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Abstract We introduce a novel approach for solving the
problem of identifying regions in the framework of Method
of Regions by considering singularities and the associated
Landau equations given a multi-scale Feynman diagram.
These equations are then analyzed by an expansion in a small
threshold parameter via the Power Geometry technique. This
effectively leads to the analysis of Newton Polytopes which
are evaluated using a Mathematica based convex hull pro-
gram. Furthermore, the elements of the Gröbner Basis of the
Landau Equations give a family of transformations, which
when applied, reveal regions like potential and Glauber. Sev-
eral one-loop and two-loop examples are studied and bench-
marked using our algorithm which we call ASPIRE.

1 Introduction

Over the last couple of decades, Effective Field Theories
(EFTs) have become mainstream in problems that involve
separation of scales. While there are several applications in
low-energy QCD, its foray into high-energy processes is still
relatively new and recent years have seen the application of
EFT ideas to problems in particle physics that involve sev-
eral scales. Collider physics provides a perfect example of a
multi-scale problem involving particles with high energies
as well as comparatively low-mass particles such as pro-
tons. Multi-scale Feynman diagrams arise naturally in many
branches of elementary particle physics. The analysis of such
diagrams has led to new EFTs such as the soft-collinear effec-
tive theory, heavy quark effective theory and so on. For an
accessible introduction to the subject of effective field the-
ories, see, e.g., Refs. [1–3]. In a multi-loop problem, one
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typically encounters several mass and kinematic scales. A
strategy that has been very effective in these problems is
the Method of Regions (MoR). This allows one to carry out
asymptotic expansions of Feynman integrals within dimen-
sional regularization. The Feynman integral for a process is
expanded as a sum of simpler integrals which can then be
done term by term. Further, the diagrams obtained in MoR
can also be obtained from an appropriate EFT. The different
regions identified correspond to different EFTs characterized
by a threshold parameter.

An accessible example of separation of scales can be found
in three flavor chiral perturbation theory, where one finds
instances of diagrams with a hierarchy of masses, namely the
masses of the pion, the kaon and the eta. Recent analytical
progress can be found in Refs. [4,5]. The MoR was applied
by Kaiser and Schweizer [6] for studying π − k scattering
processes in the context of ChPT. In this work, we also study
this process within our framework to identify the associated
regions.

The application of the MoR to multi-scale problems has
been studied now for nearly two decades, starting with
the fundamental work of Beneke and Smirnov [7]. Subse-
quently, this approach has been used for Drell–Yan Pro-
cesses [8], studying massless fermionic processes at next
to leading order [9], investigating processes in the Sudakov
limit [10] and so on. To find the leading order contribution
of Feynman integrals at threshold, one needs to sum con-
tributions from several regions which span the entire loop
momentum space. The contributing regions result from the
presence of a hierarchy of masses, or from components of
some momenta becoming small or large compared to oth-
ers.

In a recent work, Pak and Smirnov [11] proposed a
geometric algorithm which could be automated to find the
regions of a given Feynman diagram. By going to the Alpha-
representation, they show that the problem can be turned into
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a geometric one and can be solved by finding the convex hull
of a set of carefully chosen points. The Mathematica package
developed that automates the finding of regions, called asy.m,
which we will refer to as ASY, uses a C++-based QuickHull
algorithm [12].

In its original implementation, ASY fails to identify poten-
tial and Glauber regions. These regions usually manifest as
differences between the Alpha-parameters. In the updated
asy2.1 [13,14] a new feature called PreResolve was intro-
duced that eliminates the differences of Alpha-parameters
from the Symanzik polynomials using linear transforma-
tions. We will refer to the upgraded version of the code as
ASY2.

In the present work, we approach the problem from
another perspective by looking at the singular structure
of the Feynman integral in the Alpha-representation. The
analysis of the Pinched Singular Surfaces, in the momen-
tum space, in connection to the regions [15–18] is well
understood in terms of the Landau Equations. We set
up and study the set of Landau Equations, in the alpha
parameter space, for a given process using the Gröb-
ner Basis and derive a criterion for the determination of
the transformations required to reveal the regions within
the framework of Power Geometry [19–21], thus, demon-
strating a new way of solving the problem of finding
regions.

The paper is organized as follows. In Sect. 2, we introduce
elements essential to our algorithm. We review the strategy of
the MoR in Sect. 2.1 and then give an overview of the geomet-
ric approach discussed by Pak and Smirnov in Sect. 2.2, by
considering an example from [11]. In Sect. 2.3, we revisit
the problem of finding the regions through an alternative
approach that links the analytic structure of the Feynman
integral to the regions. In fact, the contents of Sect. 2.3 con-
stitute the important theoretical progress being reported in
this work. We conclude Sect. 2 by summarizing the steps
of our algorithm, “Algebro-geometric analysis of Singular
Polynomials for Identification of REgions (ASPIRE)”. We
apply the algorithm to one-loop and two-loop examples in
Sect. 3. Finally, in Sect. 4, we discuss our results and present
our future goals. The details of our Mathematica notebooks
and external packages used in this work are given in the
appendix.

2 Formalism

In this section, we set up the formalism for identifying dif-
ferent regions using the singular structure of the Feynman
integral. This process can be automated using ideas from
power geometry. However, for the sake of completeness, we
also summarize the technique of Pak and Smirnov in the sub-
sequent sub-section.

q q
k

q + k

Fig. 1 Self energy diagram for a scalar field with mass m

2.1 Method of regions

The technique of MoR was proposed in an attempt to ana-
lytically approximate various processes within perturbation
theory [7,22–24]. The idea of MoR is to provide an expan-
sion of the integrand in ratio of the scales involved, usually
in the form of low-energy scale to high-energy scale. This
results in expressing the original Feynman integral as a sum
over simpler integrals, all of which need to be integrated over
their corresponding domains, which are called regions.

Let us consider an example of a process from [11] to illus-
trate the idea.

Figure 1 shows a one-loop process given by

I (q2,m2) =
∫

ddk

(2π)d

1

(k2 + m2)((k + q)2 + m2)
. (1)

Let us consider the integral in Eq. (1) in the limit when |q2| �
m2 orρ ≡ |m2/q2| � 1. Note that the loop momentum spans
over all values ranging from −∞ to ∞, thereby ruling out
a naive Taylor expansion of the integrand. Let us denote the
two denominators appearing in Eq. (1) as D1 = k2 +m2 and
D2 = (k + q)2 + m2. As discussed in [11], the following
regions become relevant:

1. |k2| ∼ |q2|: Here D1 = k2 and D2 = (k + q)2.
2. |k2| ∼ m2: Then D1 = k2 + m2 and D2 = q2.
3. |(k + q)2| ∼ m2: This results in D1 = q2 and D2 =

(k + q)2 + m2.

The original integral is the sum of the contributions of the
above three regions each of which is evaluated within dimen-
sional regularization. While it is easy to identify the regions
in this particular example by looking at the different scales
in the Feynman integral, the procedure is a non-trivial task
in general, especially when one wants to evaluate multi-loop
processes. Even at the one-loop level, one encounters non-
trivial regions, that involve a multitude of scales. Another
obvious difficulty in identifying regions is when the compo-
nents of the momenta scale differently or when scalings of
the difference of momenta are involved. In the following, we
review a specific implementation by Pak and Smirnov that
allows to isolate the regions.
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2.2 ASY implementation

Pak and Smirnov proposed an algorithm to automate the pro-
cess of finding regions, which was documented in [11,13]
together with their codes “asy.m” and “asy2.m” (referred to
here as ASY and ASY2). The second version adds crucial
improvement to the first, as we summarize in the ensuing dis-
cussions. The basic idea is to parameterize the Feynman inte-
gral using the Alpha-parameters and then carry out the inte-
gration over the loop momenta using dimensional regulariza-
tion to obtain its Alpha-representation. Expanding a process
in the momentum space in scalings of momenta (or its com-
ponents) is equivalent to expanding the Alpha-representation
in scalings of combinations of Alpha-parameters.

ASY starts with expressing the integral in the Alpha-
representation. For the process in Fig. 1 this yields,

I (q2,m2) = �(2 − d/2)

×
∫ ∞

0

∫ ∞

0
dx1 dx2 δ(1 − x1 − x2)U2−d Fd/2−2, (2)

where U and F are the Symanzik polynomials given by:

U = x1 + x2, (3)

and

F = x1x2(q
2 + 2m2) + x2

1m
2 + x2

2m
2, (4)

which are homogeneous in the Alpha-parameters, x1 and x2.
Furthermore, Pak and Smirnov, build a new polynomialU ·F
that allows for a combined analysis of both the polynomials.
All the terms in the leading order Symanzik polynomials
have the same scaling in terms of the expansion (or thresh-
old) parameter, ρ ≡ |m2/p2|. More precisely, if one con-
structs a set of vector exponents {ri } for each monomial and
scalings {vi } such that xi scales as ρvi then xrii will scale as
ρrivi . Hence, the monomials in the Symanzik polynomials
will scale as
∏
i

ρr0v0ρrivi , (5)

where r0 is the exponent of the threshold parameter appearing
in the prefactor of the monomials and v0 = 1. We can now
construct an n + 1 dimensional vector with components r =
(r0, r1, . . . rn) such that the vector exponents obtained from
each monomial of the leading order expansion, vleading, lie
on a plane described by the equation

r · vleading = c, (6)

where c is a constant. All the other terms which do not appear
at leading order, i.e vsubleading, will lie above the surface
described by Eq. (6). These points satisfy the condition

r · vsubleading > c. (7)

In general, it can be seen that if we construct the collection
of vector exponents with n + 1 components and plot them
in an n-dimensional sub-space then the leading order terms
corresponding to a region will be points lying on the same
surface and all the other points will lie above it. This imme-
diately leads to the interpretation of the surface as a bottom
facet of the convex hull of the set of vector exponents. Thus,
finding the regions amounts to finding the convex hull of the
set of vector exponents and then finding the normals of the
lower facets of the convex hull.

