Header menu link for other important links
Probing into the Efficacy of Discrete Forcing Immersed Boundary Method in Capturing the Aperiodic Transition in the Wake of a Flapping Airfoil
D. Majumdar, C. Bose,
Published in Springer Science and Business Media Deutschland GmbH
Pages: 271 - 281
The present work focuses on investigating the underlying flow physics behind the transition from periodicity to aperiodicity in the flow past a harmonically plunging elliptic foil as the plunge amplitude is increased to a high value. Two-dimensional (2D) numerical simulations have been performed in the low Reynolds number regime using an in-house flow solver developed following the discrete forcing Immersed Boundary Method (IBM). To capture the aperiodic transition in the unsteady flow-field behind a flapping foil accurately, the boundary structures such as the leading-edge vortex and its evolution with time need to be resolved with maximum accuracy as they are the primary key to the manifestation of the aperiodic onset. Even a small discrepancy may result in a different dynamical state and lead to an erroneous prediction of the transition route. On the other hand, discrete forcing IBM is known to suffer from non-physical spurious oscillations of the velocity and pressure field near the boundary, which may affect the overall flow-field solution. In this regard, the present work investigates the efficacy of discrete forcing IBM in accurately capturing the transitional dynamics in the flow-field around a plunging elliptic foil by comparing its results with that of a well-validated body-fitted ALE solver. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About the journal
JournalData powered by TypesetLecture Notes in Mechanical Engineering
PublisherData powered by TypesetSpringer Science and Business Media Deutschland GmbH