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Vortex-induced vibrations of three staggered circular cylinders are investigated via two-dimensional

finite element computations. All the cylinders are of equal diameter (D) and are mounted on elastic

supports in both streamwise (x−) and transverse (y−) directions. The two downstream cylinders are

placed symmetrically on either side of the upstream body at a streamwise gap of 5D, with the vertical

distance between them being 3D. Flow simulations are carried out for Reynolds numbers (Re) in the

range of Re = 60-160. Reduced mass (m∗) of 10 is considered and the damping is set to zero value.

The present investigations show that the upstream cylinder exhibits initial and lower synchronization

response modes like an isolated cylinder does at low Re. Whereas for both the downstream cylinders,

the upper lock-in branch also appears. The initial and the upper modes are characterized by periodic

oscillations, while the lower lock-in branch is associated with nonperiodic vibrations. The 2S mode

of vortex shedding is observed in the near wake of all the cylinders for all Re, except for the upper

branch corresponding to the downstream bodies. In the upper branch, both the downstream cylinders

shed the primary vortices of the P+S mode. For the upstream cylinder, the phase between lift and the

transverse displacement exhibits a 180◦ jump at certain Re in the lower branch. On the other hand,

the downstream bodies undergo transverse oscillations in phase with lift in all lock-in modes, while

the phase jumps by 180◦ as the oscillation response reaches the desynchronization regime. Published

by AIP Publishing. [http://dx.doi.org/10.1063/1.4998417]

I. INTRODUCTION

Vortex-induced vibration (VIV) of multiple cylinders is

a generic phenomenon of fluid-structure interaction (FSI),

which provides several complex physical aspects yet to be

understood, and has high practical significance in various engi-

neering fields. Cylinder to cylinder interaction in the flow leads

to completely different vibration responses exhibited by the

bodies, compared with that of an isolated cylinder. Earlier

research in understanding the dynamic behaviour of multi-

ple cylinders is compiled in the review articles presented by

Zdravkovich,1,2 Chen,3 and Sumner.4 It is well known that as

the vibration frequency ( fv) of an isolated cylinder mounted on

elastic supports and the frequency of primary vortex shedding

( f ) lock-in with the natural frequency ( fN ) of the spring-mass

system, the body exhibits various synchronized oscillation

response modes.5 However, in the case of multiple cylin-

ders, a few studies6–21 showed that the downstream cylinders,

due to the wake interference, do not exhibit distinct lock-in

response modes or never experience synchronization at all. In

order to further understand the VIV of circular cylinders that

are subject to interaction with the wake of a freely oscillat-

ing cylinder, we herein present the numerical investigations

of three cylinders arranged in staggered configuration. In the

a)
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rest of the paper, various nondimensional parameters shall be

mentioned, which are defined as follows: Reynolds number

(Re) = ρUD/µ; Strouhal number (St) = f D/U; reduced velocity

(U∗) = U/( fN D); reduced mass (m∗) = 4m/(πρD2); reduced

natural frequency (FN ) = 1/U∗. Here, ρ, µ, and m represent

density, dynamic viscosity of the fluid, and cylinder mass,

respectively. D is the cylinder diameter.

Hover and Triantafyllou,8 in laboratory experiments of

two cylinders arranged in tandem and staggered configura-

tions for Re = 3 × 104, observed only galloping repose of the

downstream cylinder, where the amplitude increases monoton-

ically with the increase in reduced velocity. They did not notice

resonance in their experiments for the oscillating downstream

cylinder that is placed in the wake of stationary upstream one.

Assi et al.9 also observed galloping response of the down-

stream cylinder, as it vibrates in the wake of a static upstream

body, for 3000 ≤ Re ≤ 13 000. Bokaian and Geoola6 reported

that for Re ∼ 103 – 5 × 104, the downstream cylinder, which

freely oscillates in the wake of a fixed cylinder, exhibits syn-

chronization or galloping response depending upon the gap

between the cylinders. Brika and Laneville7 carried out exper-

imental studies of a long flexible cylinder placed in the wake

of a stationary identical cylinder in tandem and staggered

arrangements. They observed that the downstream cylinder,

for a gap of 7D–8.5D between the two cylinders, exhibits gal-

loping response. With increase in the gap up to 25D, Brika

and Laneville7 found that the downstream body undergoes

1070-6631/2017/29(8)/083606/15/$30.00 29, 083606-1 Published by AIP Publishing.
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synchronized oscillations. However, in their studies, the ampli-

tude response is described as a single and continuous curve,

without the presence of the upper and the lower modes, which

can be seen for an isolated cylinder.22

In order to further understand the effect of the gap between

the cylinders on the dynamic response of the downstream bod-

ies, Assi et al.23 studied the wake-induced vibrations of two

tandem cylinders, which are placed with a streamwise gap of

4D–20D. They observed that for small gaps considered in their

experiments, due to the wake interference, the downstream

cylinder undergoes synchronized oscillations at certain val-

ues of U∗. However, beyond this synchronization regime, the

downstream body exhibits galloping-like response, where the

maximum oscillation amplitude increases monotonically with

an increase in U∗. Whereas for large gaps, as the influence of

wake interference decreases, the downstream cylinder behaves

like an isolated vibrating cylinder. Mittal and Kumar,24 in the

computations of two cylinders placed in tandem and staggered

arrangements at Re = 100, observed soft lock-in, where the

cylinders oscillate at a frequency, slightly less than the natural

frequency of the system. Papaioannou et al.,10 via numerical

simulations of two tandem vibrating cylinders in the Re = 160

flow, demonstrated that along with the upstream cylinder, the

downstream one also undergoes lock-in oscillations for the

gap of 5D and smaller. In their studies, the amplitude response

first increases with the increase in reduced velocity and then

decreases as U∗ is further increased, without exhibiting dis-

tinct synchronization response modes. In the computational

investigations of two oscillating cylinders, placed in tandem

and staggered arrangements with the streamwise gap of 5.5D,

Prasanth and Mittal11 observed that the downstream cylin-

der exhibits higher amplitude oscillations compared with the

vibration behavior of the upstream body, at Re = 100. How-

ever, they did not perform sufficient analysis of the lock-in

regime.

In contrast to the oscillation behavior of the multiple cylin-

der system, the dynamic response of an isolated cylinder is

always associated with different lock-in modes. In the labora-

tory experiments of an isolated cylinder, conducted by Brika

and Laneville,25 it is observed that the synchronization regime

is characterized by the initial and the lower response modes,

for Re = 3400 – 11 800. Brika and Laneville25 also noticed

the upper response branch as the flow velocity is increased

in small steps. However, this upper branch is not realized

when the flow velocity is decreased from the lower branch.

