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Understanding diffusion in liquids from properties of static structure is a long standing problem
in condensed matter theory. Here we report an atomistic study of excess entropy and diffusion
coefficient in a strongly coupled Yukawa liquid. We observe that the pair excess entropy s2 scales
with temperature as −3.285 (Tm/T )0.665 and contributes to about 90% of the total excess entropy
close to the freezing transition Tm. We further report that at low temperatures where the diffusive
transport is mediated by cage relaxation, the diffusion coefficient when expressed in natural units
of the Enskog collision frequency and the effective hard sphere diameter, obeys the scaling law
0.04 es2 and deviates from it at high enough temperatures where cages cannot form. The scaling
laws reported here may also apply to strongly coupled dusty plasmas and charged colloids.

PACS numbers: 52.27.Lw,51.35.+a,52.65.Yy

A unifying description of atomic diffusion in condensed
matter has remained elusive so far [1–4]. For dilute gases
the Chapman-Enskog solution of the Boltzmann equa-
tion applies well as the collisions in this limit, to a good
approximation are assumed to be binary in nature [5, 6].
Higher densities can be addressed after a generalization of
the Enskog theory [7] or by using an effective Boltzmann
approach [8]. The late 1960s saw the first computer sim-
ulations on transport phenomena prompting the devel-
opment of mode coupling theories which were more suc-
cessful in describing diffusion in moderate to dense fluids
[9–11]. For liquids that are dense or at very low tempera-
tures, structural effects dominate over kinetic effects and
change the qualitative features of atomic transport [12–
14]. These structural effects manifest themselves in the
form of a cage around a given particle formed by nearest
neighbors [15, 16]. As temperature rises, the short range
order of a liquid begins to fluctuate rapidly and elimi-
nates any caging effect that may affect diffusive trans-
port. Particularly at low temperatures where dynamical
excitations become collective in nature, universal scaling
laws emerge in both thermodynamics and transport phe-
nomena [17, 18]. Whether such a bridge exists that can
connect underlying structure with dynamics in strongly
coupled liquids is the subject matter of our work.

Rosenfeld [19] proposed a connection between diffusion
co-efficient D and the total excess entropy per particle s
in the form of a scaling law Dn1/3/(kBT/m)1/2 = AeBs

where n is the number density. It should be noted that
s which arises due to structural correlations, is over and
above the ideal gas value and is therefore negative. The
prefactor A and the exponential argument B vary for
different inter-atomic potentials and the scaling law is
able to estimate the diffusion coefficient to within 30% of
the actual value. The scaling thus acts as a correspond-
ing states like relationship and was observed to be only
quasi-universal in nature. The dimensional reduction of
D is macroscopic in nature as the parameters n1/3 and
(kBT/m)1/2 do not depend on the liquid structure. Later

works [20] showed that a microscopic reduction of D us-
ing structure dependent parameters namely the Enskog
collision frequency ν and effective hard sphere diameter
σ leads to a scaling law D/(νσ2) = 0.049es2 . Here σ is
defined as the location of the first peak in the pair correla-
tion function g(r) and ν is given by 4σ2g(σ)n

√
πkBT/m.

The pair excess entropy s2 is a two body approximation
of the full configuration entropy and can be readily ob-
tained once g(r) is available (see text later). The scaling
law which works for a range of soft potentials was seen
to break down in liquid Silicon and some liquid metals
[21]. To the best of our knowledge, a microscopic study
of this pair excess entropy and its connection to the dif-
fusion coefficient in strongly coupled liquids with long
ranged interactions is lacking. Such a study will be im-
mediately useful for kinetically resolved experiments in
dusty plasma and charged colloids where the particle in-
teractions to a good approximation can be considered to
be the Yukawa potential. The purpose of this letter is
to address this issue and provide a universal scaling of
pair excess entropy (directly calculated from structure)
with temperature in a strongly coupled Yukawa liquid. In
what follows we also provide a scaling law that connects
this pair excess entropy with liquid diffusion.

Our prototype system is a three dimensional (3D)
strongly coupled Yukawa liquid which is known to be
an excellent model for dusty plasma and colloidal sus-
pension of charged particulates [22, 23]. The availability
of kinetically resolved in experiments in dusty plasma
[24] further brightens up the prospect of a direct com-
parison with our results reported here. The particles in
the liquid interact through the Yukawa potential φ(r) =
Q2(4πε0r)

−1e−r/λD where Q is the particle charge and
λD is the Debye length of the background plasma. We
have performed molecular dynamics (MD) simulations in
a canonical ensemble with periodic boundary conditions.
We neglect neutral gas friction as it affects the diffusion
dynamics only in the limit of large dissipation [25, 26].
Distance is expressed in units of the Wigner-Seitz radius
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a = (4πn/3)−1/3, energy in units of Q2/(4πε0a), time in
units of inverse nominal dust frequency

