an induced matching. The minimum number of colors required is termed the strong chromatic index. In this paper we determine the exact value of the strong chromatic index of all unitary Cayley graphs. Our investigations reveal an underlying product structure from which the unitary Cayley graphs emerge. We then go on to give tight bounds for the strong chromatic index of the Cartesian product of two trees, including an exact formula for the product in the case of stars. Further, we give bounds for the strong chromatic index of the product of a tree with a cycle. For any tree, those bounds may differ from the actual value only by not more than a small additive constant (at most 2 for even cycles and at most 4 for odd cycles), moreover they yield the exact value when the length of the cycle is divisible by 4.

About the journal
JournalarXiv preprint arXiv:2107.