Therefore, one can argue that the upper branch is not stable

in their studies. On the other hand, Prasanth and Mittal,26 via

numerical simulations for Re < 200, showed that the sin-

gle cylinder exhibits only initial and lower lock-in branches.

Khalak and Williamson,22 and Govardhan and Williamson27

demonstrated that for an isolated cylinder, which can vibrate in

the transverse direction only, the upper response mode appears

in addition to the initial and lower branches at Re ∼ O(104).

However, Khalak and Williamson22 noticed that the upper

branch is associated with nonperiodic vibrations, while the

lower branch is characterized by periodic oscillations. They

attributed the reason for the appearance of the stable upper

branch to the low mass-damping (m∗ξ) employed in their

experiments.

Williamson and Roshko28 demonstrated that for Re = 500

– 1000, the high amplitude response of an oscillating cylin-

der in the synchronization regime affects the wake pattern, by

changing the timing of vortex shedding. They suggested that

depending on the number of vortices released from the body

for one oscillating cycle, shedding patterns can be categorized

into 2S, 2P, and P+S modes. In the 2S mode, two single vor-

tices of the opposite sign are shed for one shedding cycle,

while two pairs are released in the 2P pattern. Whereas in the

asymmetric mode of P+S, for each cycle, one pair of opposite

vortices and a single vortex are shed. In the numerical simula-

tions of two cylinders at Re = 160, Papaioannou et al.10 found

only the 2S shedding mode for all the U∗ considered. Brika

and Laneville7 observed that the downstream cylinder in the

wake of a stationary cylinder sheds the 2S mode of vortices for

all the flow velocities before the resonance occurs, while after

resonance the wake is associated with the 2P shedding pattern.

At low Re (<200), Prasanth and Mittal26 observed only the 2S

mode for both initial and lower lock-in regimes in the case of

an isolated cylinder. Whereas Khalak and Williamson22 and

Govardhan and Williamson27 showed that the wake of a sin-

gle cylinder is characterized by the 2S shedding pattern in the

initial response branch and changes to the 2P mode as the

oscillation response jumps to the upper branch. They further

noticed that the 2P mode persists even in the lower lock-in

branch. Blackburn and Henderson,29 in the computations of

the Re = 250 flow past a freely vibrating cylinder, observed

only the 2S mode. They argued that the 2P mode is not neces-

sarily associated with the large amplitude plateau in the lock-in

regime.

Williamson in a private communication, as referred to by

Blackburn and Henderson,29 showed the P+S mode, obtained

in the wake of a single cylinder that undergoes forced trans-

verse oscillations with peak amplitude of 0.6D at Re = 140.

Blackburn and Henderson29 also observed the P+S mode in

the wake of a forced oscillating cylinder with high transverse

amplitude for Re = 250, in their two-dimensional computa-

tions. As the amplitude is decreased to 0.75D, they noticed

that the P+S mode still persists. On the other hand, Singh and

Mittal,30 via two-dimensional numerical simulations showed

that the P+S mode occurs in the wake of an oscillating cylinder

at Re = 350. Note that Blackburn and Henderson,29 and Singh

and Mittal30 carried out 2D simulations for Re ≥ 250, where

the flow is fully three-dimensional. In the present 2D com-

putations of three freely oscillating staggered cylinders for

Re ≤ 160, where the flow is two-dimensional, we observed

that the downstream cylinders shed the P+S mode of vortices

in one of the synchronization regimes for 102 ≤ Re ≤ 124,

with the peak amplitude being above 0.9D. Interestingly,

Han et al.20 observed the P+S mode, shed by the down-

stream cylinder that is placed in tandem in the wake of a

stationary cylinder at Re = 160, even as the body vibrates

at low amplitudes corresponding to the nonsynchronization

regime.

Prasanth and Mittal26 reported that the phase between

the lift and the transverse displacement of isolated cylinder

jumps from nearly 0◦ to 180◦ at a Reynolds number in the

lower branch, where fv/fN crosses 1.0. In their experimental

studies, Brika and Laneville7 observed for a single cylinder
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that the jump in the amplitude response from the initial to the

lower response branch is associated with a 180◦ jump in phase.

Also, they noticed that this jump in the amplitude response

is hysteretic. On the other hand, Khalak and Williamson22

and Govardhan and Williamson27 showed that a single cylin-

der experiences a sudden jump in the amplitude from the

initial to the upper branch, and this transition is associated

with hysteresis. On the other hand, the upper ⇒ lower mode

transition is characterized by mode switching, and therefore

there is no hysteresis. However, Khalak and Williamson22

observed a 180◦ phase jump in the transition from the upper

to the lower branch. In the case of two cylinders, Brika and

Laneville7 reported that the jumps in the amplitude response

as well as hysteresis are completely absent in the dynamic

response of the downstream cylinder. In the present paper,

we shall show that the downstream cylinders exhibit a grad-

ual transition from the initial to the upper lock-in branch,

while a jump occurs in the amplitude response at the upper

⇒ lower branch transition. Also, hysteresis is observed in this

transition. We shall further show that the 180◦ phase jump

occurs at different Re for the upstream and the two downstream

cylinders.

To summarize the discussion of the effect of the stream-

wise gap on the dynamic response of downstream cylinders,

for the gaps less than 4D, vortex shedding from the upstream

cylinder does not occur. Therefore, the downstream cylinder

vibrates along with the oscillating upstream one. It is observed

in several previous studies that as the primary vortices are

shed by the upstream body in the gap (greater than 4D), the

downstream cylinder exhibits galloping response due to its

interaction with the upstream vortices. However, the lock-

in regime corresponding to the downstream cylinders is not

clearly understood. In the present work, with an objective of

studying the lock-in regime of the downstream cylinders, we

studied the vortex-induced vibrations of three freely oscil-

lating circular cylinders arranged in staggered configuration

with the streamwise distance of 5D between the upstream

and both the downstream cylinders, and lateral distance of

3D between the two downstream bodies. All the cylinders are

identical and are mounted on elastic supports in both the x-

and y-directions. Reduced mass (m∗) of 10 and zero damping

(ξ = 0) are considered for all the simulations. We observed that

the Strouhal frequency in the wake of stationary cylinders at

Re = 100 is 0.156. Therefore, specifying the normalized nat-

ural frequency, FN = 0.156 at Re = 100 as design condition,

stabilized space-time finite element computations are carried

out for 60 ≤ Re ≤ 160 in two dimensions. Re is gradually

increased by providing the flow corresponding to the previous

Re as the initial condition.

