Header menu link for other important links
X
Material strengthening mechanisms and their contribution to size effect in micro-cutting
Liu K., , Melkote S.N.
Published in
2005
Volume: 16-2
   
Pages: 1147 - 1156
Abstract
The specific cutting energy in machining is known to increase nonlinearly with decrease in uncut chip thickness. It has been reported in the literature that this phenomenon is dependent on several factors such as material strengthening, ploughing due to finite edge radius, and material separation effects. This paper examines the material strengthening effect where the material strength increases as the uncut chip thickness decreases down to a few microns. This increase in strength has been attributed to various factors such as strainrate, strain gradient and temperature effects. Given that the increase in material strength in the primary and secondary deformation zones can occur due to many factors, it is important to understand the contributions of each factor to the increase in specific cutting energy and the conditions under which they are dominant. This paper analyzes two material strengthening factors: (i) the contribution of the decrease in the secondary deformation zone cutting temperature, and (ii) strain gradient strengthening, and their relative contributions to the increase in specific cutting energy as the uncut chip thickness is reduced. Finite Element (FE) based orthogonal cutting simulations are performed using aluminum 5083-H116, a work material with a small strain-rate hardening exponent, thus minimizing strain-rate effect. Suitable cutting conditions are identified under which the temperature and strain gradient effects are dominant. Orthogonal cutting experiments are used to validate the model in terms of the cutting forces. The simulation results are then analyzed to identify the contributions of the material strengthening factors to the size effect in specific cutting energy. Copyright © 2005 by ASME.
About the journal
JournalAmerican Society of Mechanical Engineers, Manufacturing Engineering Division, MED
Open AccessNo