Header menu link for other important links
X
On the length scales of hypersonic shock-induced large separation bubbles near leading edges
, Srinath L., Kumar K. Devaraj Manoj, Jagadeesh G.
Published in Cambridge University Press (CUP)
2016
Volume: 806
   
Pages: 304 - 355
Abstract

The interaction of a hypersonic boundary layer on a flat plate with an impinging shock – an order of magnitude stronger than that required for incipient separation of the boundary layer – near sharp and blunt leading edges (with different bluntness radii from 2 to 6 mm) is investigated experimentally, complemented by numerical computations. The resultant separation bubble is of length comparable to the distance of shock impingement from the leading edge, rather than the boundary layer thickness at separation; it is termed large separation bubble. Experiments are performed in the IISc hypersonic shock tunnel HST-2 at nominal Mach numbers 5.88 and 8.54, with total enthalpies 1.26 and 1.85 MJ kg−11.85 MJ kg1 respectively. Schlieren flow visualization using a high-speed camera and surface pressure measurements using fast response sensors are the diagnostics. For the sharp leading edge case, the separation length was found to follow an inviscid scaling law according to which the scaled separation length (Lsep/xr)M3er(Lsep/xr)Mer3 is found to be linearly related to the reattachment pressure ratio pr/perpr/per where LsepLsep is the measured separation length, xrxr the distance of reattachment from the leading edge, MM the Mach number, pp the static pressure and the subscripts rr and ee denote the conditions at the reattachment location and at the edge of the boundary layer at the shock impingement location respectively. However, for all the blunt leading edges (Lsep/xr)M3er(Lsep/xr)Mer3 was found to be a constant irrespective of Mach number and much smaller than the sharp leading edge cases. The possible contributions of viscous and non-viscous mechanisms towards the observed phenomena are explored.

About the journal
JournalData powered by TypesetJournal of Fluid Mechanics
PublisherData powered by TypesetCambridge University Press (CUP)
ISSN00221120
Open AccessNo