II. GOVERNING EQUATIONS AND FINITE ELEMENT
FORMULATION

A. The Navier-Stokes equations

Assume that Ωt ⊂ IRnsd and (0, T ) are the spatial and

temporal domains, respectively, where nsd is the number of

space dimensions. Let Γt represent the boundary of Ωt , while

x and t denote the spatial and temporal coordinates, respec-

tively. The Navier-Stokes equations governing incompressible

Newtonian fluid flow are

ρ(
∂u

∂t
+ u · ∇u − f) − ∇ · σ = 0 on Ωt × (0, T ), (1)

∇ · u = 0 on Ωt × (0, T ). (2)

Here ρ, u, f , and σ are the density, velocity, body force, and

the stress tensor, respectively. The stress tensor consists of its

isotropic and deviatoric parts,

σ = −pI + T, T = 2µε(u), ε(u) =
1

2
((∇u) + (∇u)T ),

(3)

where p, I and µ are the pressure, identity tensor, and dynamic

viscosity, respectively. Let (Γt)g and (Γt)h be the subsets of

the boundary, Γt , on which the Dirichlet and Neumann-type

boundary conditions are specified, respectively. The boundary

conditions are employed as follows:

u = g on (Γt)g, n · σ = h on (Γt)h, (4)

where n is the unit vector normal to the boundary.

The initial condition on the velocity is applied on Ωt at

t = 0,

u(x, 0) = u0 on Ωt , (5)

where u0 is divergence free.

Pressure and viscous stresses around the surface of the

cylinder are integrated for calculating the force coefficient, Cx.

The lift coefficient (Cl) is normal to the freestream direction,

and the drag coefficient (Cd) is along the freestream. Cx is

given as

Cx =
1

1
2
ρU2
∞D

∫
Γcyl

σ n̂ dΓ (6)

where n̂ is the unit vector that is normal to the cylinder

boundary, Γcyl and Cx represents îCd + ĵCl.

B. Equations of motion for a rigid body

The oscillatory motion of the rigid body, caused by the

unsteady fluid forces exerted on its surface, is governed by the

following equations:

mẍ + cẋ + kx = Fx, (7)

mÿ + cẏ + ky = Fy. (8)

Here ẍ, ẋ, and x are the acceleration, velocity, and displace-

ments of the cylinder, respectively, along the x-axis, whereas

ÿ, ẏ, and y represent the same quantities in the y-direction.

Fx and Fy are the horizontal and vertical components of

the fluid force acting on the body. m, k, and c are mass

of the cylinder, spring constant, and damping coefficient,

respectively.

Let the nondimensional parameters be defined as follows:

Ÿ = ÿD/U2
∞, Ẏ = ẏ/U∞, Y = y/D, and ξ = c/cc, where

critical damping (cc) is 2
√

km. Substituting these nondimen-

sional parameters, m∗ and FN , which are defined in Sec. I, and

Cd and Cl [defined in Eq. (6)] in Eqs. 7 and 8, the following

nondimensional equations are obtained:

Ẍ + 4πFN ζ Ẋ + (2πFN )2X =
2Cd

πm∗
for (0,T), (9)

Ÿ + 4πFN ζ Ẏ + (2πFN )2Y =
2Cl

πm∗
for (0,T), (10)
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C. The finite element formulation

This section presents the stabilized space-time finite ele-

ment formulation, employed to solve the flow-governing equa-

tions on a moving domain. Here, the time interval (0, T ) is

divided into subintervals In = (tn, tn+1), where tn and tn+1

belong to a series of time levels in (0, T ). Assume Qn is the

space-time slab that consists of a spatial subdomain Ωn and

its boundary surface Pn, where Pn is formed by the trace of

Γn in the time interval In. Dirichlet and Neumann type bound-

ary conditions are specified on (Pn)g and (Pn)h, respectively,

which are the two parts of Pn. For each space-time slab, we

define the trial function spaces (S h
u )n and (S h

p )n respectively,

for velocity and pressure, and the same for weighting function

spaces are (V h
u )n and (V h

p )n, as provided by Tezduyar et al.,31,32

and are shown below:

(S h
u )n = {u

h |uh ∈ [H1h(Qn)]nsd , u h
= gh on (Pn)g}, (11)

(V h
u )n = {w

h |wh ∈ [H1h(Qn)]nsd , wh
= 0 on (Pn)g}, (12)

(S h
p )

n
= (V h

p )
n
= {ph |ph ∈ H1h(Qn)}. (13)

Here H1h(Qn) represents the finite dimensional function space

over the space-time slab Qn.

The stabilized finite element formulation of the flow equa-

tions is written as follows: given (uh)n☞, find uh ∈ (S h
u )n and

ph ∈ (S h
p )n such that ∀wh ∈ (V h

u )n, qh ∈ (V h
p )n,

∫
Qn

wh · ρ
(

∂uh

∂t
+ uh · ∇uh − f

)

dQ

+

∫
Qn

ε(wh) : σ( ph, uh)dQ +

∫
Qn

qh
∇ · uhdQ

+

nel
∑

e=1

∫
Qe

n

1

ρ
τ

[

ρ

(

∂wh

∂t
+ uh · ∇wh

)

− ∇ · σ(qh, wh)

]

·
[

ρ

(

∂uh

∂t
+ uh · ∇uh − f

)

− ∇ · σ( ph, uh)

]

dQ

+

nel
∑

e=1

∫
Qe

n

δ∇ · whρ∇ · uhdQ +

∫
Ωn

(wh)
+

n · ρ
(

(uh)
+

n

− (uh)−n
)

dΩ =

∫
(Pn)h

wh · hhdP. (14)

In the discrete equation given in (14), the following notations

are used:

(uh)±n = lim
ǫ→0

u(tn ± ǫ), (15)

∫
Qn

(. . .) dQ =

∫
In

∫
Ωn

(. . .) dΩ dt, (16)

∫
Pn

(. . .) dP =

∫
In

∫
Γn

(. . .) dΓ dt, (17)

(uh)−0 = u0. (18)

In the formulation provided in (14), the first three inte-

grals are Galerkin terms, whereas the fourth and fifth terms

are added to provide stability to the solution. Sixth one is

the jump term, which loosely connects the solution on either

side of each space-time slab. More details about the physical

meaning of the terms and stability parameters, τ and δ, can be

found in the articles reported by Tezduyar et al.31–33 The lin-

ear algebraic equation system resulting from the finite element

discretization of the governing equations are solved iteratively

by employing the Generalized Minimal Residual (GMRES)

procedure34 in conjunction with diagonal pre-conditioners.

