Header menu link for other important links
Multidimensional modelling of flow through piston-controlled ports using a multi-block, moving mesh algorithm
Published in
Volume: 218
Issue: 2

In the present work, a complete algorithm is presented to simulate the gas exchange process across domains in a multi-block computation involving a piston-controlled port. The moving boundary scheme of Peric is used in conjunction with the zonal boundary scheme of Rai. The algorithm has been applied to two cases. The first case involves a typical air-filling process through the piston-operated port of a pneumatic pump, and the analysis shows that flowfield variable information is smoothly communicated across the zonal boundary using this algorithm. The second case involves modelling of the scavenging process in a loop-scavenged two-stroke internal combustion (IC) engine. In this case, the stepwise evolution of the scavenging flow in the engine cylinder is studied. Initiation of short circuiting at early stages of scavenging, tilting of the inlet flow in directions different from inlet port angles and the existence of a low-purity swirling loop in the exhaust-side top corner of the engine cylinder are observed from the flowfield computations.

About the journal
JournalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Open AccessNo