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Use of computational modeling combined with advanced
visualization to develop strategies for the design of crop
ideotypes to address food security

A.J. Christensen*, Venkatraman Srinivasan, John C. Hart, and Amy Marshall-Colon*

Sustainable crop production is a contributing factor to current and future food secu-

rity. Innovative technologies are needed to design strategies that will achieve higher

crop yields on less land and with fewer resources. Computational modeling coupled

with advanced scientific visualization enables researchers to explore and interact

with complex agriculture, nutrition, and climate data to predict how crops will

respond to untested environments. These virtual observations and predictions can

direct the development of crop ideotypes designed to meet future yield and nutri-

tional demands. This review surveys modeling strategies for the development of

crop ideotypes and scientific visualization technologies that have led to discoveries

in “big data” analysis. Combined modeling and visualization approaches have

been used to realistically simulate crops and to guide selection that immediately

enhances crop quantity and quality under challenging environmental conditions.

This survey of current and developing technologies indicates that integrative model-

ing and advanced scientific visualization may help overcome challenges in agricul-

ture and nutrition data as large-scale and multidimensional data become available

in these fields.

INTRODUCTION

Food security is defined as adequate availability and ac-

cess to sufficient, safe, and nutritious food at all times.1

The United Nations World Food Summit in 1996 pro-

posed guidelines for measures of food security.2 The fol-

lowing components of food security were identified:

availability (when states produce sufficient quantity),

accessibility (when people can afford to buy the food

available and the food can be transported from

production to consumption sites), acceptability (when

the foods available align with the cultural, social, and re-

ligious aspects of the consumer), and dietary needs

(when the foods available have nutritive value and meet

daily dietary demands). The International Food Policy

Research Institute expands this definition by stating

that the available food should also meet an individual’s

dietary needs and food preferences for an “active and

healthy life.”3 The opposite scenario results in food in-

security, in which a household’s daily per capita
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consumption is below 2100 calories.4 The US

Department of Agriculture measures food insecurity on

the basis of both nutritional adequacy (calorie con-

sumption) and household perspective of their own food

security (experiential data). For example, households in

sub-Saharan Africa may be food insecure because of un-

dernourishment and limited access to food, while com-

munities in Asian countries may perceive they have

enough food yet are actually food insecure because of

malnutrition from lack of diverse and nutritious food.4

Many factors influence food security, including popula-

tion size, food prices, environmental stressors, and

climate change.3 Ultimately, to overcome food insecu-

rity, collaborative networks that integrate several com-

ponents must be developed in order to enhance a

community’s environmental, economic and social

well-being.

Crop production is one of the major components

of sustainable food systems, but it is highly sensitive to

changes in climate. Current climate models predict that

increasing temperatures and atmospheric levels of car-

bon dioxide, changing global and regional precipitation

patterns, and increases in the intensity and frequency of

extreme weather events will significantly affect crop

quantity and quality over the next 100 years.5 Elevated

atmospheric carbon dioxide has been found to increase

the biomass and yield of crops that use both C3 and C4

photosynthetic pathways, provided water and fertiliza-

tion are adequate6; however, recent studies have shown

a decrease in the nutritional quality of grains and

legumes. Crop growth under high concentrations of

carbon dioxide is linked to decreased concentrations of

zinc, iron, and protein in barley, rice, maize, soybean,

field peas, potato, and sorghum.5,7,8 The impact of car-

bon dioxide levels on seed zinc concentrations is esti-

mated to result in approximately 138 million people at

new risk of zinc deficiency by 2050.9 High atmospheric

carbon dioxide concentrations also cause declines in to-

tal nitrogen and mineral concentrations in soybean10,11

and wheat and an increase in carbohydrate concentra-

tions,12 resulting in a potentially negative impact on the

nutritional quality of future food supplies.

The nutritional quality of crops under projected

temperatures and carbon dioxide levels is likely to shift

in the future, yet four key global crops (maize, rice,

wheat, and soybeans) are already showing stagnating or

collapsing yields.13,14 Maize, wheat, and rice are all

expected to show reduced yields in response to the

combinatorial effects of climate change in both tropical

and temperate regions with poor soil nutrition and lim-

ited water resources.15 This phenomenon is expected to

have the largest impact on developing countries, where

urban demand for densely nutritious food is rising, cre-

ating a need for increased production of staple crops

and requiring increased use of resources.16–18 Simply

put, the existing germplasm will not be able to meet the

expected demand for staple crops in 50 years.14,19,20 The

development of future crops that grow under a chang-

ing climate will require a strategy beyond traditional

breeding, which is based on selection for yield or for de-

fect elimination.21 Cultivars for a specific purpose in a

specific environment are known as ideotypes.22,23

Ideotypes can include plants for which certain proper-

ties are enhanced, such as grain quality or nutritional

balance, or plants with traits such as the ability to with-

stand water or nutrient deficiency. The development of

ideotypes will be a key component in ensuring future

food security under a changing global environment.

Several modeling studies have predicted optimum phe-

notypic characteristics of crops under different environ-

mental conditions.21,24–26 More recently, efforts to

couple technological advances in crop modeling with

experimental canopy structural modification using Free

Air Concentration Enrichment (FACE) technology un-

der current and future carbon dioxide concentrations

have been reported.27 Unfortunately, ideotype develop-

ment is slow, requiring precise genetic selection to

achieve the desired expression of traits in an untested

environment. This presents a considerable challenge to

identify and scrutinize technologies that will accelerate

the development of ideotypes for specific scenarios.

