Header menu link for other important links
X
Numerical analysis of radial inward flow turbine for CO2 based closed loop Brayton cycle
Jadhav Amit Kisan, Mukka S. Govardhan
Published in American Institute of Physics Inc.
2017
Volume: 1851
   
Abstract
Last few decades have witnessed a phenomenal growth in the demand for power, which has driven the suppliers to find new sources of energy and increase the efficiency of power generation process. Power generation cycles are either steam based Rankine cycle or closed loop Brayton cycles providing an efficiency of 30 to 40%. An upcoming technology in this regard is the CO2 based Brayton cycle operating near the critical region which has applications in vast areas. Power generation of CO2 based Brayton cycle can vary from few kilowatts for waste heat recovery to hundreds of megawatts in sodium cooled fast reactors. A CO2 based Brayton cycle is being studied for power generation especially in mid-sized concentrated solar power plants by numerous research groups around the world. One of the main components of such a setting is its turbine. Simulating the flow conditions inside the turbine becomes very crucial in order to accurately predict the performance of the system. The flow inside radial inflow turbine is studied at various inlet temperatures and mass flow rates in order to predict the behavior of the turbine under various boundary conditions. The performance investigation of the turbine system is done on the basis of parameters such as total efficiency, pressure ratio, and power coefficient. Effect of different inlet stagnation temperature and exit mass flow rates on these parameters is also studied. Results obtained are encouraging for the use of CO2 as working fluid in Brayton cycle. © 2017 Author(s).
About the journal
JournalData powered by TypesetAIP Conference Proceedings
PublisherData powered by TypesetAmerican Institute of Physics Inc.
ISSN0094243X
Open AccessNo