For the Symanzik polynomials in Eqs. (3) and (4), ASY
first calculates the product

U · F = m2x3
1 + 3m2x2

1 x2 + 3m2x1x
2
2

+m2x3
2 + q2x2

1 x2 + q2x1x
2
2 (8)

from which one can extract the set of vector exponents(using
threshold parameter ρ ≡ |m2/q2|)

r = {(1, 3, 0), (1, 2, 1), (1, 1, 2), (1, 0, 3), (0, 2, 1), (0, 1, 2)}.

Each vector exponent, corresponds to a monomial in
Eq. (8) and the components give the exponents of the expan-
sion parameter ρ, followed by the set { xi }. ASY projects this
set of vector exponents onto a lower dimensional subspace.
The new set of exponents, after performing the projection,
is now r = {(1, 3), (1, 2), (0, 2), (1, 1), (0, 1), (1, 0)}. Fol-
lowing the discussion earlier in this section, ASY finds the
convex hull of this projected set of exponents as shown in
Fig. 2 and then finds the normals of the bottom facets of the
convex hull.

For example, the leading order term for the hard region
(defined by x1 ∼ ρ0, x2 ∼ ρ0), is q2x2

1 x2 + q2x1x2
2 corre-

sponding to the projected points (0, 2), (0, 1) lie on the plane
with the normal vector (1, 0). This is also seen from the fact
that the leading order terms are independent of ρ and thus
scale as ρ0. All the other terms have scalings larger than ρ0

and thus will lie above the plane.
The first version of the code ASY could identify regions,

except the Glauber and the potential, in several instances.
The second version of the code ASY2 fixes this shortcoming
by linearly transforming the Alpha-parameters, eliminating
any term in U ·F that appears with a difference between the
Alpha-parameters. This is done by an option PreResolve in
the code. The main feature that distinguishes the two versions
of the ASY codes are the implementation of linear transfor-
mations which allows the code to now identify the potential
and Glauber regions. This approach has been very success-
ful in determining regions and has been applied to several
examples. To this extent, ASY also provides a very useful
crosscheck on prior studies besides a useful benchmark for
comparison.
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Fig. 2 Convex hull of the projected set of vector exponents

In the following sub-sections we will demonstrate a new
way of solving the problem of finding regions based on the
singularities of Feynman integral in Alpha representation.

2.3 Determination of the regions using the analytic
structure of the propagator

The different regions, where a particular mass or kinemati-
cal scale becomes important can be linked to the underlying
singularities of the Feynman integral. In the following, we
will introduce the main concepts and motivate the ideas that
will lead to the development of the final algorithm. We first
give an overview of the singularities that are of interest for
our problem, followed by a review of the basic understand-
ing of particle thresholds as pinched singularities in momen-
tum space. This interpretation is well understood and can be
mathematically expressed using a set of equations called the
Landau equations. Since expansions in the neighborhood of
the singular surfaces give us the leading order behavior of
Feynman amplitudes, we perform similar expansions in the
Alpha-parameter space in carefully chosen neighborhoods of
the singular points. This requires us to use techniques from
the field of power geometry. We then motivate the use of
Gröbner basis for the identification of all neighborhoods of
the singular points.

2.3.1 Singularities and threshold processes

Understanding the analytic structure of the amplitude is cru-
cial to identifying the different regions. The poles in the inte-
grand of the amplitude for a given process are functions of
kinematical invariants, loop momenta etc. Therefore, when
these parameters vary, the poles in the integration domain
move. In the case of isolated singularities, it is always pos-
sible to deform the contour of integration to avoid these sin-
gular points. However, sometimes, the poles migrate so as to
pinch the contour of integration (pinch singularities) or move
to one of the end point of the integration (end point singular-

Fig. 3 Types of singularities: P1 is a simple pole, P2 and P3 are
Pinched Singularities and P4 is an End Point Singularity. While the
contour between the points A and B can be deformed so as to avoid
the simple pole P1, the same is not true for the pinch and end-point
singularities

ities) as illustrated in Fig. 3. In such cases, these singularities
cannot be avoided by contour deformations.

The condition for a point to be one of these unavoidable
singular points is the usual condition for establishing a singu-
larity for a polynomial. For an arbitrary polynomial g({ xi })
that appears in the denominator of the Feynman integral, the
point xi is singular point iff

g({xi }) = 0,

∂g

∂xi
= 0. (9)

Therefore, at these unavoidable singular points, hereby
referred to as just singular points, the integrand diverges. We
will now adopt the approach of Coleman and Norton [25],
also discussed in [26], to explain the connection between the
singularities and physical events.

Consider a general Feynman amplitude in the Alpha rep-
resentation

I =
∫ ∏

i

ddki
∏
j

dα jδ

⎛
⎝∑

j

α j − 1

⎞
⎠ f ({q j }) D−n (10)
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where,

D =
∑
j

α j (q
2
j − m2

j ) (11)

and ki are the loop momenta, q j are internal momenta which
are linear functions in loop and external momenta, m j are
the masses and α j are the Alpha-parameters.

For a singularity, corresponding to Eq. (9) we have the
conditions:

q2
j = m2

j or α j = 0, (12)

and

∂

∂ki

∑
j

α j (q
2
j − m2

j ) = 0. (13)

Now, since each qi is a linear combination of the loop
momenta, we have the condition∑
i

αi qi = 0 (14)

with the constraint

αi ≥ 0. (15)

Equations (12) and (13) are the Landau equations [27]. If
some of the αi = 0, then the corresponding internal lines get
contracted to a vertex. Such a contraction leads to formation
of effective vertices which can then be described via an EFT.
Further, in the Alpha-parameter space, the end points are 0
and ∞. αi = 0 ∀ i corresponds to an end-point singular-
ity. The relevant polynomial to analyze in this case is the D
polynomial in Eq. (11) and its singular points.

Given the Feynman graph of the process, one can define
a separation between the vertices in terms of the momentum
carried by the connecting lines as

�i ∝ αi qi . (16)

If αi 
= 0, Eq. (12) requires that q2
i = m2

i and we see that
an on shell particle propagates from one vertex to the other,
that is the reason for divergence of the integrand is if some
of the internal lines become onshell. This process of setting
some internal lines on-shell, referred to as performing unitary
cuts, produces a set of sub-integrals called cut integrals. The
resulting cut diagrams must now describe processes where
on-shell particles propagate from one vertex to the other [28].
By finding an appropriate subset of these cut diagrams, it is
possible to evaluate the original integral [29]. The parameter
αi is identified with the proper time divided by the mass of the
particle. The fact that αi > 0 then implies that the particle is
propagating forward in time. An immediate corollary of the
above for a closed loop is
∑
i

�i = 0. (17)

Therefore, it is evident that the Landau equations are state-
ments for finding the singular points of a polynomial derived
from the Feynman Integral. The analysis of Norton and Cole-
man followed by the work of Libby and Sterman [16,17]
shows the connection between singularities and threshold
processes which are described by EFTs.

2.3.2 Regions from Feynman graph in the alpha parametric
form

A Feynman graph having l-loops, m-denominators, and r -
external momenta (p1, . . . , pr ) in d-dimension has the form
[30],

I (n) =
∫ l∏

i=1

ddli

π
d
2

m∏
j=1

1(
Aik
j li · lk + 2Bik

j li · pk + C j

)n j

(18)

where A, B are respectively l × l, l × r matrices and C j are
constants.

In Alpha-parametric form, I (n) can be written as,

I (n) = �
(|n| − ld

2

)
∏m

j=1 �(n j )

∫ m∏
j=1

dα jα
n j−1
j δ

×
⎛
⎝1 −

m∑
j=1

α j

⎞
⎠ U |n|− (l+1)d

2

F |n|− ld
2

(19)

where U , F are the Symanzik polynomials (of degree l and
(l + 1) respectively) and |n| = n1 + n2 + · · · + nm .

In terms of the Symanzik polynomials, the Landau equa-
tions can be written as [15],

F = 0, (20)
∂F
∂αi

= 0. (21)

Therefore, we seek approximate solutions, of the type αi ∼
cρvi , of the Landau equations, near the singular surfaces. In
our notation ρ is the threshold expansion parameter and c
is a constant. The sets of {vi } corresponding to each of the
solution (at leading order) branches, represent all the regions
associated with the integral. We will extract these leading
order solution in the neighborhood of the singular points
using the techniques of power geometry, which we discuss
next.