The goals of this review are to survey computa-

tional crop modeling and data visualization strategies

and to explore how such strategies can accelerate ideo-

type breeding and engineering to increase yield and,

possibly, nutrition under challenging environmental

conditions. This review aims to communicate the po-

tential of multiscale modeling and advanced visualiza-

tion and reveal the current limitations in the field. At

this point in history, technological advances are pushing

agriculture and plant science into the realm of big data,

and there is a need for strategies to comprehend and ef-

ficiently use complex data. As we approach this new

frontier, technological approaches that incorporate ad-

vanced visualization are needed to facilitate user inter-

action with large-scale biological, agricultural, and

nutritional data. Three-dimensional (3D) and immer-

sive data visualization has the potential to improve re-

searcher understanding of complex data by allowing

observations about emergent behavior that are other-

wise not readily discernible from traditional tables and

graphs.28 Here, emergent behavior refers to

“unexpected properties generated by complex intercon-

nections between subsystem components and biological

(or physical) processes.”29 The recent development and

accumulation of big data from the agriculture sector

can improve model parameterization, while advances in

high-performance computing and data visualization
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will enable processing and dissemination of model out-

puts. This review aims to summarize how computa-

tional modeling and advanced scientific visualization

may help overcome challenges in agriculture and nutri-

tion data, by (1) exploring the current use of big data in

crop production and how it relates to food security, (2)

surveying integrative modeling strategies aimed at ideo-

type development, (3) describing how advanced visuali-

zation can facilitate data discovery, and (4) examining

how current visualizations of multiscale crop models

are improving crop productivity. It concludes with a

short perspective on the future of data exploration

through modeling and visualization.

Defining and using big data in agriculture and crop

science

Big data in agriculture includes large volumes of diverse

data collected from individual farms. These data require

aggregation and advanced analytics to enable the devel-

opment value-creating tools to support decision-mak-

ing.30 Big data includes agronomic data (yield, soil

properties, pesticide and fertilizer application rates,

planting density, genotypes, etc), machine data (GPS

and sensor-derived information, yield monitors, etc),

spatial and imaging data (GIS [geographic information

system], satellite, and remote sensing imagery, near-

infrared reflectance, etc), and meteorological data (pre-

cipitation, temperature, atmospheric gas levels, etc)

(Table 1).30–49 Although agronomic and meteorological

data have been recorded for decades via historic moni-

toring of farms, it is the digitization of this information,

along with the terabytes of data collected from remote

sensing and other technologies, that has moved agricul-

ture into the era of big data. Likewise, with the advent of

high-throughput technologies, crop science research is

now producing vast amounts of “-omic” scale data from

the genome, transcriptome, metabolome, and proteome.

As the volume and diversity of data rapidly in-

crease, agricultural technology providers are developing

data services to store, compile, and analyze this data,

resulting in advice on precision agriculture practices.

These services are generally supplied by agricultural in-

put providers, such as John Deere, Monsanto, and

DuPont Pioneer, who then use the data to prescribe

their products (ie, genetics, fertilizers, pesticides) for

field-specific treatments.30,45 For example, Monsanto’s

FieldScripts is a paid-subscription program, facilitated

by certified dealers, that uses farmer-collected field data

to generate planting prescriptions for use with

Monstanto’s DEKALB seed types and also offers moni-

toring and real-time advice throughout the growing sea-

son.30 Likewise, John Deere outfits their equipment

with sensors that stream data about soil and crop

conditions through the Internet of Things. The result-

ing analysis can inform farmers with paid subscriptions

about best management practices.45 In general, the pre-

cise data collected by for-profit farm management serv-

ices are not publically available and are only accessible

through paid subscriptions.

Nonprofit and government organizations provide

open-access, integrated data reports and/or tools to pro-

cess agricultural data. The National Agricultural Statistics

Service and the World Agricultural Outlook Board pre-

pare monthly forecasts for crop supply and demand, using

data collected from farm surveys, field observations (ie,

weather), stocks, and trade data. These services provide

estimates for the United States and the world that serve as

benchmarks in world commodity markets.46 These esti-

mates include acres to be harvested and yield per acre on

regional, national, and global scales, but they do not offer

specific advice on crop and soil management. Another

limitation of these services is that National Agricultural

Statistics Service does not use long-range weather forecasts

and thus can only provide yield predictions on a monthly

basis. Furthermore, results from these reports must be

interpreted by commodity statisticians and are usually not

easily understandable by farmers and other stakeholders.

Results from these reports are visualized through dense

tables and so-called snapshot maps that do not take into

consideration predictions over time.

Other organizations have improved the dissemina-

tion of data and predictions to the public through the

development of simulation tools that display model out-

puts as interactive visualizations, which couple agricul-

tural data with geospatial information (eg, geographic

information systems). The Food and Agriculture

Organization of the United Nations (FAO) developed

the Global Information and Early Warning System on

Food and Agriculture (GIEWS), which monitors major

food crops around the world. The GIEWS uses precipi-

tation and remote sensing data to calculate an

Agricultural Stress Index that serves as an indicator for

early identification of areas that will be affected by water

deficiency.47 This information is publically accessible

via interactive geospatial maps that provide near real-

time indices of vegetation health and water availability

within a 10-day period. Likewise, the Famine Early

Warning Systems Network (FEWS NET), created by

the US Agency for International Development

(USAID), provides evidence-based, unbiased analysis

on global food security using big data from physical sci-

ence (eg, US Geographical Survey), remote sensing of

agroclimatic factors (eg, National Oceanic and

Atmospheric Administration and National Aeronautics

and Space Administration), economics, and politics.

This information is cataloged and made available

through the FEWS NET data center, which also
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provides visualizations of aggregate data. This collective

information is used to identify areas of current and fu-

ture vulnerability to food insecurity. For example,

FEWS NET monitoring identified countries at new risk

of food insecurity in response to the 2008 global finan-

cial crisis. They also predicted the current drought in

the Horn of Africa and have predicted that this food se-

curity emergency will continue into early 2018.48 The

integration and visualization of large-scale agriculture,

climate, and economic data by FEWS NET provides ob-

jective analyses to decision-makers and aid organiza-

tions to assist in the development of response plans.

Real-time observations are mapped and used to develop

scenarios to forecast future events. However, these pro-

jections are limited to 8-month stretches of time, al-

though they are updated every 4 months. This

invaluable service has directly prevented massive

famine-related humanitarian crises for the past 25 years

by integrating big data from agriculture and other sec-

tors and using effective visualizations to pinpoint areas

at risk. However, with the rapid rate of global climate

change, there is a need to use big data for long-term, de-

cadal predictions of crop production and food security.

