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Abstract. One approach in statistical analysis that distinguishes between frequentist and
Bayesian is the inclusion of available prior information about the data even before measuring/
surveying the data. Many researchers argued that the inclusion of prior information resulted
in a better model prediction/parameter estimation. Bayesian inference is repeatedly used in
inverse problems to retrieve parameters due to the development of high efficient sampling algo-
rithms such as Markov Chain Monte-Carlo (MCMC). Inverse problems are generally ill-posed
in nature. Nevertheless, the inclusion of prior information reduces the ill-posedness of the prob-
lem to an extent. Any inverse problem relies on measured data by physical sensors, therefore
induced random errors greatly affects the quality of estimation. When the uncertainty of the
measured data is high, the inferences made from the resulting sampling distributions are nearly
the same as the supplied prior information. The reason is that, probability of samples nearer to
prior information is more at higher uncertainties of measurement and has more chance to get
repeatedly accepted than the samples that are close to actual value. Therefore, in this work an
effort is made to update the prior hyper parameters in each iterations of the MCMC algorithm
based on the history of the likelihood function. The applicability of method is demonstrated by
retrieving parameters from 1-D fin experiment. Three thermal properties such as thermal con-
ductivity, heat transfer coefficient and emissivity are retrieved simultaneously. The estimation
is carried out for both error and errorless temperature measurements and the results show that,
the estimated parameters with the proposed method are in excellent agreement with the true
parameter value and a maximum of 7% deviation occurs in estimating heat transfer coefficient
at a measurement error of ±0.3K
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1 INTRODUCTION

In recent years, Bayesian inference is predominantly used in many engineering, science, so-
cial and behavioral sciences due to the advancement in high computing resources and efficient
sampling algorithms. The result of Bayesian is a probabilistic statement regarding the unknown
quantities unlike a single point estimate in other methods e.g., least-square parameter estima-
tion. Bayesian treats the measured/surveyed data as a random variable and hence the inferences
made by Bayesian are random variables. The uniqueness about Bayesian inference lies in that,
a prior knowledge about the unknown parameters could be included in the statistical analysis of
the data. The inclusion of prior information in inverse problems reduces the ill-posed nature of
the problem and improves the quality of estimation. In general, prior information in the form of
Gaussian distribution is commonly employed in inverse heat transfer literatures. Parathasarathy
and Balaji [1] studied the different forms of prior model and its effects in the estimation of
single and multiple parameters. In their work, they demonstrated that in multi-parameter esti-
mation, Bayesian inference tends to point to alternate feasible solutions when highly correlated
parameters are retrieved using non-informative prior models.

Monte-Carlo sampling techniques are widely practiced in order to find the expectations of
the probability distribution functions. Among several Monte-Carlo techniques, Markov Chain
Monte-Carlo (MCMC) is more frequently used in inverse heat transfer problems [2]-[4]. The
hyper parameters (mean and standard deviation) of the prior model are usually taken from pre-
viously published results/previous experiments. More frequently these prior parameters are
known vaguely. Under such case, when correlated parameters are estimated or when the mea-
surement uncertainty is high (more likely to occur due to unavoidable random errors) the esti-
mated parameters using sampling algorithms are close to the subjected prior parameters.

Single parameter estimation (inverse estimation of thermal conductivity) is carried out at dif-
ferent levels of measurement uncertainty. Refer section 2 and 3 for problem specification and
inverse formulation. MCMC sampler is used to sample through the posterior. The estimation
results reveal that, as the measurement uncertainty increases, the estimated parameter (mean of
the posterior distribution) becomes closer and closer to the subjected prior mean. The reason
for this could be explained intuitively as follows: consider the case (a) wherein the generated
sample is close to actual parameter. In this case, at low uncertainty the likelihood probability
is relatively larger than prior probability, so the combined probability (posterior probability)
is more likely greater than the acceptance ratio (refer MCMC algorithm) and hence the sam-
ple is more frequently accepted. However, at high uncertainties the likelihood probability is
slightly lesser or equal to prior probability, so the combined probability is likely lesser than the
acceptance ratio and hence the sample is frequently rejected even though it is close to actual
parameter. Now, consider the case (b) wherein the generated sample is close to prior parameter
(mean). In this case, at low uncertainty the likelihood probability is relatively less compared
to prior probability, so the combined probability is more likely lesser than acceptance ratio and
hence the sample is more frequently rejected. However, at higher uncertainties the likelihood
probability is slightly lesser or equal to prior probability, so the combined probability is likely
greater than the acceptance ratio and hence the sample is accepted frequently even though it is
away from actual parameter (nearer to prior mean). Therefore, in this work an attempt is made
to modify the prior parameters in each iteration of the MCMC algorithm based on the history of
likelihood function to overcome the aforesaid difficulty and study the applicability of modified
algorithm to multi-parameter estimation related to inverse heat transfer applications.
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2 DEFINITION OF FORWARD PROBLEM