2.3.3 Newton polytope and power geometry

We are interested in obtaining the leading order scaling of the
Alpha-parameters with respect to the expansion parameter
ρ. This can be achieved using ideas from power geometry,
developed by Bruno and Bathkin, which allows for obtaining
solutions of a polynomial [19–21] in certain limits.
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Consider a generic polynomial in n-variables,

g(X) =
∑

gQX
Q, Q ∈ S(g) (22)

where X = {x1, x2, . . . xn} and Q = {Q1, Q2, . . . Qn},
where Qi are the exponents of the variables xi for each mono-
mial, i.e., of the form xQ1

1 xQ2
2 . . . and the Qi s are a set of

natural numbers. Let χ = {X0} be a set of points such that
g(X0) = 0. If it turns out that ∂g(X̃0) = 0, where χ̃ = {X̃0}
and χ̃ ⊆ χ , then the set χ̃ contain the singular points of
the polynomial. Power geometry allows one to obtain solu-
tions to polynomials and is particularly useful around sin-
gular points. Before we outline the procedure for obtaining
solutions to polynomials using the techniques developed by
Bruno [19–21], we briefly summarize the basic definitions
and concepts which we have used in our subsequent analysis.

Let us now define the following:

(i) Support: The support S(g) is defined as the set of all
vector exponents. For example, given a polynomial in
two variables (x, y)

g(x, y) = xy + x2 + x2y + xy3 + x3y (23)

X = {x, y}, and S(g) = {(1, 1), (1, 3), (3, 1),

(2, 0), (2, 1)}.
(ii) Newton Polytope: The Newton Polytope or Newton

Polyhedron is the convex hull of the support S(g). The
convex hull for the support of the polynomial in Eq. (23)
is shown in Fig. 4.

(iii) Generalized faces: The boundary subsets {S′} of the

Newton Polytope are its faces �d
j , where d is the dimen-

sion and j labels the face (see Fig. 4).
(iv) Normal Cone: Let S ∈ R

n be a compact convex
set which is the support S(g), with faces {S′} =
{S′

1, S
′
2 . . . S′

r }. Let |ξ 〉 be a vector in R
n . Then,

lim sup{〈ξ |η〉 ∣∣ |η〉 ∈ S} is attained by a vector |v〉
belonging to a face S′

i for some i . It is easy to see that
if |v′〉 is another vector in {S′}, then 〈ξ |v′〉 = 〈ξ |v〉.
The set of all |ξ 〉 such that 〈ξ |v〉 ≥ 〈ξ |η〉 for |η〉 ∈ S is
defined as the normal cone Ud

i , where i denotes the i th
face and d its dimension.

(v) Cone of the problem: The Cone of the problem is a con-
vex cone of vectors K = (s1, . . . , sn) such that curves
of the form

x1 = a1t
s1 x2 = a2t

s2 . . . xn = ant
sn , (24)

where t parametrizes the polynomial, fill those regions
of the X -variables space that we are interested in.

(vi) Truncated polynomial: The truncation of the sum on the
boundary subset is defined as

Fig. 4 Newton polytope of support

ĝ(d)
j =

∑
gQX

Q Q ∈ S′
j . (25)

Such a truncated polynomial should be quasi-homoge-
nous, that is for the polynomial ĝdj (X), there exists
n integers {w1, . . . , wn}, called weights of the vari-
ables, such that the sum w = w1Q1 + · · · + wnQn

is the same for all nonzero monomials of ĝdj (X), where
Q = {Q1, . . . , Qn} is the vector exponent of terms
in the polynomial ĝdj (X). w is then the degree of the
polynomial.

The truncated polynomials corresponding to the faces of
the convex hull in Fig. 4, as well as its weights are listed in
Table 1.

Finally, the algorithm to obtain the leading order solution
in terms of a parameter t , given a polynomial g(X) can be
summarized as follows:

1. The set of singular points (or regular zeros) once identi-
fied, can lie on a generalized surface. It turns out that it
is very convenient to change variables such that the sin-
gular points now lie at the origin, coordinate axis or on
a coordinate plane. Such a choice allows one to define
the cone of the problem, K , easily. As a result of these
transformations, the polynomial g(X) → g′(X ′), where
X ′ = T X under the map T . The problem now reduces to
analyzing the g′(X ′) polynomial.

2. The support of g′(X ′), denoted as S(g′(X ′)) is deter-
mined and convex hull of the support defines the Newton
polyhedron.

3. For each of the two dimensional faces, �2
j of the Newton

polytope, the normal vectors are determined, leading to
the construction of the normal cone.
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Table 1 A table showing the boundary subsets and the associated normals of Newton polytope

Face Boundary subset Truncated polynomial Weights of the polynomial (w1, w2)

1 S
′1
1 : (1, 1), (1, 3) xy + xy3 (a, 0), where a is an integer

2 S
′1
2 : (1, 3), (3, 1) xy3 + x3y (a, a)

3 S
′1
3 : (3, 1), (2, 0) x3y + x2 (a,−a)

4 S
′1
4 : (2, 0), (1, 1) x2 + xy (a, a)

4. Only those normal vectors that intersect with the cone of
the problem are retained.

5. For each normal cone lying in the cone of the problem, the
truncated polynomial is determined, where the truncated
polynomial is defined on the faces of the convex hull.

6. Finally, the vector P which gives us the scaling of the
variables with respect to the parameter t is obtained, using
the following theorem [20]:

Theorem If for t → ∞ the curve

x = at p1 (1 + O(1)) , y = bt p2 (1 + O(1)) ,

z = ct p3 (1 + O(1)) (26)

where a, b, c and pi are constants, belongs to the set g =
{X : g(X) = 0} and the vector P = (p1, p2, p3) belongs to
Ud

j , then the first approximation x = at p1 , y = bt p2 , z =
ct p3 of the curve satisfies the truncated equation ĝdj (X) = 0.

As a result of the theorem, we get the leading order behav-
ior of the solution. While the method is particularly useful
for solutions around singular points where the implicit func-
tion theorem fails, this method can also be applied to obtain
solutions about any zero of the polynomial, including reg-
ular zeros and has the advantage of being easily automated
on a computer. Therefore, we will not make the distinction
between the singular and the regular zeros of the polyno-
mial. An important step in this algorithm is to determine the
set of transformations that map the zeros of the polynomial
to either the origin or the coordinate axes or the coordinate
plane. The Gröbner basis [31] of the Landau equations con-
veniently gives us the required set of transformations as well
as the appropriate neighborhoods of singular points where
one needs to perform a leading order expansion of the poly-
nomial.

With all these key definitions and ideas in place, we go on
to enumerate the steps in our algorithm, ASPIRE, that tailors
the techniques of power geometry to determining regions in
Sect. 2.3.4 and we discuss the corresponding Mathematica
package that automates the determination of region.

2.3.4 Algorithm: ASPIRE

The algorithm proposed by Bruno and Batkhin [19–21] is a
very powerful method for obtaining the asymptotic behavior

of algebraic curves near singular points. For our purposes
however, we need to extract only the leading order scaling
behavior of the alpha parameters with respect to ρ which is
the expansion parameter. Therefore, using Bruno’s theorem
[20], we can conclude that the truncated polynomials must
have a solution of the form where:

αi = aiρ
pi (1 + O(1)) (27)

where ρ = 1/t so that as t → ∞, ρ → 0. In cases when
multiple Alpha parameters scale differently one has to use an
approach that systematically finds the leading order expan-
sions of solutions of the Landau equations and thus revealing
all the regions. Using the results of Lee and Pomeransky [30],
we obtain the following parametric form of a Feynman inte-
gral,1

�( d2 )

�((l + 1) d2 − |n|)∏m
j=1 �(n j )

×
∫ ∞

0
· · ·
∫ ∞

0

m∏
j=1

dα jα
n j−1
j G− d

2 (28)

where

G = F + U . (29)

Since G is not quasi-homogeneous in general, one can
obtain faces of the convex hull of the support of G that corre-
spond to different planes, which in the end leads to different
regions. However, we note that the singular points of F now
become regular zeros of G.

We now enumerate the steps of our algorithm.

1. Construct the polynomial G = F + U .
2. Find the Gröbner Basis for the set of Landau equations

for F .
3. For every neighborhood in the Alpha-parameter space,

perform linear transformations to map the nearest solu-
tion curves of the Gröbner Basis elements to the origin,
coordinate axis, plane.

1 The choice G = F + U has been used in a recent publication [32]
in the context of MoR. In this work, the equivalence of the relevant
Newton Polytopes arising in the Feynman parametrization and in the
Lee–Pomeransky representation of the Feynman integral has been stud-
ied.
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4. Using the definition of the small threshold expansion
parameter (x), in terms of the kinematic invariants, re-
express all the constant coefficients like mass and exter-
nal momenta appearing in the above equations.