For each nonlinear iteration in solving the flow governing

equations, mesh is updated to the new coordinates by solving

the equations of linear elasticity, as proposed by Johnson and

Tezduyar.35

III. FINITE ELEMENT MESH AND COMPUTATIONAL
DETAILS

Figure 1 shows the finite element mesh over full domain

and the close-up view of the three staggered cylinders. Here

onwards, the upstream cylinder is referred to as cyl-A, and the

two downstream bodies are referred to as cyl-B and cyl-C [see

Fig. 1(b)]. All the cylinders are of equal diameter (D). The

gap in the streamwise (x-) direction between the upstream and

downstream cylinders is 5D. The two downstream bodies are

placed symmetrically on either side of cyl-A with a vertical

distance of 3D between them. The center of cyl-A is located

at (0, 0) [see Fig. 1(b)]. In Fig. 1(a), LU and LD represent

the distances to upstream and downstream boundaries of the

domain, respectively, from the center, while H is the height of

the domain. The mesh consists of a structured part around the

cylinders, which is adequately refined to capture the boundary

layer. The rest of the domain is made of an unstructured mesh

created via Delaunay’s triangulation technique.

A. Boundary conditions

Boundary conditions, employed in the computational

domain, are shown in Fig. 1(a). On the upstream boundary,

velocity (U∞) of the uniform flow in the x-direction is spec-

ified. This boundary condition directs the flow to enter the

domain with a uniform velocity in the x-direction, while the

component of velocity along the y-axis is zero. On the down-

stream boundary, gradients of velocity across the end wall are

considered zero, which physically means that it is a stress-

free boundary. Symmetry conditions are employed on the top

and bottom walls, on which the normal component of veloc-

ity and tangential stress are set to zero values. This boundary

condition implies that the fluid can slip along the walls but

cannot penetrate them. No slip condition is provided on the

cylinders’ surfaces, which indicates that both the components

of flow velocity are zero. However, as the cylinder moves, its

velocity components in the x- and y-directions are updated on

the surface of the body for every nonlinear iteration.

B. Mesh convergence study

In order to study the effect of mesh refinement and the

dimensions of the domain on the flow characteristics, three

meshes (referred to as M1, M2, and M3) are employed in the

computation of Re = 150 case. The number of nodes and ele-

ments of all the meshes are presented in the caption of Table I,

which shows the values of various parameters obtained by each

mesh. For M1 and M2, LU = 8D, LD = 50D, and H = 25D,

while for M3, LU = 16D, LD = 80D, and H = 25D. Note that H
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FIG. 1. (a) Finite element mesh over full domain and (b) close-up view of the cylinders.

is kept the same for all the three meshes, as it is demonstrated

by Prasanth et al.36 and Prasanth and Mittal26 that the height

of the domain significantly affects the dynamic response of the

freely oscillating cylinder. The number of nodes of the three

meshes (see the caption of Table I) suggest that M2 is over

1.8 times larger than M1, while M3 provides the same res-

olution as that of M1. From Table I, it can be observed that

the mean transverse amplitude (Ay ,mean), mean drag coefficient

(Cd), rms values of the lift coefficient (Cl ,rms) as well as the

ratio of vibration frequency ( fv), and the natural frequency ( fN )

TABLE I. Vortex-induced vibrations of three staggered cylinders (Re = 150,

m∗ = 10 and ξ = 0): Comparison of the nondimensional mean amplitude

(A∗y,mean) of transverse oscillations, average drag coefficient (Cd ), rms value of

lift coefficient (Cl ,rms), and frequency ratio ( fv/fN ) obtained for three meshes.

Number of nodes and elements of M1: 39 804, 79 290; M2: 73 504, 146 592;

M3: 44 031, 88 744.

Mesh cyl A∗y,mean Cd Cl ,rms fv/fN

M1 cyl-1 4.257 × 10−2 1.184 0.322 1.596

M2 cyl-1 4.237 × 10−2 1.179 0.320 1.625

M3 cyl-1 4.304 × 10−2 1.181 0.313 1.597

M1 cyl-2 0.276 1.245 0.777 1.028

M2 cyl-2 0.275 1.235 0.767 1.020

M3 cyl-2 0.276 1.244 0.762 1.025

M1 cyl-3 0.279 1.251 0.779 1.028

M2 cyl-3 0.271 1.241 0.777 1.020

M3 cyl-3 0.281 1.225 0.761 1.025

of the spring-mass system predicted by all the three meshes

are in good agreement. This study confirms that mesh-M1 is

adequate for the range of Re considered in the present work.

Therefore, M1 is employed for all the simulations. Effect of

the time step (∆t) is also investigated, providing ∆t = 0.01

and 0.05. We observed that the difference in the solution is

less than 1%, and hence, ∆t = 0.05 is considered.

C. Computational details

All the simulations are performed on a distributed mem-

ory computing machine, which is loaded with MPI (Message

Passing Interface) libraries and Intel compilers. Dynamic

mesh partitioning is carried out employing ParMETIS.37 More

details of the parallel algorithm, employed in the present imple-

mentation, are provided by Behara and Mittal.38 Computation

for each time step that consists of three nonlinear iterations

in solving the fluid dynamic equations, and five iterations

of mesh moving equations for a nonlinear iteration, takes

approximately 11 s on a 12 processor computing machine.

IV. OSCILLATION RESPONSE OF CYLINDERS

Figure 2(a) shows the variation of normalized maximum

amplitude (A∗y) of the transverse oscillations with Re for all the

three cylinders. In the present simulations, it is observed that

for certain Re, the two downstream cylinders exhibit nonperi-

odic oscillations at various amplitudes. Due to this fact, we sur-

mise that plotting the mean amplitude provides a better insight
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FIG. 2. (a) Variation of normalized maximum transverse amplitude (A∗y) for

all three cylinders and (b) variation of normalized mean transverse amplitude

(A∗y,mean) for the downstream cylinders with increasing (inc) and decreasing

(dec) Re. Letters I, T, U, and L represent the initial lock-in branch, transition

region, and upper and lower lock-in branches, respectively. Letters a to d point

out the Reynolds numbers for which time histories of y/D and flow pictures are

shown in Figs. 4 and 5, respectively. Upward and downward arrows indicate

the hysteresis.

into the oscillation response. Therefore, the variation of nor-

malized mean amplitude (A∗y,mean) with Re for the two down-

stream cylinders (cyl-B and cyl-C) is presented in Fig. 2(b).

Here, A∗y,mean is calculated by averaging the magnitudes of

amplitudes, on either side of the mean position of the cylinder,

over all the oscillation cycles considered. The corresponding

values of reduced velocity (U∗) are shown on the top axis of

each plot.