A simple 1-D fin losing heat to the surrounding both by convection and radiation is consid-
ered as the forward problem. Mathematically, the forward problem is represented as,

k
∂2T

∂x2
− hAs(T − T∞)− εσAs(T 4 − T 4

∞) = Cp
∂T

∂t
in 0 ≤ x ≤ L (1)

subjected to the following initial and boundary conditions:

T (x, 0) = Ti = T∞ 0 ≤ x ≤ L

at x = 0,

q =

{
q0 0 ≤ t ≤ t0

0 t > t0

In equation 1 k, ε and Cp are fin material properties. i.e., thermal conductivity (W/mK),
surface emissivity and heat capacity (J/K) respectively. As (m2) is lateral surface of the fin and
L (m) is the length of the fin. A step heat input of magnitude q0 is given at one end (x = 0) for
time t0. The experiment is carried out in an ambient of temperature T∞(K) and heat transfer
coefficient, h (W/m2K)

The solution to equation 1 is the temperature distribution along the length of the fin w.r.t.
time. In this work, Finite Volume Method (FVM) is employed to solve the forward problem
[5] in which energy balance is applied to each discretized control volume in order to convert
the above partial differential equation into set of algebraic equations. Because of the radiation
heat loss term, equation 1 is non-linear and hence the discretized equations are also non-linear.
Therefore, they are solved simultaneously using Gauss-Seidel iterative technique.

3 BAYESIAN INVERSE FORMULATION FOR PARAMETER ESTIMATION

The objective of the Bayesian inference in inverse problems is to formulate the posterior
probability distribution (ppdf), which in Bayesian context of linear/non-linear parameter esti-
mation is proportional to product of likelihood function and prior probability distribution.

p(X|Y ) ∝ p(Y |X)p(X) (2)

In equation 2 X is the unknown parameter vector to be estimated and Y is the measured/
surveyed data. The LHS of equation 2 is the required ppdf, whereas the first and second term of
RHS is the likelihood function and prior distribution respectively. Without loss generosity, it is
assumed that the errors between the measured and simulated variable is additive, uncorrelated,
normally distributed with zero mean and constant standard deviation and hence the likelihood
function is given by [6, 7].

p(Y |X) =
1√
2π
|V |−1/2exp

{
−1

2
[Y − Y (X)]TV −1[Y − Y (X)]

}
(3)

In equation 3 Y is the measured quantity, Y (X) is the simulated quantity for the assumed
unknown parameter X and V is the covariance matrix of the measurement. As previously men-
tioned, Bayesian exploits all the information that are available even before the measurements
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are taken, this information is usually included in the analysis in the form of prior distribution
p(X) as given in equation 2. In this work, a normal prior model is assumed and hence it is given
by,

p(X) =
1√
2π
|Vp|−1/2exp

{
−1

2
[X − µp]TV −1p [X − µp]

}
(4)

In equation 4 µp and Vp are hyper parameters of the prior distribution (mean and covari-
ance) respectively. Substituting 3 and 4 in equation 2 we get the desired ppdf. For the present
parameter estimation problem the unknown parameters are thermal conductivity, heat transfer
coefficient and emissivity i.e., X = {k, h, ε} and the measurable quantity is the temperature as
a function of space and time T (x, t).

3.1 MCMC algorithm for updating prior parameter

The next step in Bayesian inference is to calculate the appropriate statistic (mean/mode/
median/maximum a posterior/and standard deviation) of the unknown parameters using the
posterior distribution. However, in inverse heat transfer literatures mean/maximum a posterior
and standard deviation of the unknown parameters are more commonly reported. Monte-Carlo
sampling methods are being widely used for this purpose, among which Markov Chain Monte-
Carlo (MCMC) is more repeatedly used in the literatures. An excellent discussion is presented
in [8] as in why to use sampling techniques over the analytical/numerical methods in order to
find the expectations of ppdf. In the present work, the simple MCMC algorithm is slightly mod-
ified to update prior hyper parameters based on the history of likelihood function to overcome
the convergence of estimated parameters to the prior mean at high measurement uncertainties.
One iteration of the algorithm consist of the following steps,

1. Select a new sample, X∗ from the proposal/jumping distribution q(X∗|X i−1)

2. Find the ppdf for new sample, p∗ using 2

3. Accept the new sample based on Metropolis Hasting (MH) ratio, if r ≤ U otherwise
reject the sample. Here U is a uniformly distribute random number and

r = min

{
1,

p∗ × q(X∗|X i−1)

pi−1 × q(X i−1|X∗)

}
4. Find the parameter vector X , corresponding to minimum likelihood function from the

chain length of 1 to i-1 iterations and add a normally distributed random number (-1 to
1). Assign it as the new hyper parameter for the prior distribution.

5. Return to step 2 and continue until the number of iterations exceeds the specified limit

It is worth to mention here that in the above algorithm except step 4, all other steps are same
as simple MCMC algorithm.
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Figure 1: Grid independent study.

4 RESULTS AND DISCUSSION

The solution to the forward problem using FVM is written in Matlab and it is validated with
commercial FVM based software package Fluent. A grid independent study is carried out and
based on the study, a grid size of ∆x = 2mm is chosen for further studies (refer Fig. 1).