5. For every transformation applied to the Alpha-parameters,
find the support of G which has the structure, S(G) =
(Q0, Q), where Q0 is the vector exponent of the small
expansion parameter x and Q = (q1, q2, . . . , qn) are
vector exponents of the Alpha-parameters.

6. Find the convex hull of the support.
7. Find the boundary subset for every facet of every Newton

polytope.
8. Find the normal cone for each of the facets. This amounts

to finding the normal vector to the surfaces.
9. Using the theorem from Bruno [20] we conclude that the

above truncated polynomials are satisfied by the follow-
ing expressions for the alpha-parameters

α1 = a1x
p1 , α2 = a2x

p2 , . . . , αn = anx
pn . (30)

Here ai ∈ C and the set of P = {pi } defines the region.
The normal to the surface corresponding to the truncated
polynomial gives us P.

The scaling of the threshold parameter with respect to
itself, which we call the zeroth component of the normal,
is by definition 1. This is ensured by simply rescaling the
normal which is possible as long as the zeroth component is
not zero.

Jantzen et al. [13] attribute the fact that the potential and
the Glauber regions were missing in ASY, to the cancella-
tions amongst the Alpha-parameters themselves and thus try
to resolve it by performing transformations in the Alpha-
parameter space which eliminate all differences between
the Alpha-parameters. In our algorithm we identify these
transformations by studying the Gröbner basis elements.
In Sect. 3, we demonstrate the working of our algorithm
ASPIRE via examples.

It is worth noting here that the set of scalings we obtain cor-
respond to asymptotic expansions near the singular points. If
the expansion corresponds to regions where the Alpha param-
eters are far from zero then Norton-Coleman analysis tells us
that the Landau equations can be satisfied only if the internal
lines are put on-shell which corresponds to a physical particle
traveling from one vertex to another. However, if the expan-
sion is in a region where the Alpha-parameters are zero (or
close to zero) then the Landau equations can be easily satis-
fied and such scenarios correspond to shrinking the internal
lines and creating effective vertices, which can be interpreted
as the emergence of effective field theories. According to our
analysis, the scalings obtained from the bottom facets of the
Newton Polytope correspond to the latter case. The physi-

Fig. 5 A two point one loop diagram

cal significance of the scalings from the top surface is left to
future investigations.

3 Demonstration of the algorithm and unveiling the
associated regions

3.1 One-loop examples

We first consider some one-loop examples already discussed
in Ref. [13].

3.1.1 Example 1: Two-point one loop diagram

Consider the integral (Fig. 5),

I =
∫

ddk

(k2 − m2)((k − q)2 − m2)
. (31)

Here q is the external momentum, k, the loop momentum and

the threshold expansion parameter is defined as y = m2−q2

4
.

The energy scales involved in this integral are set by: q,
y

q
and

√
y. From [7,13], the contributing regions are the hard

and the potential regions whose scaling in the momentum
space with respect to the threshold parameter are given as,

Hard region : (k0 ∼ q, k ∼ q) (32)

Potential region :
(
k0 ∼ y

q
, k ∼ √

y

)
,

(
k0 ∼ √

y, k ∼ y

q

)
.

(33)

We will reproduce all those contributing regions using the
algorithm developed in Sect. 2.3.4. We write the integral in
Eq. (31) in the Alpha-parameter space which gives the U
and F polynomials using the package UF.m [33] (described
in the appendix). In the Mathematica code, this function is
called as follows:2

UF
[
{k},

{
−(k2 − m2),−((k − q)2 − m2)

}
,{

q2 → qq,m2 → qq

4
+ y
}]

(34)

yielding an output

2 One assigns a negative sign to each of the propagators in order to get
the correct U [13].
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{
x1 + x2,

1

4
qq x2

1 − 1

2
qq x1x2

+1

4
qq x2

2 + x2
1 y + 2x1 x2 y + x2

2 y, 1

}
. (35)

The first and second elements are the U and F polynomi-
als respectively, while the third element of the output is the
number of loops, which is 1 in this example. There are two
Alpha parameters, denoted as x1 and x2 corresponding to the
two denominators in Eq. (31). For ease of reference, we list
U and F polynomials below:

U = x1 + x2, (36)

F = 1

4
q2x2

1 − 1

2
q2x1x2 + 1

4
q2x2

2 + yx2
1 + 2yx1x2 + yx2

2 .

(37)

We wish to find the locations of the singularities in the Alpha-
parameter space with the help of Landau equations,

F = 0, (38)
∂F
∂x1

= ∂F
∂x2

= 0. (39)

Next we find the Gröbner basis of the set of Landau Equations
for which, we use the Mathematica function GroebnerBasis
via the command

GroebnerBasis

[{
F ,

∂F
∂x1

,
∂F
∂x2

}
, {x1, x2}

]
(40)

which gives the elements,

G = {q2yx2, (x1 + x2)y, q
2(x1 − x2)}. (41)

The F polynomial given in Eq. (37) can be written in terms
of the elements in Eq. (41). The simultaneous zeros of F
and its first order derivatives define the singular points which
in general coincide with the zeros of the Gröbner basis ele-
ments. As seen in Fig. 6, the solution curves of the Gröb-
ner basis elements partition the Alpha-parameter space and
so one can now choose different neighborhoods for study-
ing the leading behavior of F or equivalently G. To perform
the expansion in the neighborhood of the solution curve of
third element of Gröbner Basis i.e. q2(x1 − x2), we define
a set of linear transformations

{
x1 → ax ′

1, x2 → x ′
2 + ax ′

1

}
and

{
x1 → x ′

1 + ax ′
2, x2 → ax ′

2

}
respectively. Under these

transformations x1 − x2 → x ′
2 = 0 and x1 − x2 → x ′

1 = 0
respectively. We can now expand F or equivalently G in the
variable x ′

2 or x ′
1. In all of the above calculations we need

to keep in mind the constraint xi ≥ 0. These transforma-
tions are analogous to the approach in ASY2, where linear
transformations were performed when the Alpha-parameters
appeared with a negative sign between them. Such transfor-
mations reveal the potential and the Glauber regions.

We now list all distinct transformations:

Fig. 6 Partitioning of alpha parameter space by solution curves of the
Gröbner basis elements

• Identity transformation:

T1 ≡ {x1 → x1, x2 → x2} (42)

• Non-trivial transformations:

T2 ≡
{
x1 → x1

2
, x2 → x2 + x1

2

}
(43)

T3 ≡
{
x1 → x1 + x2

2
, x2 → x2

2

}
. (44)

In the above list of transformations, we have fixed the con-
stant a by ensuring that the transformations leave the delta
function in the integral, unchanged. Now we go on to com-
pute G with all the above transformations T = {T1, T2, T3},
where the G = {G1,G2,G3} corresponding to the three trans-
formations. Therefore:

G1 ≡ 1

4
q2 x2

1 − 1

2
q2 x1 x2 + 1

4
q2 x2

2 + x x2
1

+ 2 x x1 x2 + x1 + x x2
2 + x2, (45)

G2 ≡ 1

4
q2 x2

1 + x x2
1 + 2 x x1 x2 + x1 + x x2

2 + x2, (46)

and

G3 ≡ 1

4
q2 x2

2 + x x2
1 + 2 x x1 x2 + x1 + x x2

2 + x2. (47)

Here, we have substituted y → x andq2 → x0 (i.e.q2 → 1).
We next find the support of the G polynomials. Here we
consider the threshold parameter, x , as an independent co-
ordinate, and therefore, while extracting the vector exponents
of the Alpha-parameters xi , we extract the exponents of x as
well.

The support Si of Gi , where i enumerates the three poly-
nomials coming from the three transformations are,

123



57 Page 10 of 20 Eur. Phys. J. C (2019) 79 :57

Fig. 7 From left to right – Newton polytopes for G1, G2 and G3

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 2 0
1 2 0
0 0 1
0 1 1
1 1 1
0 0 2
1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 2 0
1 2 0
0 0 1
1 1 1
1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, S3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 2 0
0 0 1
1 1 1
0 0 2
1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(48)

Each row is a point in R
3 and we denote each row as Pi .

The next step in the algorithm is to determine the convex
hull of the support in R

3 for which, we use the function
CHNQuickHull [34] as follows

CHNQuickHull[S]. (49)

Finally, we can obtain the scaling of the Alpha parameters
and hence the regions. For G1, the vertices are,

S1 ≡ {P1(0, 1, 0), P2(0, 2, 0), P3(1, 2, 0), P4(0, 0, 1),

P5(0, 1, 1), P6(1, 1, 1), P7(0, 0, 2), P8(1, 0, 2)} (50)

as seen in Fig. 7 in the left-most panel labelled (a).
We then go on to find the normal vectors corresponding

to each of the surfaces using the function genNormalCoor-
dinates and obtain

{{v(1) → 0, v(2) → 0, c → 0, surf → −1}, Null,

{v(1) → −1, v(2) → −1, c → −1, surf → 1}
{v(1) → 0, v(2) → 0, c → 0, surf → −1},

{v(1) → −1, v(2) → −1, c → −1, surf → 1}, Null,

Null, Null}
where v(1), v(2) are the components of the normal vector of
the facets of the Newton Polytope and c is a constant. The
presence of the element Null implies that the code was not
able to find any normal vector based on the conditions 1 and
2. In our code, we determine the normal vector correspond-
ing to the facets of the Newton polytope based on following
conditions:

1. �r .�v = c and �r ′.�v < c, where �r belongs to a boundary
subset of Newton polytope and �r ′ does not. We name
the surface giving the normal vector depending on this
condition “the top facet” and assign a label “sur f → 1”
for that surface.