The World Food Programme has developed a web-

based tool called Food Insecurity and Climate Change,

which allows users to explore multiple scenarios of

Table 1 Resources to access and process big data in agriculture and biology

Type of resource Description Reference(s)

Modeling software
FieldScripts by Monsanto Analysis of field data trends to provide

planting advice
Sykuta (2016)30

Food Insecurity and Climate Change,
web tool by the World Food
Programme

Geographic data used to predict food
insecurity

Met Office (2015)31

Functional–structural plant models
such as ADEL-Maize and ADEL-
Wheat, MLCan, BioCro, and the
Chinese Academy of Science’s 3D
rice model

Computational models of plant canopies
to understand yield under different
growing conditions

Fournier et al. (1999)32; Fournier et al.
(2003)33; Drewry et al. (2010)34;
Drewry et al. (2010)35; Miguez et al.
(2009)36; Wang et al. (2015)37; Song
et al. (2013)38

L-system-based functional–structural
plant models such the barley
model by Wageningen University
& Research and by Brandenburg
University of Technology Cottbus;
the wheat and pea model by
LUNAM University and by INRA;
and the beetroot hairy root culture
by the Technical University of
Dresden

Procedural computational models of
plant canopies to understand yield un-
der different growing conditions

Buck-Sorlin (2007)39; Barillot et al.
(2014)40; Lenk et al. (2014)41

SimRoot by Penn State University Geometric computational model of plant
root growth to understand how root
physiology affects yield

Lynch et al. (1997)42

L-PEACH by the University of
California, Davis and by Irrigation
Technology, Institut de Recerca i
Tecnologia Agroaliment�aries

Geometric computational model of peach
tree growth to understand yield

Allen et al. (2005)43, Lopez et al.
(2008)44

Databases and analytical resources
John Deere Internet of Things Sensor data for planting advice Bronson & Knezevic (2016)45

National Agricultural Statistics
Service and the World Agricultural
Outlook Board

Survey, observation, and trading data for
commodity market advice

National Agricultural Statistic Service
(2012)46

Global Information and Early
Warning System on Food and
Agriculture by the FAO

Precipitation and satellite data for early
drought detection

GIEWS (2016)47

FEWS NET by USAID Physical science, satellite, economic, and
political data to predict food insecurity

Famine Early Warning Systems Network
(2017)48

Volumetric model of F4 tornado-
forming thunderstorm by Robert
Wilhelmson

Computational model of atmospheric
effects in a constrained volume to ana-
lyze and understand the dynamic pro-
cesses that lead to formation of
tornados

Public Broadcasting Service (2004)49

Abbreviations: FAO, Food and Agriculture Organization of the United Nations; GIEWS, Global Information and Early Warning System on
Food and Agriculture; INRA, Institut National de la Recherche Agronomique (French National Institute for Agricultural Research);
USAID, US Agency for International Development.
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carbon dioxide levels and crop adaptation to identify

areas vulnerable to food insecurity over the next

60 years. Vulnerability is determined on the basis of a

country’s exposure (average length of flood and drought

events over areas with > 1% of the area in crop produc-

tion) and sensitivity (amount of forest cover, rainfed

land, and cereal crop yields per country) to climate-

related hazards and its adaptive capacity (socioeco-

nomic indicators such as access to water, population

growth rate, poverty, employment, etc).31 Future pre-

dictions represent the average vulnerability index based

on calculations using 12 existing CMIP5 (Coupled

Modeled Intercomparison Project Phase 5) climate

models.50 The range of results across scenarios shows

the best and worst cases for each country. The value of

this tool lies in its empowerment of the user to test dif-

ferent scenarios and identify specific areas in which to

focus adaptation and mitigation strategies and initiate

change. These simulations can assist vulnerable nations

and aid organizations in developing contingency plans

for worst-case scenarios.

Each of the above-mentioned tools relies on models

that integrate various types of big data to make predic-

tions on a local or global scale. Yield forecasts are based

on both high-tech and low-tech observations, such as

satellite imagery and grower surveys, respectively.

However, most open-source projections do not take

into consideration crop genetics or genotype-by-

environment interactions, which are widely considered

critical for determining quantitative traits such as yield

and yield stability across environments.51 Precision data

owned by for-profit companies, including crop variety

and nutrient inputs, has the potential to better parame-

terize models designed to predict crop performance un-

der different environmental conditions; however, this

information is not freely available. There is a need today

for the scientific community to develop predictive mod-

els that take into consideration factors that influence

the whole crop system, including large-scale genetic, ge-

nomic, and biochemical data, to more accurately fore-

cast how specific crop varieties will perform under

future conditions. Ideally, these simulations will also

have the power to assist the design of ideotypes that ex-

press desired traits and can be prescribed for specific

locations.

Data integration, modeling, and visualization for

ideotype development

Technology is in place for the development of robust

crop models that integrate information from the envi-

ronment to the ecosystem to the organ and to the cell.

In particular, the integration of climate models with

crop models holds great potential for the development

of ideotype simulation tools. Such an approach was

used to design a tomato cultivar adapted to water-

deficient conditions; process-based model simulations

identified 8 genotypic parameters that directly influence

fruit size under water deficiency.52 Likewise, biophysical

models were used to design a drought-resistant maize

ideotype that could outperform existing hybrids under

a variety of climates, water availabilities, and nutrient

regimens.53

Simulations of virtual crops under different climate

scenarios have helped researchers perform ex ante eval-

uations of ideotypes and design fertilizer, water, and

management strategies for predicted future environ-

mental conditions.53,54 However, the majority of crop

models include phenotypic properties only and neglect

or poorly connect to the underlying genetic properties

driving the observed traits.23,55

Recent studies have expanded crop simulations to

include genetic information such as quantitative trait

loci, a section of DNA (the locus) that correlates with

variation in a phenotype. Genetic mapping (identifying

the locus of a gene and the distances between genes) has

been combined with biological process-based models

(reviewed by Buck-Sorlin56) to predict genotype-by-

environment interactions that influence leaf elongation

in maize57 as well as with an ecophysiological model of

spring barley genotypes to predict flowering traits un-

der various environments.58 Further inclusion of ge-

netic and molecular data, such as gene expression and

metabolic fluxes, into existing crop models could signif-

icantly enhance model simulations and better direct

crop breeding and engineering efforts to improve nutri-

tion, yield, and resource use efficiency55 under specific

environments, which is at the core of ideotype design.