√
3ε0m/(Q2n)

and entropy in units of NkB . The system can exhibit a
state of strong coupling when the dimensionless param-
eter Γ = Q2/(4πε0akBT ) >> 1 leading to a remarkable
display of collective excitations and self organization phe-
nomena [27, 28]. The two dimensionless parameters Γ
and κ = a/λD completely describe the thermodynam-
ics of our system. We take 10648 particles at a reduced
density n = 3/(4π). To speed up the simulations we
smoothly truncate the interaction potential along with
its two derivatives to zero at a cutoff distance rc. This
is done by employing a fifth-order polynomial function
that is switched on when rm < r < rc with rm and rc be-
ing the inner and outer cutoff distance respectively. We
choose rm and rc subject to criteria φ(rm) ≈ 4.085×10−4

and φ(rc) ≈ 9.300 × 10−7 thus ensuring negligible per-
turbation to the bare Yukawa potential. A Nosé-Hoover
thermostat [29] maintains constant temperature in the
NVT ensemble. To improve statistics we average our

data over 30 statistically independent realizations.
We begin by first computing the total excess entropy s

by performing a thermodynamic integration of the equa-
tion of state along a reversible path from some reference
state Γ0 to the desired Γ as mentioned below

sΓ←Γ0 = u(Γ)Γ− u(Γ0)Γ0 −
∫ Γ

Γ0

u(Γ′)dΓ′ (1)

where u is the potential energy per particle. Ideally one
should take Γ0 to be zero in order to measure entropy
relative to the ideal gas state but in practice it is difficult
to carry the above integration at such low values of Γ.
We avoid this problem by taking Γ0 = 1 as a reference
state as all peaks in g(r) disappear at this temperature.
An alternate route to calculate excess entropy directly
from the underlying structure is due to Wallace [30]. His
method is based on the expansion of s in terms of corre-
lation functions and gives excess entropy relative to the
ideal gas state. We use Ref. [31] to write for s:

s = −1

2
n

∫
[g(r)ln{g(r)}+ {1− g(r)}]dr︸ ︷︷ ︸

s2

−1

6
n2

∫ ∫
[g(3)(r)ln{δg(3)(r)}+ 3g(r)

2 − g(3)(r)− 3g(r) + 1]dr2︸ ︷︷ ︸
s3

+ · · · (2)

Here s2, s3, · · · are the two body, three body and other
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FIG. 1. (color online). Comparison of the total excess entropy
[Eq. (1)] with the pair contribution [Eq. (2)] shown for the
case κ = 4 and the reference state Γ0 = 1. Inset: Fraction of
the total excess entropy as a function of Γ.

many body contributions to the total entropy s respec-
tively. In Fig. 1 we plot a comparison of s [from Eq.
(1)] with s2 keeping Γ0 = 1 as the reference. We find
that close to freezing s2 dominates over other many
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FIG. 2. (color online). Pair excess entropy as a function of
reduced inverse temperature Γ/Γm. Data collapse indicates
the accuracy of our scaling law down to Γ as low as 2% Γm.

body terms and contributes to over 90% of s [see Fig.
1: Inset]. Note the existence of a minimum around
Γ = 10%Γm and highest contribution at Γ extrema.
Next we show the scaling of this pair excess entropy with
the reduced temperature Γ/Γm in Fig. 2. It should be
noted that Γm varies by more than an order of magni-
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FIG. 3. (color online). Reduced diffusion coefficient vs pair
excess entropy. Except when caging is absent (shaded region)
we are able to collapse our data on to the simple scaling law
shown by a solid line. Data inside the shaded region are taken
at temperatures where the velocity auto-correlation does not
cross zero [see text and Fig. 4].

tude from 217.4 to 3837 as κ goes from 1 to 4 [32] and
hence we have sufficient reasons to believe the scaling
law s2 = −3.285(Γ/Γm)0.665 reported here is universal in
nature. The value of s2 at melting ≈ −3.285 for all κ.
Our results may thus prove to be very useful in predict-
ing structural entropy from trajectory snapshots which
are easily available in kinetically resolved dusty plasma
experiments. In what follows we will provide a link to
connect this structural information to the dynamics that
governs transport.