2. �r .�v = c and �r ′.�v > c. For this condition, we call the
surface giving the normal vector “the bottom facet” and
label the surface by “sur f → −1”.

We use the function UniqueRegions (explained in the
Appendix) to select only the unique normal vectors and hence
the unique regions. In the above list, we only have one region,
which is the hard region {0, 0}.

For the polynomial G2, we have six vertices,

S2 ≡ {Q1(0, 1, 0), Q2(0, 2, 0), Q3(1, 2, 0), Q4(0, 0, 1),

Q5(1, 1, 1), Q6(1, 0, 2)} (51)

and the corresponding convex hull is seen in the center panel
labelled (c) in Fig. 7. The normal vectors for the different
faces of the hull are,
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Fig. 8 A five point one-loop diagram

{
{v(1) → 0, v(2) → 0, c → 0, surf → −1}, Null,

{v(1) → −1, v(2) → −1, c → −1, surf → 1},
{v(1) → −1, v(2) → −1, c → −1, surf → 1}, Null,{
v(1) → −1

2
, v(2) → −1, c → −1, surf → −1

}}

out of which we get two unique normal vectors

{v(1) → 0, v(2) → 0, c → 0}
and{
v(1) → −1

2
, v(2) → −1, c → −1

}

from the bottom facets. Therefore, we have two regions are
{0, 0} and {− 1

2 ,−1}.
Similarly, for the support of G3

S3 ≡ {R1(0, 1, 0), R2(1, 2, 0), R3(0, 0, 1), R4(1, 1, 1, ),

R5(0, 0, 2), R6(1, 0, 2)} (52)

the convex hull is seen in the right-most panel labelled (c)
in Fig. 7 and the unique regions obtained from the normal
vectors to the facets are, {0, 0} and {−1,− 1

2 }, where both are
obtained from the bottom facets.

Finally, taking the union of all of the above regions we
have the following set of regions:
⎛
⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{0, 0} {−1}
{−1,−1} {1}{− 1

2 ,−1
} {−1}{−1,− 1

2

} {−1}

⎞
⎟⎟⎟⎟⎠ (53)

where the first entry with (0, 0) scaling corresponds to the
hard region, while the other two

{− 1
2 ,−1

}
and

{−1,− 1
2

}
are the potential regions, in agreement with ASY/ASY2. As
mentioned earlier, we defer the discussion of the components
of the normal vectors obtained from the top region to a future
publication.

3.1.2 Example 2: A five point one loop diagram

In this example, we consider the following one loop five point
integral seen in Fig. 8, which has also been discussed in [13].

Table 2 Mapping Gröbner basis elements to coordinate origin, plane
or curve via linear transformations

Element Transformation

Q2(x4 − x5) (x4 → x4 + ax5), (x5 → ax5)

(x5 → x5 + ax4), (x4 → ax4)

m2Q2(x3 + x5) None required

Q2(x2 − x3) (x2 → x2 + ax3), (x3 → ax3)

(x2 → x2 + ax3), (x3 → ax3)

m2(x2 + x3 + x4 + x5) None required

m2x1 None required

I (Q2,m2; d)

=
∫

ddk
1

(k2 − m2)(k2 − 2pk)(k2 + 2pk)(k2 − 2qk)(k2 + 2qk)
.

(54)

Here we have p1 = p2 = p and q1 = q2 = q. At threshold,
p2 → 0, q2 → 0, 2 p q → Q2 where Q2 is the hard scale
and m2 � Q2. The threshold expansion parameter is, x =
m2/Q2.

The Symanzik polynomials are,

U = x1 + x2 + x3 + x4 + x5 (55)

F = m2x2
1 + m2x1x2 + m2x1x3 + m2x1x4 + m2x1x5

+ Q2x2x4 − Q2x3x4 − Q2x2x5 + Q2x3x5 (56)

and the Gröbner basis elements for the Landau equations are
given by,

G = {Q2(x4 − x5),m
2Q2(x3 + x5), Q

2(x2 − x3),

m2(x2 + x3 + x4 + x5),m
2x1}. (57)

From the elements of the Gröbner basis we can immediately
conclude that we will need transformations listed in Table 2.

Next we apply these transformations to the G polynomial
that we construct from the Symanzik polynomials to get four
versions for each of the four transformations. We find the
Newton Polytope of the support for each of theG polynomials
and in each case, we determine the normal vectors listed as
follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{−1,−1,−1,−1,−1} {1}
{−1,−1,−1, 0, 0} {−1}
{−1, 0, 0,−1,−1} {−1}

{0, 0, 0, 0, 0} {−1}
{−1, 0, 0, 0, 0} {1}

{−1, 0, −1,−1,−1} {−1}
{−1,−1,−1, 0, −1} {−1}
{−1,−1,−1,−1, 0} {−1}
{−1,−1, 0, −1,−1} {−1}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)
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Fig. 9 A two loop fish diagram in π − K scattering

Once we have the regions in the Alpha-parameter space,
we identify the leading order expansions of the Symanzik
Polynomials with the corresponding expansion of propa-
gators in the momentum space. We recover the following
regions corresponding to the bottom facet:

(i) The hard region: {0, 0, 0, 0, 0}
(ii) The collinear regions: {−1,−1,−1, 0, 0} and

{−1, 0, 0,−1,−1}
(iii) The Glauber regions: {−1,−1,−1, 0,−1} and

{−1, 0,−1,−1,−1}
(iv) The Scaleful regions: {−1,−1,−1,−1, 0} and

{−1,−1, 0,−1,−1}.

The scalings {−1,−1,−1,−1,−1} and {−1, 0, 0, 0, 0}
from the top facets do not correspond any physical region.

The evaluation of the contribution from Glauber regions
{−1,−1,−1, 0,−1} and {−1, 0,−1,−1,−1} need addi-
tional analytic regularization as is often the case in case in
SCET and has been discussed in Refs. [13,35].

It needs to be noted here that the regions we obtained above
correspond to choosing a specific orientation of the Newton
Polytope (for a discussion on rotation of the Newton Poly-
tope in the alpha parametric space the reader is referred to
Appendix A.2). It is possible, by arbitrary rotations, to gen-
erate an infinite set of scaleless/scaleful regions. However,
for a given orientation there is only a finite set of regions. In
our implementation, we determine the unique set of regions
for a fixed orientation.

3.2 A two-loop fish diagram

We apply our technique for the two-loop fish diagram,
seen in Fig. 9, that has been discussed in [6] in the context of
expansion by regions for the π−K scattering at the threshold.
This process can be studied as the scattering of a pion having
massm and a kaon having mass M . The momenta of the pion
and kaon are p and P respectively.

For this type of diagram, there are two mass scales (m and
M) based on which the scalings of two loop momenta, k and l,
one can have the following five possible regions as discussed:
(k ∼ M, l ∼ M, k − l ∼ M), (k ∼ M, l ∼ M, k − l ∼ m),
(k ∼ M, l ∼ m), (k ∼ m, l ∼ M), (k ∼ m, l ∼ m).

In [6], it has been discussed that the h-h region starts con-

tributing at order one while the s-s region at order
m

M
. The

h-h’ and h-s regions contribute at order
m2

M2 .

The integral having an internal pion loop is given by

I =
∫

ddkddl

(m2 − l2)(m2−(k − l)2)(2Pk−k2)(−2pk − k2)
.

(59)

At threshold, p2 → m2, P2 → M2 and (p + P)2 =
(m + M)2. The expansion parameter is x = m

M .
For the integral in Eq. (59), we get the following Symanzik

polynomials,

U = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 (60)

F = x1x
2
2 x

2 + x1x
2
4 x

2 + x2x
2
4 x

2 + x2
1 x2x

2

+x2
1 x3x

2 + x2
2 x3x

2

+ 2x1x2x3x
2 + x2

1 x4x
2 + x2

2 x4x
2 + 2x1x2x4x

2

− 2x1x3x4x − 2x2x3x4x + x1x
2
3 + x2x

2
3 . (61)

As mentioned in our algorithm, we find the Gröbner
basis elements of F and its derivatives with respect to
x1, x2, x3, x4:

G =
{

− (x3 + x(x2 − x4))(x3 − xx4)(x3 − x(x2 + x4)),

x2(x3 + x(x2 − x4))(x(x2 + x4) − x3),

x2
3 + x(−xx2

2 + xx2
4 + 2(x(x + 1)(x1 + x2)) − x3x4),

(x + 1)(x1 + x2)(x3 − xx4), (x1 + x2)(x2x
2 − x4x + x3),

(x1 + x2)(x3 − xx4)(x2 + x3 + (x + 2)x4),

x2(x2
1 − x2

2 ), (x2
1 − x2

2 )(x3 − xx4)
}
.