One recent success story comes from the integrated

process-based e-photosynthesis model37,59 that was

used to simulate the relaxation of nonphotochemical

quenching of chlorophyll fluorescence.60 Motivated by

model simulations, which predicted that increasing the

relaxation rate of nonphotochemical quenching could

improve photosynthetic efficiency and yield,61 targeted

experimental genetic engineering of plants with faster

nonphotochemical quenching response resulted in a

15% increase in crop productivity under field condi-

tions.60 This example shows one of the strengths of inte-

grative and multiscale modeling that takes whole-

system response into consideration55,62 for the engi-

neering of crop ideotypes.

The remaining challenge is to build virtual crops by

combining existing molecular and climate models with

architectural models. The inclusion of plant architecture

at the level of individual leaves and roots, as well

as crop canopies, is needed to begin to predict

emergent, whole plant response to environmental

336 Nutrition ReviewsVR Vol. 76(5):332–347
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perturbations.23,38 It is doubtless that plant architecture

influences plant–environment interactions. Defining

plant architecture within a 3D space allows the virtual

plant to explore that space for resources.63 The bidirec-

tional flow of information between integrated model

components results in “movement” and spatial simula-

tion of architecture, which allow the researcher to ob-

serve emergent behavior and complex patterns that

would remain hidden otherwise. The model-linked con-

nection between phenotype and genotype would allow

researchers to discover the molecular underpinnings

driving crop response to specific environmental condi-

tions. The genes underlying this response could then be

targeted for molecular and/or traditional breeding of

crop ideotypes.

Functional–structural plant models of crop archi-

tecture, such as the ADEL-maize and -wheat models,32

MLCan,34,35 BioCro,36,37 and a 3D rice model by Song

et al.,38 are routinely employed in crop science. The ex-

plicit coupling of spatial structure with physiological

function creates modular functional–structural plant

models, facilitating communication between different

components of the model.64,65 Functional–structural

plant models begin to address visualization of agricul-

tural data beyond tables, graphs, and simple 2D images

of crop architecture. However, an essential next step is

to expand these models to include cellular-level biologi-

cal processes and ecosystem-scale interactions in order

to observe and interpret emergent behaviors of crop re-

sponse to various environmental scenarios or predict

how the nutritional quality of crops will change. These

multiscale models will require innovative strategies to

visualize and interpret the integrated model outputs to

then be used for ideotype design.

Advanced scientific visualization for discovery

According to Donalek et al., “Data visualization is the

bridge between the quantitative content of the data and

human intuition.”66 Visualization, in simplest terms, is

creating imagery to help describe information or data.

The field of visualization is a vital tool for scientific re-

search. With the beginning of computer-aided research,

the field of visualization has also experienced a renais-

sance.67 Since the 1980s, computer visualization of data

has been aiding digitally enabled research and leading

to new discoveries. In the human brain, the visual cor-

tex, associated with visual perception, processes infor-

mation more quickly than the cerebral cortex, which

performs general cognition.68 Visualization takes ad-

vantage of this, balancing the cognitive load and making

complex multivariate data easier to understand, both

for education and for expert analysis. Scientific visuali-

zation has become increasingly important in

understanding large, multivariate datasets that are be-

coming more accessible as high-performance comput-

ing resources and data-sharing capabilities increase.

Visualizations are most effective when they create a

mapping between data attributes collected by scientists

and the dimensions of an image, such as position, color,

opacity, depth, motion, blurriness, etc. While charts

and graphs do this in a very simple way, subject-matter

experts can easily be taught to function at a higher level

of visual literacy,69 which demands more complex

image-based solutions.

Approaches for advanced visualization of complex,

large-scale data have been developed in the fields of at-

mospheric science, physics, and astronomy, in which

terabytes of spatial and temporal data have been trans-

lated from numbers into 3D moving images. For exam-

ple, visualization of multivariate data recorded from

inside an F4 tornado that touched down in South

Dakota in 2003 revealed a counter-rotating anticyclone

that had not been observed by researchers and was not

obvious from the raw numbers.49 The dataset used for

visualization covered 100 square kilometers of terrain

by 25 vertical kilometers at 100-meter resolution and

was housed in 3D grids containing dozens of attributes

such as humidity, temperature, pressure, and the 3

components of wind velocity. From this data, several vi-

sual assets, called glyphs or visaphors, were derived: (1)

isosurfaces, which are geometric meshes generated at

points where adjacent grid cells have humidity values

on opposite sides of a given threshold value to create a

descriptive shell of the storm cloud, (2) advected par-

ticles, which are massless points pushed from grid cell

to grid cell on the basis of the grids’ evolving wind ve-

locity values to show areas of high vorticity, (3) stream-

tubes, which are geometric trails showing the history of

a subset of particles to preserve temporal characteristics

as shapes, and (4) ground vectors, which are cones

designed to point in the direction of wind vectors along

the ground plane. Because the data grids were overlap-

ping, the visualization team could then communicate

attributes like humidity and temperature with, respec-

tively, opacity and color, as seen on the spheres at the

center of the vortex (see Movie 1 in the Supporting

Information online). Color was also used to communi-

cate vertical velocity, as seen on the blue-to-orange gra-

dient on the streamtubes, which atmospheric scientists

had identified as a key attribute in their work. The

researchers who generated this data knew anticyclones

were a potential weather phenomenon, but the visuali-

zation of this data revealed an emergent phenomenon

that was not visible through the thick clouds to storm

chasers on the ground, and the numerical data would

have required extensive analysis. This visual recreation

of natural phenomena through numbers can be applied
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to any multivariate data but is especially intuitive for

data with spatial and/or temporal dimensions.

