Header menu link for other important links
X
Oxidation kinetics of methyl crotonate: A comprehensive modeling and experimental study
Johnson P.N., Lavadera M.L., Konnov A.A.,
Published in Elsevier
2021
Volume: 229
   
Abstract
The current study explores the combustion behavior of methyl crotonate (CH3CH=CHC(=O)OCH3), which is a short ester representative of large unsaturated methyl esters. Starting with a detailed kinetic model for methyl butanoate (CH3CH2CH2C(=O)OCH3) oxidation, revisions are introduced to the C0-C4 chemistry based on the recent Aramco mechanism 3.0. The resulting mechanism is combined with a short model for methyl crotonate, derived from a suitable reference mechanism. Several new classes of reactions are included and the rate constants of the existing reactions are revised based on various theoretical studies and analogies to reactions of similar species. Furthermore, the low-temperature chemistry of methyl crotonate has been implemented in the current study to extend the validity of the mechanism to lower temperatures. The resulting methyl crotonate combustion mechanism has been comprehensively validated using various experiments in the literature. In addition, experiments are performed using a heat flux burner at atmospheric conditions to measure the laminar burning velocities of methyl crotonate at different unburnt mixture temperatures (318, 338, and 358 K). The mechanism is found to reproduce the experimental data for high-temperature combustion of methyl crotonate satisfactorily. The mechanism is also found to predict the low-temperature ignition delays accurately. Sensitivity and path flux analysis are performed to delineate the importance of the different reaction classes in methyl crotonate chemistry. The current study presents a comprehensive mechanism for methyl crotonate combustion, along with a new set of experimental results complementing the existing experimental database in the literature. © 2021
About the journal
JournalData powered by TypesetCombustion and Flame
PublisherData powered by TypesetElsevier
Open AccessNo