We use the elements of the Gröbner basis, together with the
constraint xi ≥ 0, to obtain five transformations out of which
one is trivial and others are non-trivial and are listed below:

• Identity transformation:

T1 ≡ {x1 → x1, x2 → x2, x3 → x3, x4 → x4} (62)

• Non-trivial transformations:

T2 ≡
{
x1 → x1 + x2

2
, x2 → x2

2
, x3 → x3, x4 → x4

}

(63)

T3 ≡
{
x1 → x1

2
, x2 → x2 + x1

2
, x3 → x3, x4 → x4

}

(64)

T4 ≡
{
x1 → x1, x2 → x2 + x4

2
, x3 → x3, x4 → x4

2

}

(65)

T5 ≡
{
x1 → x1, x2 → x2

2
, x3 → x3, x4 → x4 + x2

2

}
.

(66)
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As before, we compute G polynomials by applying all of
these transformations, determine the support in each case
and the corresponding normal vectors. This leads us to the
following list of unique normal vectors:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{−2,−2,−1,−2} {−1}
{−2,−2,−2,−2} {1}

{−2, 0, 0, 0} {−1}
{0,−2, 0, 0} {−1}
{0, 0, 0, 0} {−1}

{−2,−2, 0,−1} {1}
{−2,−2, 0,−2} {1}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(67)

The regions are (once again from the bottom facet) are:

(i) The hard-hard region: {0, 0, 0, 0}
(ii) The hard-soft region: {−2, 0, 0, 0}

(iii) The soft-soft region: {−2,−2,−1,−2}
(iv) The Scaleful regions: {0,−2, 0, 0}.

The region {0,−2, 0, 0} is also isolated by ASY. This
region has not been identified in the existing literature to
the best of our knowledge, hence, we give them a generic
name of “scaleful region”.

3.3 One loop scalar triangle diagrams in Sudakov limits

As a final illustration of our algorithm, we discuss the case of
one-loop Sudakov integrals in the following limits, illustrated
in Fig. 10. Sudakov limits appear in processes where the
square of the momentum transfer is large compared to the
squares of the masses. A detailed discussion may be found in
the chapter on Sudakov limits in Ref. [24]. See also Ref. [1].

(a) On-shell massless fermions (p2
1 = p2

2 = 0) and gauge
bosons with small non-zero mass, m2 � −s ≡ Q2. We
also choose,

p1,2 = (Q/2, 0, 0,∓Q/2) (68)

so that 2 p1 · p2 = Q2.
(b) Massless gauge bosons and off-shell massless fermions

(p2
1 = p2

2 = −M2), M2 � −s. We use,

p1,2 = p̃1,2 − M2

Q2 p̃2,1 (69)

where p̃1,2 are defined as in (68), s = −(1 +
M2/Q2)2Q2 and 2p1 · p2 = (1 + M4/Q4)Q2.

(c) Massless gauge bosons and on-shell massive fermions
p2

1 = p2
2 = m2 � −s and

Fig. 10 One loop Sudakov integrals in limits (a)–(d). The solid and
dashed lines represent respectively the massive and the mass-less par-
ticles

p1,2 = p̃1,2 − m2

Q2 p̃2,1. (70)

(d) Massless gauge bosons and on-shell fermions of two
types, with a small and a large mass, p2

1 = M2, p2
2 =

m2 and q2 = 0, m � M .

3.3.1 Limit (a)

In this limit the integral becomes,

Ia(Q
2,m2; d) =

∫
ddk

(k2 − 2p1k)(k2 − 2p2k)(k2 − m2)
.

(71)

We define the threshold expansion parameter for this limit as
x = m2/Q2, where Q2 is the large scale.

TheU andF polynomials in terms of the alpha parameters
are respectively given by

U = x1 + x2 + x3 (72)

F = x1 x2 + x x1 x3 + x x2 x3 + x x2
3 (73)

and the Gröbner basis elements for the Landau equations that
F satisfy are,

G = {(−1 + x) x x3, x2 + x x3, x1 + x x3} . (74)

Clearly, we have only the Identity transformation : {x1 → x1,

x2 → x2, x3 → x3} and the normal vectors we get in this
limit are⎛
⎜⎜⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{0, 0, 0} {−1}
{−1,−1,−1} {1}

{0, 0,−1} {1}
{−1, 0,−1} {−1}
{0,−1,−1} {−1}

⎞
⎟⎟⎟⎟⎟⎟⎠

(75)

which in turn correspond to the following regions:

(i) The hard region: {0, 0, 0}
(ii) The 1-collinear region: {−1, 0,−1}

(iii) The 2-collinear region: {0,−1,−1}.
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ASY also reports the same regions. In [24], it is confirmed
that only the hard and collinear contributions suffice for the
evaluation of this diagram at leading order.

3.3.2 Limit (b)

In this limit, we have the leading order integral

Ib(q
2,m2; d) =

∫
ddk

k2
(
k2 − 2kp1 − M2

) (
k2 − 2kp2 − M2

) .
(76)

The threshold expansion parameter is x = M2/Q2.
The Symanzik polynomials and the Gröbner basis for the

Landau equation satisfied by F are respectively,

U = x1 + x2 + x3, (77)

F = x1x2x
2 + 2x1x2x + x1x3x + x2x3x + x1x2. (78)

The Gröbner basis of Landau equations are,

G = {x2x3, x2(x + 1)2 + xx3, x3 (x2 + xx3) ,

x1 + x2 + 2xx3}. (79)

Once again, we have only the Identity transformation and the
normal vectors identified are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{0, 0, 0} {−1}
{−2,−2,−2} {1}
{−1, 0,−1} {−1}

{−1,−2,−1} {1}
{0,−1,−1} {−1}

{−2,−1,−1} {1}
{−1,−1,−2} {−1}
{−1,−1, 0} {1}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(80)

and finally the distinct regions are that correspond to the
scalings in Eq. (80) are:

(i) The hard region : {0, 0, 0}
(ii) The 1-collinear region: {−1, 0,−1}

(iii) The 2-collinear region: {0,−1,−1}
(iv) The ultra-soft region: {−1,−1,−2}.

We see in this case also the complete agreement of our result
with ASY and also with the contributions, reported in [24].

3.3.3 Limit (c)

For this limit, the integral is,

Ic(q
2,m2; d) =

∫
ddk

k2
(
k2 − 2kp1

) (
k2 − 2kp2

) (81)

with the threshold expansion parameter x = m2/Q2.

The Symanzik polynomials U and F are,

U = x1 + x2 + x3 (82)

and

F = x2x1x2 + xx2
1 + xx2

2 + x1x2 (83)

and the Gröbner basis elements for the Landau equation sat-
isfied by F is given by,

G = {(x2 − 1)2x2, 2x1 − x(x2 − 3)x2} (84)

using which, we once again see that only Identity transfor-
mations are required.

Finally, the distinct normal vectors corresponding to the
facets are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{−1,−2,−1} {1}
{−1, 0,−1} {−1}

{0, 0, 0} {−1}
{−2,−2,−2} {1}
{0,−1,−1} {−1}

{−2,−1,−1} {1}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (85)

The regions are:

(i) The hard region : {0, 0, 0}
(ii) The 1-collinear region: {−1, 0,−1}

(iii) The 2-collinear region: {0,−1,−1}.

3.3.4 Limit (d)

In this limit, the integral is

Id(q
2,m2; d) =

∫
ddk

k2
(
k2 − 2kp1

) (
k2 − 2kp2

) . (86)

The threshold expansion parameter here is x = m2/M2.
The Symanzik polynomials are

U = x1 + x2 + x3 (87)

F = x2
1 + x x1 x2 + x1 x2 + x x2

2 . (88)

The Gröbner basis elements that generate the same ideal
as the Landau equation for F is given by,

G = {(x − 1)2x2, 2x1 + (x + 1)x2}. (89)

Once more with only the Identity transformation, {x1 → x1,

x2 → x2, x3 → x3} we the following distinct normals,
⎛
⎜⎜⎜⎜⎝

Normal Facet : top/bottom(1/ − 1)

{0,−1, 0} {1}
{0, 0, 0} {−1}

{−1,−1,−1} {1}
{0,−1,−1} {−1}

⎞
⎟⎟⎟⎟⎠ . (90)
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The scalings above correspond to the following regions:

(i) The hard region : {0, 0, 0}
(ii) The 1-collinear region: {0,−1,−1}.

4 Discussion and conclusion

The MoR is a powerful technique for obtaining expression of
Feynman amplitudes at any order. The field however needs
a robust algorithm for systematically finding all the regions.
The study of such algorithms may provide insight into ideas
crucial for validity of the MoR. In this work, we present
an algorithm to identify the regions using ideas from power
geometry, which is a powerful technique for analyzing prop-
erties of algebraic polynomials.