As data from agricultural and biological fields be-

gin to approach the level of big data, researchers in

these domains can utilize and learn from visualization

approaches developed for traditional big data from as-

tronomy and atmospheric science. Large-scale data

from agriculture, crop science, nutrition, and food secu-

rity often have inherently spatial characteristics that can

be presented directly on top of geographic maps or as

stand-alone 3D models. Even when these data seem na-

tively constrained to a 2D context, it is often helpful to

explore them in 3D, either with an aerial perspective

viewpoint or by expanding the data into 3D by mapping

some data attributes to height in the virtual environ-

ment70 (Figure 1). For example, FEWS NET calculates

various measures of food security, such as rainfall and

dryness, which are related to drought, or relative vegeta-

tion and food prices, which are related to food distribu-

tion, and fits the values by geographic region on

interactive maps of Africa and Central Asia. These

regions are then colored by transferring those calculated

values to colors, where green indicates relative food se-

curity and red indicates relative food insecurity.71

As another example, 1D canopy light absorption

data from a field of soybean plants over the course of a

day was visualized in 3D (see Movie 2 in the Supporting

Information online). The input data for the ray-tracing

model included an evolving time series of triangulated

meshes in which each vertex stored the light-absorption

parameter. The format of the output data from the sim-

ulation included geometric positions of leaves and a

magnitude of absorbed light. The visualization mapped

the geometry to triangular meshes in the 3D environ-

ment and mapped the magnitude of absorbed light to a

color transfer function that displayed low values as dark

blue and high values as bright red. This data was com-

bined with a simple data source, the daily path of the

sun represented as an animated virtual light source, to

render moving shadows that help clarify which time

step in the model is being shown. In the final visualiza-

tion, it is clear to the viewer that leaves closer to the

ground are heavily shaded by the higher leaves, and that

more sunlight is absorbed near midday than near dawn

or dusk. With the visualization pipeline built to render

this data format, researchers can easily compare new vis-

ualizations of plants modeled under different environ-

mental conditions. Such precise measurement of light

absorption by every leaf of every plant in a field would be

experimentally impossible, while output of these model

simulations as tables would be time consuming and diffi-

cult to use for identifying patterns. It is the 3D rendering

of model outputs as realistic plants that makes the data

intuitive to researchers. The realistic rendering of

model-simulated plants is an important step toward the

in silico “testing” of ideotype designs under different en-

vironmental conditions, enabling researchers to make

dozens of observations about ideotype performance un-

der varying scenarios. In silico exploration can help

researchers target components of the underlying genetics

to enhance crop yield and nutritional quality.

An advanced visualization tool that is becoming in-

creasingly useful is immersive visualization, in which a

user feels they are part of a simulated environment.

Immersive environments have been proven to increase

spatial comprehension,72 and a community has formed

to establish standards for immersive theaters and to en-

sure comprehension of visual material.73 Scientific data

exploration through immersive visualization enables a

researcher to interact with and probe complex spatial

and temporal data. This can be accomplished using vir-

tual reality platforms, either in specialized spaces such

as CAVE Automatic Virtual Environments and similar

rooms consisting of display walls,74 or, more recently,

via portable hardware such as the Oculus Rift head-

mounted display or the Microsoft Kinect sensor for

manual input. Virtual reality has improved data explo-

ration in the medical,75–78 chemical,79 and physical80

science fields. Both 2D and 3D virtual graphical envi-

ronments can be placed into interactive virtual reality

headsets and immersive displays, where scientists can

intuitively explore a multidimensional representation of

their numerical models and quickly and iteratively dis-

cover emergent phenomena in their data.81

Immersive visualization can promote more efficient

data mining by helping researchers observe meaningful

patterns in multidimensional data, identify and remove

bad data, and choose the best algorithms to fit the data

on the basis of observed structures.66 Studies have

shown better retention of the perceived relationships in

the data using immersive data exploration.66 Immersive

visualization techniques are also effective for the explo-

ration of nonspatial data, which would normally be rep-

resented using 2D tables and graphs. Kwon et al.82

found that 3D stereoscopic representations are useful

for visualization of even simple network graphs. They

reported that graph exploration using immersive visual-

ization with depth routing increased the rate of task

completion and correctness while reducing the number

of user interactions necessary to complete the assigned

task. Study participants performed tasks better using

virtual reality than using traditional 2D graph visualiza-

tion.82 This sort of immersive data exploration using

virtual reality holds great potential for exploring out-

puts from multidimensional models that integrate data

across temporal and spatial scales, including economic

and nutrition data as well as climate-, ecosystem-, and

(crop) organism-level data. Researchers in China have
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used virtual reality visualizations of farmland as an edu-

cational tool to help students understand pollution and

crop land preservation.83 However, immersive visuali-

zation has not been widely used to analyze data from

agriculture or crop sciences. An exception is the

KeyGene company, which is currently using virtual re-

ality to manage large datasets obtained from plant

phenotyping.84

The agriculture and nutrition fields have lagged be-

hind in advanced scientific visualization of data, but as

the datasets within these fields grow in size and com-

plexity, creative visualization strategies, such as those

described above, are becoming necessary. In particular,

the plant sciences community is beginning to embrace

computational simulations to integrate massive datasets

with spatial coordinates to generate virtual fields of

Figure 1 Comparison of data visualized in 1D vs 3D representations. (A) Average number of internodes per soy plant grown in ambient

carbon dioxide levels over a growing season. (B) 3D representation of the same data in (A), except that spatial information is taken into ac-

count. The 3D representation of the data allows many more properties of the plants to be observed and explored. For example, it can be ob-

served that, over time, plants grow taller and fuller, and the effectiveness of the use of space between plants can be analyzed. Both images

(A and B) show when plants reach their maximum height, but the 3D representation also shows time of flowering and fruit set, time required

for development of flowering and fruit set, and time required for leaves to senesce.
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crops with quantifiable traits that can be measured in sil-

ico and under conditions difficult to obtain in a labora-

tory or field. These datasets naturally call for 3D

scientific visualization. The computational science of

crop simulation works across a wide range of scales: mo-

lecular, genetic, cellular, organ, plant, and stand. Each of

these scales depends on scientific visualization to provide

insight and foster discovery at the current scale, but also

uses the visualization to communicate these insights and

discoveries across the scales, eg, to facilitate communica-

tion between the molecular biologists, geneticists, plant

biologists, and crop scientists collaborating on a project.

