Header menu link for other important links
X
Rational secret sharing with honest players over an asynchronous channel
Chandrasekharan Pandu Rangan
Published in
2011
Volume: 196 CCIS
   
Pages: 414 - 426
Abstract
We consider the problem of rational secret sharing introduced by Halpern and Teague [5], where the players involved in secret sharing play only if it is to their advantage. This can be characterized in the form of preferences. Players would prefer to get the secret than to not get it and secondly with lesser preference, they would like as few other players to get the secret as possible. Several positive results have already been published to efficiently solve the problem of rational secret sharing but only a handful of papers have touched upon the use of an asynchronous broadcast channel. [3] used cryptographic primitives, [11] used an interactive dealer, and [14] used an honest minority of players in order to handle an asynchronous broadcast channel. In our paper, we propose an m-out-of-n rational secret sharing scheme which can function over an asynchronous broadcast channel without the use of cryptographic primitives and with a non-interactive dealer. This is possible because our scheme uses a small number, k+1, of honest players. The protocol is resilient to coalitions of size up to k and furthermore it is ε-resilient to coalitions of size up to m-1. The protocol will have a strict Nash equilibrium with probability Pr(k+1/n) and an ε-Nash equilibrium with probability Pr(n-k-1/n). Furthermore, our protocol is immune to backward induction. Later on in the paper, we extend our results to include malicious players as well. We also show that our protocol handles the possibility of a player deviating in order to force another player to get a wrong value in what we believe to be a more time efficient manner than was done in Asharov and Lindell [2]. © 2011 Springer-Verlag.
About the journal
JournalCommunications in Computer and Information Science
ISSN18650929
Open AccessYes
Concepts (13)
  •  related image
    ASYNCHRONOUS CHANNELS
  •  related image
    BACKWARD INDUCTION
  •  related image
    Broadcast channels
  •  related image
    CRYPTOGRAPHIC PRIMITIVES
  •  related image
    Nash equilibrium
  •  related image
    NON-INTERACTIVE
  •  related image
    Secret sharing
  •  related image
    SECRET SHARING SCHEMES
  •  related image
    Broadcasting
  •  related image
    Cryptography
  •  related image
    Network security
  •  related image
    User interfaces
  •  related image
    Rational functions