Our algorithm, ASPIRE, has allowed us to develop an
implementation in Mathematica where we have also used
external programs including UF.m and NDConvexHull.m.
We have benchmarked the code by reproducing one and two
loop examples from the literature. The salient steps in devel-
oping this algorithm can be summarised as follows:

1. We translate the traditional problem of finding the regions
in the momentum and alpha parameter space to purely in
the Alpha-parameter space by integrating out the loop
momenta and then expanding the resulting integral in the
new regions.

2. Using the form of the Landau Equations in the Alpha-
parameter space, we reduce the problem to finding the
leading order behavior of solution of the Landau equa-
tions in the different regions. Instead of working with F
or U , which are homogeneous, we use the polynomial
G = U +F , as defined by [30], which has the advantage
of not being homogeneous, while the truncated polyno-
mials are quasi-homogeneous.

3. These regions lie in the neighborhood of the origin and
we systematically expand the integral in these neigh-
borhoods via simple transformations which are obtained
from the analysis of the Gröbner basis. These transfor-
mations are strongly constrained via the delta function in
the parametric integral which forces �αi = 1, where αi

are the Alpha-parameters.
4. The expansion of the integrals in these neighborhoods

is obtained via the use of an old but unvisited topic of
Power Geometry. We use only a small portion of this
powerful technique to speed up our algorithm for finding
the regions in the Alpha-parameter space. This technique
allows one to obtain the leading order expansion of the
integral in a particular neighborhood by analyzing the
support of a G polynomial, and constructing its Newton
Polytope.

5. The regions are then defined as scalings of the Alpha-
parameters which lead to the leading order expansion of
the integral in that particular neighborhood of the origin.

6. The scalings are obtained by finding the normals to the
surfaces of the Newton Polytope with a constraint on the
first component of the normal vector.

7. We demonstrate that linear transformations in the Alpha-
parameters lead to non-trivial transformations of the
Newton Polytope, which leads to the uncovering of pre-
viously hidden regions.

8. We present a stand-alone documented Mathematica
implementation of the above developed algorithm and
provide several examples covering one loop and two loop
amplitudes.

Our results are in agreement with previous work in this
field by Jantzen et al. [13] and Pak and Smirnov [11]. We also
settle the issue of PreResolve as raised in the work of Jantzen,
Smirnov and Smirnov [13] and provide a Mathematically
justified way of unveiling the full set of transformations that
one needs, to successfully identify all the regions in the Alpha
parameter space.

Future extensions of this work includes looking into the
connection between the sub-leading contributions of regions
and the resulting geometry in the Alpha-parameter space as
well as predicting the number of distinct regions a priori
by studying the topology of amplitudes. For the moment,
this work, as indeed is the case with the work of Pak and
Smirnov, Jantzen, Smirnov and Smirnov, is based on the U
and F polynomials. Having more than one approach based
on these may be profitable in the sense of eliminating the
possibility of missing some regions when one or the other is
used at one given time. The work here is based on the general
properties of Landau singularities and closer to the spirit of
the classical analyses of Feynman amplitudes to analyze their
analyticity in the past, is now being employed to identify the
regions associated with Feynman diagrams.

The investigation of multi-loop non-planar vertex dia-
grams encountered in references, e.g., [36] and also in the
book of Smirnov [24] are an interesting class of amplitudes
where our initial analysis suggests a rich family of solutions
of the Gröbner Basis elements. Treatment of such non-trivial
integrals would require automation of the analysis of Gröbner
Basis elements for determining the complete set of transfor-
mations which will lead to the identification of all contribut-
ing regions. As a preliminary example we solve Landau equa-
tions and the Gröbner basis of the non-planar vertex diagram
considered by [24] in the Appendix A.5. It may be readily
seen that this is highly complicated and we do not yet have
the full solution for this system, and work is in progress.

It may also be noted here that the present work, as in work
of Pak and Smirnov, Jantzen, Smirnov and Smirnov is limited
to dimensionally regularized Feynman diagrams. We only
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provide the regions that maximally partition the Alpha para-
metric space at leading order. With the regions in hand one
still needs, for a complete evaluation of the original integral
at leading order, to use appropriate phase space regulators, as
discussed in [35], and follow the procedure of Jantzen [22]
to perform zero-bin subtractions in the framework of dimen-
sional regularization. In the past, analytic regulators above
and beyond dimensional regularization have been employed
in the MoR approach to separate soft and collinear regions,
see e.g. [35]. The presence of the analytic regulators has been
automated in ASY code as well as in FIESTA [11,37]. Such
an extension to the ASPIRE algorithm would be very inter-
esting. although beyond the scope of the current work.

An important question to ask is whether the ASPIRE algo-
rithm can find regions that the ASY algorithm cannot? In
order to answer this question, we have visited some exam-
ples that have been studied using ASY. These include the dia-
grams found in Ref. [6] all of which have been analyzed by us
using ASY, correspond to (a) the J type one-loop integral, (b)
the fish diagram with the kaon loop, and (c) the fish diagram
with the π − K loop. When implemented on ASPIRE the
results have been confirmed. In addition we have considered
the two loop Master Integral vertex diagram in eq. (7.30) of
Ref. [24] and find agreement between the results from ASY
and ASPIRE. To this extent, at the present level of investiga-
tion we find complete agreement. It may yet be that ASPIRE
has the potential to probe new regions in the setting of non-
planar diagrams not necessarily in the Sudakov limit. For the
moment, this analysis has not been performed partly due to
the highly non-trivial Gröbner basis elements. Such investi-
gations are deferred to the future.

All the work reported here has used the Alpha parametriza-
tion. While it has been convenient to analyze the regions here,
the connection to the actual scaling behavior in the momen-
tum space is less transparent. In order to actually assign the
nature of the scalefulness to an isolated region, one has to go
back to the momentum scaling behavior. This identification
has been carried out by hand. This part of the algorithm needs
to be automated as well.
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Appendix A

A.1 Gröbner basis

Finding the Gröbner basis of an ideal over a ring is a com-
monly occurring problem in computational algebra. It is used
to study systems of algebraic equations.

Definition The Gröbner basis G of an ideal I over a poly-
nomial ring R is the generating set of I with respect to some
monomial ordering with the property that the leading term of
any polynomial in I is divisible by the leading term of some
element in G.

One of the most important properties of Gröbner basis
of an ideal containing a set of algebraic varieties is that the
zeros shared by the system of equations are also shared by
the Gröbner basis elements.

In the example below we have given the Gröbner basis
for an arbitrary set of polynomials using the Buchberger’s
algorithm [31].

Consider the polynomials,

p1 = x3 + y3 − 2x2y p2 = x2 + y2 − 3xy.

The Gröbner basis for the minimal ideal containing the
two polynomials is

I = 〈y4, xy2, x2 − 3xy + y2〉.
The two given polynomials have the common root

(x, y) = (0, 0) which is immediately evident from the
obtained Gröbner basis.

A.2 Rotation of Newton polytope in alpha-parametric
space

The normal vectors of surfaces of Newton polytope are inter-
preted as the physical regions. In such a case, rotation of the
Newton polytope in the alpha parametric space will yield a
different set of normal vectors. However, the physical regions
represented by both of them does not change since the bound-
ary subset does not change.

Consider a polynomial:

G(x, y) = x + y + 2x2y + xy2. (91)

The support of the above polynomial is

S(g) = {(1, 0), (0, 1), (2, 1), (1, 2)}. (92)

The Newton polytope for the above is (Fig. 11):
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Fig. 11 Newton polytope for Eq. (92)

Rotation of the Newton polytope corresponds to making a
linear transformation of the support which translates to redef-
inition of the alpha parameters themselves. For the above let
us make the transformation

x → xy
√

3 y → x−√
3y. (93)

In the above we performed the transformation
[

1 −√
3√

3 1

](
1
0

)

=
(

1√
3

) [
1 −√

3√
3 1

](
0
1

)
=
(−√

3
1

)
. (94)

The new polynomial we get is

G ′(x, y) = 2x2−√
3y2

√
3+1

+ x1−2
√

3y
√

3+2 + x−√
3y + xy

√
3. (95)

In the above it needs to be noted that the matrix is not
orthogonal. The only condition that needs to be satisfied by
a matrix, M representing a rotation of the Newton polytope
is MT M = cI, c ∈ R and I is the identity.

The new support of polynomial G ′(x, y) is

S(g′) = {(2 − √
3, 1 + 2

√
3),

(1 − 2
√

3, 2 + √
3), (−√

3, 1), (1,
√

3)}. (96)

The new Newton polytope for the new support is (Fig. 12):
It is evident that rotation of the Newton polytope does

change the normal vector of the surfaces. However, the
boundary subset of the Newton polytope remains the same
and thus the rotated and unrotated normal vectors would give
the same boundary subset and hence the same truncated poly-
nomial which implies that they both correspond to the same
region. This can be seen Mathematically. Let us take the

–2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

x

y

Fig. 12 Newton polytope after transformations Eq. (93)

boundary subset of the Newton polytope S1
j . Now for a nor-

mal vector n we have,

−→n .
−→s = k, ∀−→s ∈ S1

j , k ∈ R. (97)

Rotating the polytope corresponds to

−→s → M−→s ,
−→n → M−→n . (98)

Thus, we now have the condition,

−→n .
−→s → −→n MT M−→s = c−→n .

