Header menu link for other important links
Evidence of Task-Independent Person-Specific Signatures in EEG Using Subspace Techniques
Published in IEEE
Volume: 16
Pages: 2856 - 2871
Electroencephalography (EEG) signals are promising as alternatives to other biometrics owing to their protection against spoofing. Previous studies have focused on capturing individual variability by analyzing task/condition-specific EEG. This work attempts to model biometric signatures independent of task/condition by normalizing the associated variance. Toward this goal, the paper extends ideas from subspace-based text-independent speaker recognition and proposes novel modifications for modeling multi-channel EEG data. The proposed techniques assume that biometric information is present in the entire EEG signal and accumulate statistics across time in a high dimensional space. These high dimensional statistics are then projected to a lower dimensional space where the biometric information is preserved. The lower dimensional embeddings obtained using the proposed approach are shown to be task-independent. The best subspace system identifies individuals with accuracies of 86.4% and 35.9% on datasets with 30 and 920 subjects, respectively, using just nine EEG channels. The paper also provides insights into the subspace model's scalability to unseen tasks and individuals during training and the number of channels needed for subspace modeling. © 2005-2012 IEEE.
About the journal
JournalData powered by TypesetIEEE Transactions on Information Forensics and Security
PublisherData powered by TypesetIEEE
Open AccessNo
Authors (4)