Any theory that unifies dynamical properties such as
diffusion with the underlying structure will need to pro-
vide ways in which the local arrangement of nearest
neighbors (or cage) around a particle may affect its long
time dynamics. Recently we showed that the lifetime
of this cage decides the relaxation of shear stress in the
liquid state [16]. Thus it is natural to expect that cage
relaxation will also be necessary to produce local density
fluctuations necessary for diffusive transport especially at
low temperatures where the liquid exhibits strong caging
behavior. Since a cage is typically formed by the near-
est neighbors [particles within the first peak of g(r)], the
momentum and energy transfer processes between parti-
cles can be expected to be short ranged just like binary
collisions in a gas of hard spheres. The relevant time
scale of these collisions can then be given by the inverse
of Enskog collision frequency νE and the relevant length
scale can be realized as the effective hard sphere diame-
ter σ which is just the location of the first peak in g(r).
Within the classical Enskog theory we have

νE = 4σ2g(σ)n
√
πkBT/m (3)

We now turn our attention to Fig. 3 where we plot
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FIG. 4. (color online). Normalized velocity auto-correlation
data for the case κ = 2. Zero crossing of the function indicates
caging behavior. For Γ values 10, 25 and 50 where caging is
absent we see deviations from the scaling law as shown in the
shaded region of Fig. 3.

the diffusion coefficient in units of νEσ
2 as a func-

tion of pair excess entropy and find that a scaling law
D/(νEσ

2) = 0.04es2 holds in the region −s2 > 1. How-
ever when −s2 < 1, a deviation from this scaling law is
observed which is shown by the shaded region. Our pref-
actor of 0.04 which is about 18% smaller than the one
used in Ref. [20] is not universal. Note that lower val-
ues of −s2 imply higher temperatures. The points that
deviate from the scaling law are taken at temperatures
high enough to set rapid fluctuations in the short range
order of the liquid thus marginalizing any role that the
nearest neighbor dynamics can play in particle diffusion.
Our data for velocity auto-correlation (VAC) for the case
κ = 2 shown in Fig. 4 confirms this. Data for other val-
ues κ are similar (not shown here). When the liquid
exhibits caging, indicated by zero-crossing of VAC, we
find that the corresponding data for diffusion obeys the
scaling law shown in Fig. 3. This is expected because at
these temperatures cage relaxation is necessary for the
onset of diffusive transport. At temperatures where the
VAC does not cross zero, there is no caging and D does
not obey the scaling law. These data points are shown
in the shaded region of Fig. 3.

To further strengthen our argument, we provide in Fig.
5 plots of self-intermediate scattering function Fs(k0, t) at
various Γ for the case κ = 2. The value of k0 is taken to be
2π/σ. The points A,B, C,D and E denote the locations
of the e-folding times (tα) in the Fs(k0, t) data. As tα
tells us how long one must typically wait for the cages to
break or rearrange, it is a good measure of the structural
relaxation time. Thus the diffusive regime if mediated by
cage relaxation must occur at t >∼ tα. Indeed we observe
this in the inset where we show the corresponding plots
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of the diffusion coefficient with the same points marking
the onset of cage breaking. We notice that for the cases
Γ = 100, 200 and 400 where cages do form (see Fig. 4)
the corresponding points C,D and E mark the onset of
diffusive regime (i.e D ≈ constant). Diffusive transport
at these values of Γ is thus mediated by cage relaxation
and the diffusion data obeys our scaling law shown in
Fig. 3. At Γ = 10 and 25, the liquid does not exhibit any
caging behavior and hence diffusion cannot be mediated
by local structural relaxation- also confirmed from the
location of pointsA and B in the inset of Fig. 5. Diffusion
data at these Γ thus deviate from the scaling D/(νσ2) =
0.04es2 .
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FIG. 5. (color online). Self intermediate scattering function
Fs(k0, t) at various Γ for the case κ = 2. We take k0 = 2π/σ
with σ being the location of the first peak in g(r). Points
A,B, C,D and E mark the e-folding times of Fs(k0, t). Inset:
Diffusion coefficient shown for the same Γ.

We can conclude that the pair excess entropy s2 in liq-
uid dusty plasma scales as −3.285(Tm/T )0.665 for all val-
ues of screening parameter with −3.285 being the value of
s2 at melting for all screening lengths. Especially close to
the melting point Tm, we find that s2 which arises from
pair correlation contributes to almost 90% of the total
entropy. Our scaling is universal as the melting points
vary by more than an order of magnitude over the en-
tire range of screening parameters used in this work. We
further report that at low temperatures where the liquid
exhibits caging, the diffusion coefficient when expressed
in the natural units of the Enskog collision frequency
and the effective hard core diameter scales as 0.04 es2 .
At higher temperatures when caging is absent, deviation
from the scaling law is seen. The prefactor in our scaling
law for diffusion is different from the one in past works
[20] implying that the prefactor itself in not universal.
The scaling laws reported here may prove to be valu-
able in directly computing excess entropy and diffusion
coefficient in kinetically resolved liquid dusty plasma ex-
periments where particle snapshots are easily obtained.

The author wishes to thank Abhijit Sen and Rajara-
man Ganesh for discussions. All simulations were done
on the VIRGO super cluster of IIT Madras.
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