Header menu link for other important links
X
Modeling Electron-Phonon Nonequilibrium in Gold Films Using Boltzmann Transport Model
, K. Madnia Cyrus
Published in ASME International
2009
Volume: 131
   
Issue: 8
Abstract

Ultrashort-pulsed laser irradiation on metals creates a thermal nonequilibrium between electrons and the phonons. Previous computational studies used the two-temperature model and its variants to model this nonequilibrium. However, when the laser pulse duration is smaller than the relaxation time of the energy carriers or when the carriers' mean free path is larger than the material dimension, these macroscopic models fail to capture the physics accurately. In this paper, the nonequilibrium between energy carriers is modeled via a numerical solution of the Boltzmann transport model (BTM) for electrons and phonons, which is applicable over a wide range of lengths and time scales. The BTM is solved using the discontinuous Galerkin finite element method for spatial discretization and the three-step Runge-Kutta temporal discretization. Temperature dependent electron-phonon coupling factor and electron heat capacity are used due to the strong electron-phonon nonequilibrium considered in this study. The results from the proposed model are compared with existing experimental studies on laser heating of macroscale materials. The model is then used to study laser heating of gold films, by varying parameters such as the film thickness, laser fluence, and pulse duration. It is found that the temporal evolution of electron and phonon temperatures in nanometer size gold films is very different from the macroscale films. For a given laser fluence and pulse duration, the peak electron temperature increases with a decrease in the thickness of the gold film. Both film thickness and laser fluence significantly affect the melting time. For a fluence of 1000 J/m2, and a pulse duration of 75 fs, gold films of thickness smaller than 100 nm melt before reaching electron-phonon equilibrium. However, for the film thickness of 2000 nm, even with the highest laser fluence examined, the electrons and phonons reach equilibrium and the gold film does not melt. Copyright © 2009 by ASME.

About the journal
JournalData powered by TypesetJournal of Heat Transfer
PublisherData powered by TypesetASME International
Open AccessNo