This paper reports the interaction of salt (NaCl and KCl), initial pH, and temperature and their effects on the specific growth rate and lag phase of food spoiling halotolerant yeast, Debaryomyces nepalensis. The optimization of salt, initial pH, and temperature was carried out using response surface methodology based on central composite design. The mathematical model showed that salt has a significant effect on specific growth rate and lag phase of D. nepalensis. The optimal conditions of salt concentration, pH, and temperature of growth were found to be 0.3 M NaCl, 7.1, 26 °C and 0.6 M KCl, 5.6, 25°C, respectively. Under these conditions, a maximum specific growth rate of 0.41 and 0.5 h -1 was observed in medium containing NaCl and KCl, respectively. Lag phase can be increased most effectively either by increasing salt concentrations or both by decreasing (≤20°C) or increasing the temperature (≥40°C) with moderate (1.5 M) or low salt concentration (0.5 M), respectively. Results show that D. nepalensis need to generate weak acids to maintain the intracellular pH under pH and saline stress conditions. The results obtained in this study will be helpful in using optimal conditions for the maximum growth of the strain for the production of certain metabolites like organic acids and glycerol and designing food preservation procedures. © 2009 Springer Science + Business Media, LLC.