Header menu link for other important links
X
Model Prediction and Experimental Study of Material Removal Rate in Micro ECDM Process on Borosilicate Glass
Published in Springer Science and Business Media B.V.
2021
Abstract
Miniaturization of products has become a major technological challenge in production industries. Material removal in microscopic and sub-microscopic level has become a demand for producing such products. Electro-Chemical Discharge Machining (ECDM) is one of the hybrid non-conventional machining processes to machine materials that are electrically conductive and non-conductive at a micro-level utilizing the principles of Electro Discharge Machining (EDM) and Electro-Chemical Machining (ECM). The most common nonconductive materials machined with this process are various types of glasses, ceramics, composites, etc. In the current paper, a Finite Element Model (FEM) of the ECDM process is carried out in the discharge regime (less than 300 μm) with pulsed DC in a 2D domain to characterize the Material Removal Rate (MRR) as a process output response in borosilcate glass machining. From the model and experiements the value of MRR is found to be 0.373 mg/ min and 0.414 mg/min. It can be considered that there is almost negligible difference in MRR between experimental and model values with 9.9% error variation. Hence the results are validated with experimentation, and there is a good agreement observed between the results. © 2021, Springer Nature B.V.
About the journal
JournalData powered by TypesetSilicon
PublisherData powered by TypesetSpringer Science and Business Media B.V.
ISSN1876990X
Open AccessNo