−→s = ck, c ∈ R. (99)

Thus, we see that at the end of the transformation the bound-
ary subset does not change. Hence the truncated polynomial
still does not change and the truncated polynomial integrates
to the same expression as the unrotated one. After making
such a transformation, of course one needs to also include
the jacobian in the integral and also change the limits of inte-
gration if necessary. One interesting thing to note here is that
one can generate an infinite set of regions by rotating the
polytope. These look different from each other at the outset
but in fact represent the same process. The purpose of this
discussion is to show that the invariances of the Newton poly-
tope under the rotations above, does not change the regions
identified in a substantive manner, in the case of the analysis
of the U and F polynomials. Rather the effect of the rotations
is to reexpress the rotated regions in terms of the original
ones. This does not give any further information on scaleless
regions, are required to be eliminated in any event.

A.3 External packages

UF.m

UF is a Mathematica based package designed for extracting
the Symanzik polynomials, U and F, from the alpha represen-
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tation of any multiloop Feynman integral. The code is openly
available for redistribution [33].
In our codes,UF function of the packageUF.m takes as input,
for a particular Feynman integral, the set of loop momenta,
set of all propagators and the set of kinematical substitutions
as input.
Example:

UF[{k}, {−(k2 − m2),−k2}, {m2 → x}],

gives the output

{x[1] + x[2], xx[1]2 + xx[1]x[2], 1},

where x[1] and x[2] are the Alpha-parameters. The output
has three parts: first and second elements represent the U and
F polynomials respectively and the third entry is the number
of loops.

NDConvexHull.m

This package includes implementations of several algorithms
like Chan’s algorithm, gift wrapping, quick hull, incremental
convex hull, for finding the convex hull of a set of points in
multi-dimensional space. They take a set of points as input
and return a sorted list of vertex points and a sorted list of
simplexes as output. This package was developed by Loren
Petrich [34].
In this work, we use the function CHNQuickHull for find-
ing the convex hull of a set of points using the Quick Hull
algorithm.
Example: Consider the following set of points

P = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

CHNQuickHull[P] gives the output in terms of the point ids
which are the position of the points in P.

Output:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2, 3, 4, 5, 6, 7},

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 6
1 3 4
1 4 2
1 6 3
2 4 5
2 5 6
3 6 7
3 7 4
4 7 5
5 7 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where the first list is the set of point ids of the given points
and the second matrix is the surfaces of the Newton polytope
in terms of those ids.

A.4 Description of mathematica functions implemented
for this work

getMul

We use this function for finding the support of a given poly-
nomial. This function returns the vector exponents of the
corresponding variables in a given monomial term.

Usage:
getMul[x2y, {x, y}]

Output: {2, 1}.

getNormal

This function computes the components of the normal vector
of a plane given the set of points lying on the plane and a set
of points lying below the plane.

Usage:
getNormal[{{1, 2, 0}, {2, 1, 0}, {1, 0, 2}}, {{1, 0, 1},
{1, 1, 0}, {0, 1, 1}}]

Output: {v[1] → 1, v[2] → 1, c → 3},

where the first matrix of the input of the function represents
the points on the surface and the second matrix contains the
points lying below the surface. The output are the compo-
nents of the normal vector of the surface with the zeroth
component as 1.

genNormalCoordinates

This function takes as input the set of points on a facet of
the Newton Polytope. It finds the set of points below the
surface using the points that lie on the surface and then uses
the getNormal function for getting the normal vector.

Usage:
genNormalCoordinates[{ points on surface of Newton poly-
tope }, { set of all points }]

Output: Components of the normal of the facet.

UniqueRegions

It takes as input the set of normal vectors and the length of
the normal vectors, removes any instance of Null from the
set and then eliminates all normals related by a constant shift.
This gives us a unique set of regions.

Usage:
UniqueRegions[{{v[1] → 0, v[2] → 0}, Null, {v[1] →
1, v[2] → 0}, Null, {v[1] → 1, v[2] → 1}}]

Output: {{0, 0}, {1, 0}}.

123



Eur. Phys. J. C (2019) 79 :57 Page 19 of 20 57

Scalecheck

This function checks for scaleless integrals. It takes as input
the leading order U and F polynomial in a particular region
and then checks if the polynomials are proportional to them-
selves under rescaling of a subset of alpha parameters. A
region is scaleless if:

Flead.[{αi }] ∝ Flead [c{α j } ∪ {αk}], (100)

where {α j } ⊂ {αi }, {α j } ∪ {αk} = {αi } and c ∈ R.
Usage:

Scalecheck[x + y, x2yz, {x,y,z}]
Output: Scaleless.

A.5 Preliminary analysis of two loop non-planar
diagram in the Sudakov limit

We perform initial analysis of a two loop non-planar vertex
diagram studied in [24] in limit (a). The integral is

IN P =
∫ ∫

ddkddl

[(k + l)2 − 2p1.(k + l)][(k + l2 − 2p2.(k + l))](k2 − 2p1.k)(l2 − 2p2.l)(k2 − m2)(l2 − m2)
. (101)

The Gröbner basis of the Landau equations for this integral
contains 22 terms each having multiple solution branches.
Exploring all the branches needs to be automated. For the
purposes of demonstration, we list some of the Gröbner Basis
elements:

G = {(x − 1)x(x4 − x5)x6(x4 + x6)(x5 + x6), (x − 1)

x(x4 − x5)(x4 + x6)(x
2
5 − x2

6 ),

(x − 1)x(x4 − x5)(x4 + x6)((8(x − 1)x + 1)x4

−4(x − 1)x(x5 − x6) + x6),

(x − 1)x(x4 − x5)x6(x4 + x6)(x4 + x5 + 2x6),

(x4 − x5)(x4 + x6)(x5 + x6)(x4 + x(x5 + x6)),

(x4 − x5)(x4 + x6)

(x2
4 + (x5 + 2x6)x4 + xx6(x5 + x6)), . . .}. (102)

From the above list, let us analyze the Gröbner basis ele-
ment:

(x − 1)x (x4 − x5) (x4 + x6) ((8(x − 1)x + 1)x4

− 4(x − 1)x (x5 − x6) + x6) .

In the above element the factor (x − 1)x (x4 − x5)

(x4 + x6), becomes zero if x4 − x5 = 0 or x4 + x6 = 0. The
positivity of the Alpha-parameters implies that x4 + x6 = 0
gives x4 = x6 = 0. Thus, this solution branch corresponds
to a trivial transformation.

The factor ((8(x − 1)x + 1)x4 − 4(x − 1)x (x5 − x6)

+ x6), can be mapped to zero if x5 − x6 = 0, x4 = 0 and
x6 = 0. However, this implies that x4 = x5 = x6 = 0. This

once again results in a trivial transformation. Hence, the only
non-trivial transformation that one needs to perform here is
to map x4 − x5 = 0.

More complicated Gröbner basis elements have multiple
solution branches. All of these branches look distinct at the
beginning but as one does a careful study of these, it might be
revealed that these seemingly distinct branches lead to sim-
ilar transformations. To find the complete set of transforma-
tions needed to detect all the regions an automated approach
to analyze and identify all the distinct solution branches is
required and is deferred to future versions of our algorithm.

While analyzing this system in our scheme by consider-
ing only the Identity transformation (i.e. the transformation
which leaves the Alpha parameters unaltered), we get the
same regions as obtained from ASY. However, the compli-
cated nature of the Gröbner bases may allow for other non-
trivial transformations which can be studied in the future. A
notebook for the preliminary study has been provided.

A.6 List of mathematica notebooks used in this work

We provide brief description of the Mathematica notebooks
used in this discussion. It may be noted that care has been
taken to produce the U polynomial with the correct positive
sign denoted by the extension “P” at the end of the name of
the notebook.

File Explanation

TwoPointOneLoopP.nb Contains the demonstration
of the algorithm for
obtaining the regions
associated with the
integral representing a two
point one loop diagram

FivePointOneLoopP.nb Regions in five point one
loop diagram have been
shown

PionFishP.nb Reveals the regions in a two
loop Fish diagram having
internal pion loop in the
context of π − K
scattering

ScalarTriangleDiagramLimit(a)P.nb Regions in Scalar Triangle
diagram in Sudakov
limit-(a) have been
obtained in this notebook

ScalarTriangleDiagramLimit(b)P.nb Regions in Scalar Triangle
diagram in Sudakov
limit-(b) have been
obtained in this notebook

123



57 Page 20 of 20 Eur. Phys. J. C (2019) 79 :57

ScalarTriangleDiagramLimit(c)P.nb Regions in Scalar Triangle
diagram in Sudakov
limit-(c) have been
obtained in this notebook

ScalarTriangleDiagramLimit(d)P.nb Regions in Scalar Triangle
diagram in Sudakov
limit-(d) have been
obtained in this notebook

SudakovNonPlanarP.nb Non-planar diagram in the
Sudakov limit with
identity transformation
only has been studied
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