From Fig. 2(a), one can observe that cyl-A exhibits ini-

tial (I) and lower (L) synchronization response branches. This

lock-in behavior is the same as that observed by Prasanth

and Mittal26 for an isolated cylinder at low Reynolds num-

bers. This phenomenon confirms that the oscillation response

of the upstream cylinder is not affected by the presence of

downstream cylinders, since vortex shedding takes place in

the gap between the upstream and downstream bodies. cyl-

B and cyl-C exhibit the upper branch (U) as well, in addi-

tion to the initial (I) and lower (L) branches. These three

amplitude response branches can clearly be seen on both A∗y

—and A∗y,mean—Re plots in Fig. 2. The oscillation response of

downstream cylinders undergoes gradual transition from the

initial to the upper branch. This transition region is denoted by

“T” in Fig. 2. On the other hand, in the upper⇒ lower mode

transition, a sudden downward jump occurs in the maximum

and mean amplitudes. This jump is associated with hystere-

sis, as shown in Fig. 2(b). To the best of our knowledge,

all the above-mentioned aspects, with respect to the behav-

ior of oscillating downstream cylinders, are observed for the

first time. Interestingly, these phenomena are similar to the

dynamic response of a transversely vibrating isolated cylin-

der22,27 at higher Re [∼O(104)]. Therefore, in the rest of this

paper, various vibration responses of the downstream bodies

are compared with the isolated cylinder’s behavior, reported

by Khalak and Williamson.22

Figure 3 shows the ratio of vibration frequency ( fv) of

the cylinder and the natural frequency ( fN ) of the spring-mass

system as well as the Strouhal frequency (St) in the wake of the

oscillating cylinder, plotted as functions of Re. As the cylin-

ders exhibit non-synchronized oscillations for Re ≤ 76, they

vibrate at a frequency, which is nearly equal to the frequency

( f ) of primary vortex shedding in the wake of stationary cylin-

ders. Therefore, fv/fN closely follows the diagonal solid line

that represents f /fN in Fig. 3(a). From Fig. 2, one can observe

that for cyl-B and cyl-C, the initial lock-in branch begins at a

lower Reynolds number than the corresponding Re of cyl-A.

Therefore, the upward jump occurs in fv/fN at Re = 74 for the

downstream cylinders and at Re = 78 for cyl-A, as shown in the

inset of Fig. 3(a). In the initial branch, all the cylinders exhibit

nearly periodic oscillations. Figure 4 shows the time histories

of normalized transverse displacements ( y/D) of cyl-A and

cyl-C for the values of Re, which are marked by the letters “a”

to “d” in Fig. 2. In this figure, data related to cyl-B are not

shown since cyl-B’s oscillation response is almost the same

as that of cyl-C. From the time histories of y/D at Re = 82 in

Fig. 4(a), it is evident that the cylinders exhibit nearly periodic

oscillations in the initial branch.

Even though the initial branch begins at different Re for

the upstream cylinder and the two downstream bodies, it ends

at Re = 84 for all the three cylinders. In the case of cyl-A, the

lower branch begins immediately at Re = 86, whereas the ini-

tial branch is followed by the transition to the upper response

mode for the downstream bodies (cyl-B and cyl-C), as shown in

Fig. 2. Therefore, at Re = 86, cyl-A undergoes periodic oscil-

lations corresponding to its lower mode, while cyl-C exhibits

beats-like phenomenon [see Fig. 4(b)]. The transition regime

ends at Re = 100, while both the downstream cylinders achieve

the upper response branch for 102 ≤ Re ≤ 124. This upper

mode is characterized by a periodic oscillation response, as is

evident from Fig. 4(c). These aspects are in contrast with the

observations of Khalak and Williamson.22 They reported that

for an isolated cylinder that oscillates in the transverse direc-

tion only, there is a sudden jump in the amplitude response

from initial to the upper mode and the upper branch is

associated with nonperiodic oscillations.

The oscillation response of the downstream cylinders

jumps from the upper to the lower mode at Re = 125. At the

same Re, cyl-A’s vibration response goes out of the lock-in

regime and jumps to the desynchronization region. For cyl-B
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FIG. 3. (a) Variation of ratio of vibration frequency ( fv ) and natural frequency ( f N ) and (b) variation of Strouhal frequency (St) in the wake of vibrating

cylinders, with respect to Re. In (a), the diagonal solid line represents the ratio of primary shedding frequency ( f ) in the wake of stationary cylinders and f N . In

(b), the dashed line represents nondimensional natural frequency (FN ) of the spring-mass system.

and cyl-C, the lower lock-in mode appears during 125 ≤ Re

≤ 154 (see Fig. 2). In the lower branch, the downstream cylin-

ders experience nonperiodic vibrations, as can be noticed from

the y/D history of cyl-C at Re = 130 in Fig. 4(d). Contrary

to this observation, Khalak and Williamson22 demonstrated

that the lower branch of an isolated cylinder is marked by a

periodic oscillation response. Figure 4(d) shows that since cyl-

A exhibits desynchronized oscillations at Re = 130, it exhibits

oscillations at low amplitudes.

Figure 3(a) shows that fv/fN for cyl-B and cyl-C appears

close to the fv/fN = 1 line for all the three lock-in modes.

Whereas in the case of cyl-A, since its vibration response

FIG. 4. Time histories of normalized

transverse displacement ( y/D) at the Re,

which are pointed by the letters (a)–(d)

in Fig. 2.
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reaches the desynchronization regime for Re ≥ 125, fv/fN
departs from the unity and closely follows the f /fN line. These

aspects indicate that for Re ≥ 125, the upstream cylinder

exhibits desynchronized oscillations at primary shedding fre-

quency ( f ) corresponding to the stationary cylinders, while

the downstream bodies vibrate at natural frequency ( f N ) of the

spring-mass system. The lower lock-in regime (L) for cyl-B

and cyl-C continue up to Re = 154, and at Re = 156, their

oscillation responses jump to the desynchronization regime,

as shown in Fig. 2.

V. PRIMARY VORTEX SHEDDING

Figure 5 presents the instantaneous vorticity pictures for

the values of Re, which are marked by the letters “a” to “d” in

Fig. 2, while the corresponding Strouhal frequency (St) spectra

for cyl-C are shown in Fig. 6. Since the cylinders exhibit nearly

periodic oscillations at Re = 82 (see Fig. 4), which is in the ini-

tial branch, the 2S mode of vortices are shed at regular intervals

by all bodies, as can be seen in Fig. 5(a). This aspect results

in a single peak appearing in the St spectrum at Re = 82 (see

Fig. 6). As the oscillation response of the downstream cylin-

ders transitions from the initial to the upper response mode,

vortex shedding undergoes low frequency modulation. There-

fore, St spectrum at Re = 86 is characterized by two peaks,

f 1 and f 2, as shown in Fig. 6. Figure 5(b) shows that at Re

= 86, in the wake of each downstream cylinder, the vortices

are organized in two rows. From this figure, it can also be

observed that the 2S mode of shedding occurs in the transition

regime as well. With the vibration response of the downstream

bodies achieving an upper response mode, which is associated

with the periodic oscillations, the shedding becomes periodic

as seen in Fig. 5(c). As a result, the single peak appears at Re

= 115 in Fig. 6. However, interestingly, it is observed that in

the upper branch, downstream cylinders shed the P+S mode

of vortices. This phenomenon will be discussed in detail later.

