Header menu link for other important links
X
Entropy density of spacetime as a relic from quantum gravity
Published in American Physical Society
2014
Volume: 90
   
Issue: 12
Abstract
There is a considerable amount of evidence to suggest that the field equations of gravity have the same status as, say, the equations describing an emergent phenomenon like elasticity. In fact, it is possible to derive the field equations from a thermodynamic variational principle in which a set of normalized vector fields are varied rather than the metric. We show that this variational principle can arise as a low-energy [LP=(G/c3)1/2→0] relic of a plausible nonperturbative effect of quantum gravity, viz. the existence of a zero-point length in the spacetime. Our result is nonperturbative in the following sense: If we modify the geodesic distance in a spacetime by introducing a zero-point length, to incorporate some effects of quantum gravity, and take the limit LP→0 of the Ricci scalar of the modified metric, we end up getting a nontrivial, leading order (LP-independent) term. This term is identical to the expression for entropy density of spacetime used previously in the emergent gravity approach. This reconfirms the idea that the microscopic degrees of freedom of the spacetime, when properly described in the full theory, could lead to an effective description of geometry in terms of a thermodynamic variational principle. This is conceptually similar to the emergence of thermodynamics from the mechanics of, say, molecules. The approach also has important implications for the cosmological constant which are briefly discussed. © 2014 American Physical Society.
About the journal
JournalData powered by TypesetPhysical Review D - Particles, Fields, Gravitation and Cosmology
PublisherData powered by TypesetAmerican Physical Society
ISSN15507998
Open AccessNo