At the finest scale of crop simulation, molecular vi-

sualization techniques reveal how atoms form mole-

cules and molecules form proteins. Such techniques

expand efforts to understand how proteins function by

visualizing how the molecules fold into the protein struc-

ture and how the resulting protein behaves at an atomic

level. Protein structures can be visualized experimentally

using X-ray crystallography, but even today, this proce-

dure is technically challenging and yields low through-

put. Owing to experimental limitations, few plant-

specific proteins have been obtained, and the geometry

of their structures has been inferred from homologous

proteins in other organisms. Such visualizations, such as

those surveyed by Dunker et al.,85 for example, com-

monly utilize the concrete geometry of a ribbon to visu-

ally communicate the arrangement of molecules into the

a-helices and b-sheets of the protein structure as well as

their relationships to each other. In one example of

investigator-led visualization, a ribbon was used to track

the interface between two helices wrapping around each

other. Untwisting of the ribbon (and the helices) better

revealed the interactions along the interface.86

Visualization has also been instrumental in under-

standing plant development through computational simu-

lation. Developmental models of botanical structures have

been modeled using a formalism known as Lindenmayer

systems (L-systems).43,87–89 This algorithmic description

of plant growth is more computationally efficient than ex-

plicit modeling and provides a basis for experimentation

through computational simulation of a large quantity of

detailed plants at varying levels of resolution (Figure 2
43,88,89). Photorealistic rendering of a simulated plant pro-

vides a basis for visual comparison and verification of the

simulation with real-world photographs and other meas-

urements of the growing plant, leading to an L-system

model that reveals new insights into the underlying pro-

cesses of plant development. A recent model of inflores-

cence and phyllotaxis, shown in Figure 2C,89 provided a

means to experimentally verify, through simulation and

visualization, hypotheses of flower morphogenesis that are

exceedingly difficult to observe physically at such small

spatial scales and such long time scales.

The L-system formalism has also been used to

model crop canopy architecture, in particular to predict

the effects of light partitioning and shading on many in-

dividual crops, including barley,39 faba bean,90 wheat,91

and maize,32 and on crop mixtures such as wheat–pea40

and chickpea and the weed sowthistle.92 These models

are able to link L-system architecture models, which

simulate the recursive behavior of plant growth, with

physiological models and ray-tracing algorithms. The

exchange of information between these modules results

in accurate simulations of canopy response to environ-

mental inputs, both abiotic (temperature, carbon diox-

ide, humidity) and biotic (disease or competition with

weeds). For example, a functional–structural model of

barley was built on the basis of L-system formalism to

generate a semiquantitative phytochrome-based shade

detection model.39 The ray tracer was designed to

model the local ratios of red to far-red and was shown

to be capable of reliably reproducing a range of radia-

tion values encountered in nature. Importantly, model

simulations were able to relate tiller number to level of

radiation, where there is reduced tillering at low phyto-

chrome ratio values.39 The importance of this model is

that it opens the door for integration of signaling path-

ways controlled by photoreceptors, which would repre-

sent a significant advance toward a functional

multiscale model that takes into account how both

physiological and biochemical processes influence crop

response to environmental signals. This linkage across

biological scale would also expand the usefulness of the

model to other scientific domains such as nutritional

science. The ability to relay information from the physi-

ological scale to the biochemical scale could provide

valuable insights about the modification of pathways

and lead to predictions about differential accumulation

or depletion of metabolite pools or other biochemical

products important for nutrition.

Likewise, architectural models have been used to

understand growth dynamics and physiological proper-

ties in multispecific stands. L-system-based functional–

structural models of wheat and pea were interfaced with

a radiative transfer model (or light model) to generate

contrasting architectures of crop canopies and to ex-

plore how those architectures influence light partition-

ing.40 This study found that the key determinants for

how light is partitioned in a mixed stand of wheat and

pea include leaf area index and plant height. In particu-

lar, pea internode length was found to have the stron-

gest effect on both pea and wheat dominance in terms

of light interception; that is, longer pea internodes

resulted in pea dominance, and shorter pea internodes

resulted in wheat dominance, more so than an increase

in wheat internode length of the same proportion.40

The results of these model simulations could be used to
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identify wheat and pea cultivars with ideal canopy mor-

phologies to increase productivity of grass–legume

intercropping systems. Alternatively, canopy architec-

ture models can be used to study competition between

crops and weeds. Cici et al.92 developed the first model

of crop–weed competition and also used L-system-

based architectural models to test the ability of different

chickpea cultivars to outcompete sowthistle via light in-

terception. Their model was heavily parameterized on

the basis of data collected from four chickpea cultivars.

Afterward, simulations were run to quantify sowthistle

growth under the different canopy architectures. They

identified the morphological characteristics that allowed

certain varieties to outcompete sowthistle, such as short

phyllochron and large leaflet size.92 Identification of im-

portant traits via simulations can provide plant breeders

with useful information to make informed decisions

during selection for breeding.

Recently, L-system formalisms have been modified

and expanded to perform 3D modeling in an agent-

based, structured growth model of beetroot hairy root

cultures.41 In this work, the Virtual Experimentator for

Root Networks was developed to simulate the develop-

ment of hairy root culture morphology to generate data

that would help optimize media recipes and improve

the design of bioreactor environments. The rationale

for this study was to identify optimal bioreactor condi-

tions for the production of secondary metabolites, such

as betalains, in hairy root cultures. The results of this

study would have implications for the industrialization

of plant products. The agent-based model produces

emergent behavior through the interaction of simple

units that describe processes of nutrient uptake and

transport. This study found that simulated results

closely matched experimental results for the traits of to-

tal number of root segments and total root length, with

only a 4% to 6% deviation.41 Model outputs included

changes to plant properties and to the nutrient matrix

and oxygen concentration within the simulated petri

dish environment. The depletion of nutrients within the

media over time was visualized using changes in color

of both the media and the plant. The 3D visualization

was zoomable and rotatable to allow visual inspection

of the hairy root in real time. Uniquely, this model can

be used to predict secondary metabolite accumulation

and observe morphological response to changes in the

nutrient environment. This is an important example be-

cause it is a rare instance of a model that links biochem-

istry and physiology. A similar linkage applied to

functional–structural root models would be a step for-

ward in achieving predictions about how fluctuating

nutrient environments result in different nutritional

composition and quality of crops.

In each of the above examples, 3D visualization of

plant structure was instrumental for the realistic simula-

tion of crop response to abiotic and biotic interactions.