In the lower branch, the wake is characterized by the 2S shed-

ding pattern. In this lower mode, since cyl-B and cyl-C exhibit

nonperiodic oscillations [see Fig. 4(d)], the vortices appear

randomly shed in the wake as shown in Fig. 5(d).

Figure 3(b) shows that in the nonsynchronization region

for Re < 74, all the three oscillating cylinders shed vor-

tices at a frequency, nearly equal to the Strouhal frequency

of stationary cylinders. For the oscillating upstream cylinder

(cyl-A), St closely follows the reduced natural frequency (FN )

of the spring-mass system in initial and lower branches (for

78 ≤ Re ≤ 124), as seen in Fig. 3(b). On the other hand, the

FIG. 6. Strouhal frequency (St) spectra for a downstream cylinder that is

referred to as cyl-C in Fig. 1, at the Re, which are pointed by letters a to d, in

Fig. 2.

vibrating downstream cylinders shed primary vortices nearly

at the natural frequency (FN ), only in the initial excitation and

transition regions (for 72 < Re < 102). However, during the

upper response regime (for 102 ≤ Re ≤ 124), primary shed-

ding takes place at St > 0.25 in the wakes of cyl-B and cyl-C.

The peak-f 1 in the frequency spectrum of Re = 115 (see Fig. 6)

also confirms that St is significantly high in the upper branch.

We observed that this high Strouhal frequency is associated

with the P+S mode of shedding by the downstream cylinders.

As cyl-A’s oscillation response goes out of the synchronization

regime and cyl-B and cyl-C exhibit lower mode for Re > 125,

Strouhal frequencies become nearly equal to the primary shed-

ding frequency of the stationary system, as shown in Fig. 3(b).

Figure 7 shows one cycle of normalized transverse dis-

placement (y/D) of cyl-C at Re = 115, which is in the upper

branch, and for the corresponding time period, the variation

of the lift coefficient (Cl) is also presented. As one can notice

from this figure, for one cycle of y/D, Cl exhibits slightly more

than 1.5 cycles. On the Cl–t curve, letters a to e mark nearly the

crests and troughs using solid circles, while the correspond-

ing y/D locations of cyl-C are indicated by the letters a′ to e′.
Figure 8 presents vorticity pictures in the near wake at the time

instants corresponding to points a to d marked on the y/D–

t curve in Fig. 7. Since the flow pattern related to point “a”

repeats at “e,” the flow picture for “e” is not shown. Figure 9

presents the pictures of the pressure field at the same time

instants, as marked by the letters “a” to “d” in Fig. 7.

FIG. 5. Instantaneous vorticity field at

the Re, which are pointed by the letters

(a)–(d) in Fig. 2.
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FIG. 7. One cycle of time history of normalized transverse displacement

(y/D) of cyl-C and the history of the lift coefficient (Cl) exerted on the same

cylinder and for the same time period. Letters a to e and the corresponding

solid circles indicate nearly the crests and troughs of Cl curve, while the let-

ters a′ to e′ and the open circles indicate the corresponding transverse location

(y/D) of the body.

Figures 7–9 illustrate the physical aspects associated with

the appearance of 1.5 cycles of Cl for one oscillation cycle

in the transverse direction. From Fig. 8(a), it can be observed

that at t = 100, the vortices shed by cyl-A are at far upstream

to cyl-C. Therefore, the effect of those vortices on cyl-C is not

significant. At this time instant, cyl-C is moving upwards, as is

evident from its y/D location indicated by a′ in Fig. 7. The lift,

exerted on the body due to its upward motion, acts downwards.

Also, the stagnation point is found on the upper half of the cyl-

C’s surface [see Fig. 9(a)]. As a result, the body experiences

slightly negative lift (point a in Fig. 7). At point b′ in Fig. 7,

cyl-C decelerates as it is approaching the peak of y/D–t curve.

At the same time, the negative vortex on the upper shoulder

becomes stronger [see Fig. 8(b)], leading to the formation of

higher suction in the upper half, as shown in Fig. 9(b). There-

fore, net pressure force acts on the body upwards, resulting

in positive Cl (see point b in Fig. 7). Figure 8(c) shows that

the positive vortex, shed by cyl-A, interacts with the boundary

layer and free shear layers on cyl-C. This interaction reduces

the intensity of negative vorticity on the upper shoulder of

cyl-C, while augmenting the positive vortex on the cylinder’s

lower surface. This phenomenon creates higher suction on the

lower side of cyl-C, as can be seen in Fig. 9(c). Therefore, lift

acts downwards on the body (see point c in Fig. 7). At point d′

in Fig. 7, cyl-C is moving downwards and the negative vortex,

shed by cyl-A interacts with the negative vortex forming on

the upper side of cyl-C [see Fig. 8(d)], causing the net pressure

force acting upwards on the body. Therefore, lift is positive at

point d in Fig. 7. At point e, the flow pattern resembles the one

shown in Fig. 8(a).

In the present simulations, it is observed that the interac-

tion with vortices shed from the upstream cylinder significantly

affects the timing of vortex shedding by the downstream bod-

ies, leading to the formation of the P+S mode in the near wake.

