Header menu link for other important links
A novel approach to synthesize porous graphene sheets by exploring KOH as pore inducing agent as well as a catalyst for supercapacitors with ultra-fast rate capability
K. Nanaji, B.V. Sarada, , T. N Rao, S. Anandan
Published in Elsevier Ltd
Volume: 172
Pages: 502 - 513
In the present study, an earth-abundant bio-waste is effectively transformed into porous graphene sheets at a low temperature of 900 °C by utilizing Potassium hydroxide (KOH) as an activation agent to create porosity as well as a catalyst to induce graphitization by a simple synthetic approach. The resulted carbon material possesses good textural properties such as high specific surface area (2308 m2/g), high pore volume (1.3 cm3/g), graphene sheet-like morphology with an interlayer d-spacing of 0.345 nm and a highly ordered sp2 carbon as evidenced from detailed textural analysis. A detailed mechanism for the formation of graphene sheets is further explored. Owing to the multiple synergistic properties, the material has been tested as an efficient electrode material for supercapacitor application and it delivered a high specific capacitance of 240 F g−1 at 1 A/g. Furthermore, the assembled symmetric supercapacitor exhibits ultra-fast rate capability of 87% capacitance retention at high current rates (50 A/g), exceptional cyclic stability (93% retention after 25,000 cycles) and displays outstanding energy density of 21.37 W h kg−1 at a high power density of 13,420 W kg−1. The strategy developed here reveals a facile, low-cost, eco-friendly design of graphene sheets at large scale production, where the synthetic approach can be applied as a versatile method to prepare graphene sheets from any carbon sources using KOH activation. © 2021 Elsevier Ltd
About the journal
JournalData powered by TypesetRenewable Energy
PublisherData powered by TypesetElsevier Ltd