Although these models are built using intense parame-

teriztion based on empirical data, visualization via

L-systems results in the generation of data that reveal

emergent properties upon system perturbation. The

qualitative and semiquantitative model outputs can in-

form researchers and breeders about important plant

properties and traits that can improve crop production.

The major limitation of these examples has been the

lack of molecular and genetic information, which makes

it difficult to associate plant traits with the underlying

genetics. Such integration should be considered a prior-

ity in future crop and/or nutritional modeling efforts.

Future directions for advanced visualization of

agriculture and nutrition data

Scientific visualization, including 3D, immersive, and

photorealistic rendering, can improve researcher

Figure 2 Examples of L-systems to model plant architecture. (A) A fractal tree generated from Horton-Strahler branching patterns.88

(B) Peach trees modeled under different water stress using L-PEACH43 and (C) a photorealistic sunflower model.89 L-systems can be used to

address a breadth of biological questions related to the evolution of plant morphology over development and in response to environmental

perturbations.
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comprehension and promote discovery in large-scale

agriculture, plant science, and nutrition data as it

becomes available. One of the best examples of scientific

discovery through visualization of agronomic data

comes from outputs of the SimRoot software.

SimRoot42 is a functional–structural plant root model

that can simulate several root-related parameters and

render model outputs as 3D images. SimRoot was used

to simulate the utility of root cortical aerenchyma in 3

maize genotypes growing in different soil environ-

ments93 (Figure 393–95). Model simulations predicted

growth and yield benefits in plants that form root corti-

cal aerenchyma in lateral roots. Simulations suggest that

increased formation of root cortical aerenchyma

improves crop performance on low-fertility soils, result-

ing in 70% and 55% greater yield under phosphorus

and nitrogen deficiency, respectively, compared with

low aerenchyma root types. This finding would affect

grower use of inorganic fertilizers, in that substantially

less would be needed to achieve sufficient yield. Field

studies were then conducted under different environ-

ments using maize root phenes selected on the basis of

model predictions. Field trials in Pennsylvania using

high root cortical aerenchyma lines resulted in a 58%

increase in maize yield under low-nitrogen conditions94

(Figure 3B94). Likewise, maize genotypes with high root

cortical aerenchyma had 78% to 143% greater yield

than those with low root cortical aerenchyma grown

under water stress in Malawi95 (Figure 3C95). In this ex-

ample, observations, along with quantitative data

obtained from the model, allowed the researchers to

choose existing crop varieties for field trials by compar-

ing root architecture phenotypes between model simu-

lations and available cultivars. Here, advanced

visualization of model simulations, using measured ag-

ronomic data, resulted in an immediate and positive

impact on grain yield under challenging environmental

conditions through selection of existing ideotypes.

Functional–structural models that take into ac-

count empirical data about biological processes are par-

ticularly useful in predicting emergent plant

architecture for horticultural trees. The IMapple model

is able to simulate the growth of a whole apple orchard

in 10 minutes on a desktop computer; such growth

would take at least 10 years in real time.96 IMapple’s re-

alistic tree model can immediately help growers make

decisions about pruning strategies to optimize future

fruit weight and/or nutritional quality, on the basis of

visual outputs of model simulations. Likewise, the

L-PEACH model43,44 was developed to help peach

growers in their decision-making for orchard manage-

ment (Figure 2B).43 The L-PEACH model includes

algorithms for water potential and carbon allocation

driven by source–sink interactions between tree

organs.43,97 L-PEACH simulations have been used to

calculate rates of seasonal water uptake, which allowed

researchers to estimate developmental and yield

responses to various irrigation schemes.97 Annual sink

and source behavior for carbohydrate storage was simu-

lated over 6 years and in response to field treatments

such as severe pruning, defruiting, or remaining

unthinned. The L-PEACH outputs revealed patterns of

whole-plant carbohydrate storage and mobilization and

uncovered the emergent property that replenishment of

carbohydrates back into storage sinks is a slower pro-

cess than mobilization out of storage.97 Importantly, the

model exposed gaps in field data that informed

researchers how to proceed with future sampling and

field observations.

Functional–structural and algorithmic models

demonstrate the power of 3D rendering of model-

simulated data to observe emergent crop architecture in

response to interaction between plants and their envi-

ronment. Although the models themselves are very

large, requiring intensive parameterization, they are not

designed to process large, “-omic” scale data and there-

fore do not account for the complex biochemical and

signaling pathways that occur at the cellular level. In

today’s era of big data, a key challenge faced by the

plant sciences community is effective integration and

visualization of large experimental or simulated datasets

in order to reveal hidden insights. However, several

modeling platforms have recently been launched to ad-

dress these issues, including the Agricultural Model

Intercomparison and Improvement Project,98 the

Decision Support System for Agrotechnology

Transfer,99 and the Crops in silico project.55

In particular, the Crops in silico initiative aims to

create a graphical user interface to access model integra-

tion tools that will enable multiscale modeling across

molecular, cellular, tissue, organ, and ecosystem levels.

The Crops in silico user interface will allow model out-

puts to be visualized as easy-to-interpret graphs, tables,

animated simulations of plant growth, and ecosystem

interactions. Interactive visualizations of early outputs

from this integrated architecture will help plant scien-

tists to test and validate the results of their computa-

tional simulations against experimentally measured

data. It is anticipated that interactive visualizations of

output from the integrated models will intuitively con-

vey simulation dynamics and reveal emergent behaviors

that will help researchers identify new biological ques-

tions for investigation. For example, an integrated

model of soybean growth and dynamics has been gener-

ated using the Crops in silico framework, and 3D ren-

dering has been applied to integrated model

simulations (see Movie 3 in the Supporting Information

online). The model incorporates a leaf submodel
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coupled with interactions between photosynthesis, en-

ergy balance, stomatal conductance, and leaf boundary

layer conductance.35 It employs an explicit 3D soybean

architecture with a ray-tracing algorithm to obtain light

absorbed at different parts of the canopy.38 It then parti-

tions the photosynthetic carbon uptake to different

plant parts, using a thermal time-based carbon alloca-

tion model100 that predicts the growth and maturity of

soybean plants.