One can clearly see this phenomenon in the flow pictures, pre-

sented in Fig. 8. Figure 8(a) shows that in the vicinity of cyl-B,

one pair of positive and negative vortices is shed and has moved

a little downstream, while a positive vortex is being released

from its bottom shoulder. From Fig. 8(b), it is evident that the

pair of vortices shed by cyl-B moved further downstream, and

the positive vortex released from its lower side coalesced with

that of cyl-C, thus increasing the intensity of positive vortex

shed by cyl-C. This completes the process of P+S vortex shed-

ding in a cycle. Similar phenomena can be observed for cyl-C

FIG. 8. Instantaneous vorticity field in the near wake of

the cylinders for the time instants, which are pointed by

letters a to d in Fig. 7. The flow pattern at point e is not

shown, since it is the same as that of (a). Loops of dashed

lines in figures (a) and (d) highlight the P+S mode of

vortex shedding.
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FIG. 9. Pressure field around cyl-C at the time instants,

pointed by letters (a)–(d) in Fig. 7.

as well. Figures 8(a)–8(c) depict the formation and shedding

of one pair of vortices in the near wake of cyl-C, while in

Fig. 8(d), one can notice that the negative vortex is about to

separate from the body and merge with the negative vortex of

cyl-B, completing the formation of the P+S mode. To the best

of our knowledge, this is for the first time that the P+S mode

FIG. 10. Phase between the lift (Cl) as well as traverse

displacement (y/D) of the two downstream cylinders at

various Re.
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is observed during the synchronization regime at such low Re

in the wake of a freely oscillating cylinder, either in the case

of an isolated cylinder or for multiple cylinders. From Fig. 8,

it is evident that the positive vortex released by cyl-B and the

negative vortex shed from cyl-C are weaker than their coun-

terparts and get diffused as they move downstream. Therefore,

the pattern of the far downstream wake appears to be of the

2S mode, as can be seen in Fig. 5(c). It can be argued that

the P+S shedding leads to the appearance of 1.5 cycles in the

history of Cl per one cycle of body’s transverse displacement

(see Fig. 7).

VI. PHASE BETWEEN THE TRANSVERSE MOTION
OF DOWNSTREAM CYLINDERS

Figure 10 presents the phase relation between cyl-B and

cyl-C for lift (Cl) as well as the transverse motion (y/D) at

various Re. At the beginning of the initial excitation mode,

lift acting on both the downstream cylinders is in phase with

each other as shown in Fig. 10(a). Therefore, their respec-

tive transverse movements also exhibit the same phase. How-

ever, with an increase in Re towards the end of the initial

mode, interestingly, both Cl and y/D of the downstream cylin-

ders go out of phase by 180◦, as can be seen in Fig. 10(b).

Figures 10(c) and 10(d) indicate that that in the upper and

lower modes, even as the phase relation of Cl exhibits certain

random behavior, the transverse displacement of cyl-B is in

phase with the corresponding y/D of cyl-C.

VII. PHASE BETWEEN LIFT AND TRANSVERSE
DISPLACEMENT

Figure 11 shows the {Cl:y/D} phase plots for cyl-A and

cyl-C at various Re. Since the phase plots for cyl-B appear

similar to those of cyl-C, they are not presented in Fig. 11.

From this figure, one can observe that at Re = 82, which is

in the initial response mode, the transverse motion for all the

bodies is in phase with the lift. From Fig. 11(b), it is evident

that in the lower branch corresponding to cyl-A, Cl is signifi-

cantly low; however, the {Cl:y/D} phase plot suggests that Cl

undergoes nearly two cycles of variation for each oscillation

cycle of the body. Notwithstanding the existence of 2:1 ratio

in the {Cl:y/D} plot, only the 2S mode of vortices is found in

the near wake of cyl-A. On the other hand, the downstream

cylinders experience the lift of considerable magnitudes at

Re = 115, which corresponds to the upper branch, as can

be seen in Fig. 11(b). Since nearly 1.5 cycles of Cl appear

for one cycle of y/D (see Fig. 7) at Re = 115, the {Cl:y/D}
phase plot assumes the shape of figure “8.” However, the aver-

age phase, computed for both cyl-A and cyl-C, get close to

zero value. Figures 11(c) and 11(d) show that cyl-A, in the

later part of its lower branch as well as in the desynchroniza-

tion regime, experiences the phase of nearly 180◦. Whereas

for the downstream cylinders, the average phase, computed

from the {Cl:y/D} phase plot shown in Fig. 11(c), results in

zero value. This aspect suggests that in the lower branch, the

transverse vibrations of cyl-B and cyl-C are in phase with the

lift. The {Cl:y/D} phase plot of cyl-C in Fig. 11(d) reveals

FIG. 11. {Cl :y/D} phase plots at various Re.
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that at Re = 156, which is in the desynchronization regime, the

phase difference becomes 180◦.
The phase (φ) between the lift and transverse displacement

is calculated employing Gilbert transform. Figure 12 presents

the variation of φ with Re, for cyl-A and cyl-C. On these

plots, variation of A∗y,mean is also shown for reference. From

Fig. 12(a), it can be observed that for cyl-A, the phase jumps

from 0◦ to nearly 180◦ in the middle of the lower branch.

However, this jump in phase does not affect the vortex shed-

ding pattern, as cyl-A sheds only the 2S mode of vortices for

all the Re considered. Prasanth and Mittal26 also observed the

180◦ phase jump for an isolated cylinder at certain Re in the

lower lock-in branch. They observed that this phase jump is

associated with the frequency ratio ( fv/fN ) attaining the value

of 1. On the other hand, the downstream cylinders exhibit

oscillations, in phase with Cl, for all the three synchroniza-

tion regimes. From Fig. 12(b), one can notice that the phase

FIG. 12. Variation of the phase (φ) between lift exerted on a cylinder and

its transverse displacement with Re. Variation of A∗y,mean is also shown for

reference. Meanings of letters I, T, U, and L are provided in the caption of

Fig. 2.

jumps to 180◦ at Re = 156, where the oscillation response

jumps from the lower branch to the desynchronization region.

This phase jump does not influence the shedding pattern in the

wake of downstream cylinders, as the 2S mode is observed in

the lower response branch as well as in the desynchronization

regime.

VIII. STREAMWISE AMPLITUDE RESPONSE

Variation of the normalized maximum amplitude (A∗x) of

streamwise oscillations with Re is shown in Fig. 13 for all the

cylinders. The upstream cylinder (cyl-A) exhibits oscillations

predominantly in the transverse direction similar to an iso-

lated body. From Fig. 13, it is evident that cyl-A exhibits a low

amplitude response, while the downstream cylinders undergo

oscillations at significant amplitudes in the streamwise direc-

tion. As one can notice from Fig. 13, for cyl-B and cyl-C, the

amplitude increases to A∗x ∼ 0.2 in the initial lock-in branch

(indicated by I in Fig. 13) and varies around that value in

FIG. 13. Variation of normalized maximum amplitude (A∗x) of streamwise

oscillations with Re. Arrows indicate hysteresis. Meanings of letters I, T, U,

and L are provided in the caption of Fig. 2.
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the upper (U) and lower (L) synchronization regions as well.

However, in the transition (T) from the initial to the upper

response mode, A∗x exhibits large values, as cyl-B and cyl-C

oscillate at higher amplitudes in the streamwise direction. Note

that in Fig. 13, only maximum amplitude is plotted. We shall

present details of the cylinder trajectories on the xy-plane in

Sec. X.