The fin material is assumed to be steel and hence its thermo-physical properties are consid-
ered in the analysis for demonstration. It is also assumed that the temperature measurement is
carried out in a natural environment; therefore the convective heat transfer coefficient is taken
as 10W/m2K. The duration and magnitude of heat input, total time of experiment and number
of temperature measurements are decided based on D-optimal test [9]. The results of these
preliminary studies are not presented here, since it is not the objective of the present work.

The results of multi-parameter estimation (k=25W/mk, h=10W/m2K and ε=0.85) using both
simple and present modified MCMC algorithm are presented for an error level of ±0.03K and
±0.3K respectively. The noisy temperature measurements are obtained by adding random errors
with zero mean and standard deviation (±0.03/0.3K) to the solution of forward model.

Figure 2: Sampling distribution Vs prior distribution for k (W/mK) obtained using simple MCMC algorithm.

Throughout the study the considered prior mean (µp) for k, h and ε are 20W/mK, 5W/m2K
and 0.6 respectively with standard deviation equal to 0.15µp. This multi-parameter estimation
is especially difficult due to two reasons: (1) the posterior distribution is correlated and (2) due
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to high measurement errors the inverse problem becomes more ill-posed. Also the combination
of above two makes the estimation highly difficult.

Figure (2-4) shows the sampling distribution for k, h and ε respectively at standard devia-
tion ±0.3K obtained using simple MCMC algorithm and from these figures it is clear that the
sampling distribution for all parameters are very close to prior distribution.

Figure 3: Sampling distribution Vs prior distribution for h (W/m2K) obtained using simple MCMC algorithm.

Figure 4: Sampling distribution Vs prior distribution for ε obtained using simple MCMC algorithm.

This parameter estimation problem is repeated again using the present modified MCMC al-
gorithm and the resulting sampling distributions for all parameters at standard deviation ±0.3K
are shown in Fig. (5-7) and from these figures it is clear that the resulting sampling distribu-
tion for all parameters are normally distributed with mean close to the actual value for all the
parameters. The estimates of the parameters (k̂,ĥ and ε̂) and spread of the samples (σ̂) are calcu-
lated from the sampling distribution that are obtained using both simple and modified MCMC
algorithms and are listed in table 1 and 2 respectively. Table 2 clearly shows that the estimates
obtained using modified MCMC algorithm are in good agreement with the exact value even at
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higher level of measurement error (±0.3K). In contrary, the estimates obtained using simple
MCMC are in good agreement with the prior parameter, but far away from the true parameter
(refer table 1)

Figure 5: Sampling distribution Vs prior distribution for k (W/mK) obtained using present modified MCMC
algorithm.

Figure 6: Sampling distribution Vs prior distribution for h (W/m2K) obtained using present modified MCMC
algorithm.

k=25W/mK h=10W/m2K ε=0.85
k̂ σ̂k % error ĥ σ̂h % error ε̂ σ̂ε % error

±0.03K 26.78 1.65 7.12 7.54 1.03 24.6 0.811 0.066 4.59
±0.3K 21.25 4.39 15 4.38 1.34 56.2 0.583 0.088 31.41

Table 1: Mean and standard deviation of the parameters calculated from sampling distribution obtained using
simple MCMC.
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Figure 7: Sampling distribution Vs prior distribution for ε obtained using present modified MCMC algorithm.

k=25W/mK h=10W/m2K ε=0.85
k̂ σ̂k % error ĥ σ̂h % error ε̂ σ̂ε % error

±0.03K 24.92 1.4 0.32 9.38 1.03 6.2 0.862 0.066 1.41
±0.3K 23.71 2.6 5.16 10.61 1.5 6.1 0.821 0.099 3.41

Table 2: Mean and standard deviation of the parameters calculated from sampling distribution obtained using
modified MCMC.

5 CONCLUSIONS

In this work, a modified MCMC algorithm was proposed in which the hyper parameter of the
prior distribution was updated in each iteration based on the history of likelihood function. The
idea of modifying prior parameter was put forth in order to restrict the sampling distribution
moving close to the prior distribution at higher measurement uncertainties.

The proposed modified MCMC algorithm was tested for its reliability by employing it in
inverse heat transfer problem, wherein three thermal properties were estimated simultaneously
(the posterior for which is correlated). The estimation was carried out for both error and error
less temperature measurements. The estimated parameters with modified MCMC were in good
agreement with the true parameters, whereas with simple MCMC the estimated parameters were
close to the supplied prior information at±0.3K measurement uncertainty. Since the posterior is
correlated, the error associated with the parameter estimation using simple MCMC are more and
a maximum deviation of 24.6% occurred in estimating h even at zero error level. Nevertheless,
with modified MCMC, all the parameters were estimated with less than 7% deviation from
the actual parameter value. Therefore, modified MCMC algorithm could be effectively used
in inverse problems to estimate parameters from correlated posterior distribution even at high
level of measurement errors.
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