The long-term goal of Crops in silico is to push the

limits of general visualization tools to motivate develop-

ment of novel approaches that are specialized to reveal

insight into the dynamics of crop simulation. Explicit

3D geometric models can be explored and analyzed to

function as interactive tools that will inform the modifi-

cation of input variables used in the simulations. In par-

ticular, the 3D rendering of the soybean crop canopy,

mentioned above, is able to provide more-accurate can-

opy architecture such as leaf area and leaf angle

measurements as inputs for the raytracing module,38

resulting in improved simulation of light interception

and photosynthesis by the crop canopy (see Movie 2 in

the Supporting Information online). Another goal of in-

tegrative, multiscale modeling and visualization is to en-

able researchers to make real-time observations of crop

response to the environment, including untested envi-

ronmental conditions such as elevated levels of atmo-

spheric carbon dioxide (see Movie 4 in the Supporting

Information online). Ideally, developing a visually ap-

pealing and accessible platform to perform model inte-

gration and simulations will facilitate the use of Crops

in silico as a modeling tool for plant biologists and as a

teaching and training tool for students. High-quality

visualizations of the results from integrated and multi-

scale modeling will be valuable not only to domain

experts but also to producers, farmers, breeders, and the

broad public. This transition from investigator-based

interactive visualization to end-user and public-based

Figure 3 Example of SimRoot model predictions to enhance crop production under challenging environments. (A) Spatial map of

RCA formation in simulated root systems at 40 days after germination. Color scale/shading indicates RCA formation as a percentage of root

cross-sectional area.93 (B) Relative shoot biomass under high nitrogen (high N) and low nitrogen (low N) conditions at 35 DAP in soil meso-

cosms (GH) in 2010 and at flowering (63 DAP) in fields in South Africa and Pennsylvania.94 (C) Leaf relative water content for 10 high-RCA

and 10 low-RCA maize genotypes under water stress and well-watered conditions at 70 DAP in 2 field environments in Bunda, Malawi (left),

and Chitala, Malawi (right)95 Abbreviations: DAP, days after planting; GH, greenhouse; PA, Pennsylvania; RCA, root cortical aerenchyma; SA,

South Africa; WS, water stress; WW, well-watered.
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presentation visualization can increase the transparency

of scientific research and make it understandable to a

broad audience.

A future direction for integrative modeling and vi-

sualization would be the expansion of multiscale crop

models to include large-scale data from nutrition and

health studies, which would facilitate forecasting of how

future climate scenarios will affect global human nutri-

tion and well-being. Such integration could potentially

improve overall modeling of food insecurity, provide

better estimation of uncertainty, and guide strategies

for assessment and management of risk. For example,

integration of crop system and climate models with the

Global Expanded Nutrient Supply (GENuS) nutrition

model101 could refine model predictions of nutrient de-

ficiency by country on the basis of simulated changes in

access to food or in the nutrient composition of crops.

The GENuS model uses FAO food balance sheets in

combination with data on individual crop production,

trade, and utilization to estimate the role of individual

foods in the nutritional status of a given population.101

As stated earlier, the outcomes of global change, such as

elevated levels of atmospheric carbon dioxide, have a

known impact on the nutritional quality of crops.5 A

model that integrates biological, economic, and nutri-

tion information would be a valuable tool to provide

predictive and assessment capabilities to decision mak-

ers in public and private sectors.102

CONCLUSION

Historically, the availability of numerical models and

established visual metaphors in agriculture and nutri-

tion has been limited. Researchers have had to rely ei-

ther on simple graphics tools available through their

word processing software or on commissioned artistic

illustrations to communicate important phenomena

and information. For example, infographics have re-

cently become a popular visualization tool to convey

health information to consumers and policymakers by

communicating complex data in a digestible format

that can quickly be consumed.103–105 Health educators

are taking advantage of social media to share info-

graphics about nutrition guidelines containing con-

structs of health behavior theory to change consumer

behavior related to dietary practices and exercise.103

However, research exploring the effectiveness of nutri-

tion infographics found that action-oriented titles,

more so than illustrations, are the most important de-

sign component to make infographics memorable and

compelling.104 The Scientific Animations Without

Borders program, established at the University of

Illinois, Urbana-Champaign, Illinois, and now at

Michigan State University, East Lansing, Michigan, has

linked agricultural researchers with professional anima-

tors to create and distribute short educational films to

low-literate farmers in developing nations.106 Its ability

to redistribute these visual elements across the world in

regions of low literacy, repackaged with culturally ap-

propriate language recordings,107 suggests that visual

presentation of information is universal and effective.

Although these simple visualizations are useful for com-

municating research outcomes to the public, there is a

need for advanced visualization to enable researchers to

glean more from their data, especially as the volume, di-

versity, and complexity of data increase.

Advanced scientific visualization is now being

adopted as a tool to reveal emergent trends in computa-

tional data in diverse fields. However, the use of mod-

ern visualization in agriculture and nutrition presents

many challenges. Researchers will need to find ways to

integrate and understand the intersectionality of models

at molecular, cellular, organism, ecosystem, and con-

sumer scales. The datasets from diverse fields vary from

spatial to relational, from computational to observa-

tional, and from intuitive to counterintuitive data.

Scientists can leverage decades of visualization research

to reconcile differences and develop a visual language to

communicate with each other, with the public, and with

policymakers.

This review surveys the use of computational biol-

ogy in integrative, multiscale modeling and advanced

scientific visualization as one approach to the design of

ideotypes aimed at improving food security over the

next 75 years. Climate change is having an increasingly

profound and complex effect on global food security

and nutrition. Therefore, a realistic, visual representa-

tion of crops can enable a more accurate prediction of

crop response to environmental conditions and can aid

in targeted crop breeding and engineering. Likewise,

the acceptance and use of advanced scientific visualiza-

tion technology can enhance the exploration and com-

prehension of multivariate agriculture and nutrition

data, which can inform crop models and, in turn, lead

to the design and generation of crop ideotypes that will

be better suited than the existing germplasm to meet fu-

ture yield and nutritional demands. Scientific visualiza-

tion can also affect future food security by shaping

popular opinion and influencing public policy through

its ability to reveal, educate, convince, and inspire.
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