IX. FORCE COEFFICIENTS

Figure 14 shows the variation of rms values of Cd and

Cl with Re for all the three cylinders. In this figure, it can

be observed that for cyl-A, the trends in the Cd ,rms–Re and

Cl ,rms–Re relations are similar to those reported for an iso-

lated cylinder by Prasanth and Mittal.26 This aspect further

confirms that the dynamic response of cyl-A is the same as

that of a single cylinder for the streamwise gap of 5D between

the upstream and downstream bodies, considered in the present

simulations. However, cyl-B and cyl-C exhibit different phe-

nomena in the Cd ,rms–Re and Cl ,rms–Re plots compared with

cyl-A. In Fig. 14(a), one can observe that for the downstream

cylinders, Cd ,rms rises to its maximum value at the end of

the initial branch (I) and jumps to a lower value as tran-

sition to the upper response mode begins. In the transition

region (T), Cd ,rms attains another peak, while in the upper

branch (U), it decreases monotonically. Whereas, throughout

the lower branch (L), Cd ,rms exhibits negligible variation, as

can be seen in Fig. 14(a). In this figure, hysteresis is seen at

the transition from the upper to lower branch. On the other

hand, Fig. 14(b) shows that the variation of Cl ,rms for cyl-

B and cyl-C is similar to that of cyl-A in their initial (I)

and lower (L) branches. However, in the lower branch of

cyl-A, Cl ,rms monotonically decreases, while for the down-

stream cylinders, this trend is intercepted by the transition

region (T), as shown in Fig. 14(b). Hysteresis in the upper

⇒ lower transition can be observed in the Cl ,rms-Re plot as

well.

X. TRAJECTORIES OF CYLINDERS

Recall that the amplitudes of streamwise oscillations of

cyl-A are negligible compared with those of cyl-B and cyl-C,

for all the Re considered (see Fig. 13). Therefore, cyl-A oscil-

lates predominantly in the transverse direction. Whereas, for

the downstream cylinders it is interesting to see the trajecto-

ries on the xy-plane, since both the bodies exhibit streamwise

oscillations at significant amplitudes. Trajectories of cyl-C are

shown in Fig. 15 for various Re. In this figure, trajectories of

cyl-B are not presented, as they are similar to those of cyl-

C. Note that in all the plots of xy-displacement, scale on the

x-axis is magnified. Figure 15(a) shows that at Re = 72, which

is in the nonsynchronization region, the downstream cylinder

vibrates along an oval-like path. However, the amplitudes in

both x- and y-directions are negligible. In the initial and upper

branches, the downstream cylinders traverse along elliptical

orbits, which are oriented in opposite directions, as shown in

Figs. 15(b) and 15(e), respectively. In Sec. V, it is observed

that in the initial branch, cyl-B and cyl-C shed the 2S mode of

vortices, while the upper branch is associated with the P+S pat-

tern of vortex shedding. Also, it is shown that the P+S shedding

leads to the appearance of 1.5 cycles of Cl for each cycle of y/D

(see Fig. 7) in the upper branch. However, this P+S shedding

does not alter the shape of trajectory of the downstream cylin-

ders. From Figs. 15(c) and 15(d), it can be observed that in the

transition regime, cyl-C moves along several elliptical trajec-

tories, which are of various sizes and are oriented in different

directions. Also from these figures, it is interesting to notice

that as Re increases in the transition regime, the orientation

of the elliptical trajectory gradually shifts from its orientation

corresponding to the initial branch [see Fig. 15(b)] to the orien-

tation observed in the upper branch [Fig. 15(e)]. Figure 15(f)

shows that in the lower branch, the downstream cylinders oscil-

late along a certain closed path periodically. We observed that

with an increase in Re in the lower response mode, this peri-

odicity ceases to exist, as cyl-B and cyl-C oscillate randomly

on the xy-plane.

FIG. 14. Variation of (a) Cd ,rms and (b) Cl ,rms with Re.

Arrows indicate hysteresis. Meanings of letters I, T, U,

and L are provided in the caption of Fig. 2.
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FIG. 15. Trajectories of cyl-C at various Re.

XI. CONCLUSIONS

Vortex-induced vibrations of three circular cylinders,

arranged in staggered configuration, are studied via two-

dimensional finite element computations for Reynolds num-

bers in the range of Re = 60–160. Identical cylinders are

mounted on elastic supports in both x- and y-directions, with

the streamwise distance between the upstream and down-

stream bodies being 5D. Since the two downstream cylinders

are placed symmetrically on either side of the horizontal (x-)

axis of the domain, with a transverse gap of 3D between them,

both the bodies exhibit nearly the same dynamic response.

It is observed that the upstream cylinder exhibits the initial

and lower lock-in regimes, similar to the dynamic response of

an isolated cylinder, reported by Prasanth and Mittal26 for low

Re. This phenomenon confirms that for the streamwise gap

of 5D, between the upstream and downstream cylinders, the

upstream body is not affected by the presence of downstream

bodies. Whereas the oscillation response of both the down-

stream cylinders achieve the upper lock-in mode in addition

to the initial and the lower modes. To the best of our knowl-

edge, these distinct synchronization modes corresponding to

a downstream cylinder are observed for the first time. The ini-

tial excitation regime of the upstream cylinder is immediately

followed by its lower lock-in mode. However, in the case of

downstream cylinders, the dynamic response undergoes grad-

ual transition from the initial to the upper mode. On the other

hand, a downward jump takes place in the amplitude as the

oscillation response shifts from the upper to lower branch.

This jump is associated with hysteresis. The upper branch

is characterized by periodic oscillations of the downstream

cylinders, while in the lower branch oscillations are nonpe-

riodic. Exactly opposite phenomena are observed by Khalak

and Williamson22 for an isolated cylinder, with respect to the

oscillation response in the upper and the lower modes.

The upstream cylinder sheds the 2S mode of vortices for

all Re considered. The downstream bodies also shed the 2S

mode except for the upper branch. In the upper branch corre-

sponding to the downstream cylinders, it is observed that their

interaction with the vortices shed by the upstream body as well

as high transverse amplitudes (where, A∗y ∼ 0.9D) changes

the timing of vortex shedding. As a result, the downstream

cylinders shed the P+S mode of vortices. This P+S mode is

associated with the appearance of high Strouhal frequency in

the upper branch.

In the case of the upstream cylinder, a 180◦ phase jump

occurs at certain Re corresponding to its lower branch, in con-

sistence with observation of Prasanth and Mittal26 for an iso-

lated body. Whereas for the downstream cylinders, the phase

difference between the lift and the transverse displacement

appears close to zero value throughout the synchronization

regime and jumps to 180◦ as the oscillation response shifts

from the lower mode to the desynchronization region.
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