Header menu link for other important links
X
A halotolerant aldose reductase from Debaryomyces nepalensis: gene isolation, overexpression and biochemical characterization
Published in Royal Society of Chemistry
2017
Volume: 7
   
Issue: 33
Pages: 20384 - 20393
Abstract
Aldose reductase (AR) catalyzes the conversion of aldoses to their corresponding polyols in yeasts and filamentous fungi. ARs have the potential to be exploited for the enzymatic production of xylitol, thus the identification and characterization of ARs from novel strains have gained interest. In this study, we chose the novel yeast Debaryomyces nepalensis as a source for an AR gene. For the first time, here we isolated the AR gene from D. nepalensis (DnAR) that encodes a protein of 320 amino acids with a predicted molecular weight of 36.7 kDa using the RACE technique. It was heterologously expressed in Escherichia coli as a His-tagged fusion protein and purified. The enzyme showed strict NADPH dependence and broad substrate specificity with high catalytic efficiency for arabinose, xylose and 3-nitro benzaldehyde. Remarkably, it was active and stable in the presence of high concentrations of salts (KCl/NaCl), thus exhibiting halotolerance. It showed 75% and 45% activity at 0.5 and 1 M concentration of salts respectively. Enzyme half-lifetime at 1 M KCl and 1 M NaCl was found to be 30 h and 16.5 h respectively. Furthermore, to explore the structural basis of its halotolerance, we built a homology model of DnAR. Surprisingly, we found that the existence of a uniform negative electrostatic potential over the protein surface, which is one of the known mechanisms governing protein halotolerance. Therefore, DnAR could be exploited as a biocatalyst to develop an enzyme based bioprocess for xylitol production from lignocelluloses. Moreover, this is the first report providing the genetic sequence and biochemical characteristics of a halotolerant aldose reductase. © The Royal Society of Chemistry.
About the journal
JournalData powered by TypesetRSC Advances
PublisherData powered by TypesetRoyal Society of Chemistry
ISSN20462069
Open AccessYes
Concepts (15)
  •  related image
    Escherichia coli
  •  related image
    Genes
  •  related image
    Proteins
  •  related image
    Salts
  •  related image
    Sugar substitutes
  •  related image
    Yeast
  •  related image
    BIOCHEMICAL CHARACTERISTICS
  •  related image
    BIOCHEMICAL CHARACTERIZATION
  •  related image
    Catalytic efficiencies
  •  related image
    ENZYMATIC PRODUCTION
  •  related image
    FILAMENTOUS FUNGI
  •  related image
    NEGATIVE ELECTROSTATIC POTENTIAL
  •  related image
    Substrate specificity
  •  related image
    XYLITOL PRODUCTIONS
  •  related image
    Enzymes