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Abstract

A stochastic version of the Barkai-Leibler model of chemotaxis receptors in Escherichia coli

is studied here with the goal of elucidating the effects of intrinsic network noise in their confor-

mational dynamics. The model was originally proposed to explain the robust and near-perfect

adaptation of E. coli observed across a wide range of spatially uniform attractant/repellent

(ligand) concentrations. In the model, a receptor is either active or inactive and can stochasti-

cally switch between the two states. The enzyme CheR methylates inactive receptors while

CheB demethylates active receptors and the probability for a receptor to be active depends

on its level of methylation and ligand occupation. In a simple version of the model with two

methylation sites per receptor (M = 2), we show rigorously, under a quasi-steady state

approximation, that the mean active fraction of receptors is an ultrasensitive function of

[CheR]/[CheB] in the limit of saturating receptor concentration. Hence the model shows zero-

order ultrasensitivity (ZOU), similar to the classical two-state model of covalent modification

studied by Goldbeter and Koshland (GK). We also find that in the limits of extremely small

and extremely large ligand concentrations, the system reduces to two different two-state GK

modules. A quantitative measure of the spontaneous fluctuations in activity is provided by the

variance s2
a in the active fraction, which is estimated mathematically under linear noise

approximation (LNA). It is found that s2
a peaks near the ZOU transition. The variance is a non-

monotonic, but weak function of ligand concentration and a decreasing function of receptor

concentration. Gillespie simulations are also performed in models with M = 2, 3 and 4. For M

= 2, simulations show excellent agreement with analytical results obtained under LNA.

Numerical results for M = 3 and M = 4 are qualitatively similar to our mathematical results in

M = 2; while all the models show ZOU in mean activity, the variance is found to be smaller for

larger M. The magnitude of receptor noise deduced from available experimental data is con-

sistent with our predictions. A simple analysis of the downstream signaling pathway shows

that this noise is large enough to affect the motility of the organism, and may have a beneficial

effect on it. The response of mean receptor activity to small time-dependent changes in the

external ligand concentration is computed within linear response theory, and found to have a

bilobe form, in agreement with earlier experimental observations.
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Introduction

The pioneering work [1] of Goldbeter and Koshland (GK) brought into light an interesting

molecular switch-like transition, now referred to as Zero Order Ultrasensitivity (ZOU) [2],

observed in reversible covalent modification (e.g. phosphorylation or methylation) of a protein

(substrate), catalyzed by two antagonistic enzymes. This switch-like behavior emerges in the

limit where the substrate concentration is exceedingly large compared to the enzyme concen-

trations as well as their individual Michaelis constants. In this “zero-order” regime, the modi-

fied fraction of substrate, in a saturating environment, exhibits a sharp transition at a critical

value of the ratio of the total concentrations of the antagonistic enzymes. Various aspects of

GK switch has been studied over the years [3–5]. The fluctuations associated with the ultrasen-

sitive module has also been studied [3, 4]. ZOU was also identified as allosteric cooperativity

by Quian (2003) [6] and Ge and Quian (2008) [7].

The bacterium E. coli has thousands of receptors on its cell surface for a precise sensation of

the extracellular environment. The two main types of chemotaxis receptors are Tar and Tsr.

The receptor protein and the protein kinase CheA are linked by the linker protein CheW. The

receptor protein, CheA and CheW function as a single signaling complex, which exists in

active or inactive state, and can undergo stochastic switching between the states. The switching

is regulated by methylation and ligandation (binding of chemoattractant/repellent) of the

receptors. Methylation is carried out by the protein CheR while CheB demethylates receptors.

In its active state, the receptor-CheW-CheA complex phosphorylates CheB and the response

regulator CheY; while the former demethylates the receptor, the latter induces tumbles by

binding to the flagellar motor. In this way, the internal biochemistry (methylation/demethyla-

tion) and external stimulus (attractant/repellent) regulates the swimming pattern of the organ-

ism (reviewed in [8]).

A remarkable property of chemotaxis in E. coli is perfect adaptation to some chemoattrac-

tants. After exposure to a stimulus corresponding to an abrupt rise or fall in ligand concentra-

tion in a homogeneous environment, the frequency of tumbles returns to its pre-stimulus level

after a time interval *4 seconds [9]. A model of the methylation-demethylation cascade pro-

posed by Barkai and Leibler (BL) [10] successfully explains this property using a few simple

assumptions. The model was modified and extended in later years by other authors [11–14].

The important assumptions in the model are (a) CheR methylates inactive receptors while

CheB (or its phosphorylated form, CheBp) demethylates active receptors, (b) the state of activ-

ity of a receptor depends on its methylation level, (c) binding of an attractant (ligand) molecule

adversely affects the activity of a receptor, (d) ligand binding and dissociation are very fast

compared to methylation and demethylation. Mello and Tu [13] showed that perfect adapta-

tion is achieved only if the lowest methylation level is assumed to be always inactive, while the

highest level is assumed to be always active. As a consequence of these assumptions, the mean

receptor activity in the model in steady state turns out to be independent of the attractant con-

centration. Further, mathematical modeling has shown that, with suitable extensions, the

model also successfully predicts the response of the network to a short-lived spike in attractant

concentration [15].

In E. coli, the most abundant receptor, Tar, responding to the attractant methyl aspartate,

has four methylation sites per monomer. For modeling purposes, it is convenient to represent

the methylation state of a single receptor by an indexm, where 0�m�M withM being the

maximum value (M = 4 for Tar). It is generally assumed that activation/inactivation as well as

ligand binding/unbinding of a receptor happens much faster compared to methylation/

demethylation. ForM = 1, the BL model is entirely identical with the Goldbeter-Koshland

(GK) two-state system; the ligand concentration L plays no role whatsoever in the dynamics.
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ForM� 2, the intermediate state(s) which stochastically switches(switch) between active and

inactive states modifies the dynamics; however, the model retains the same structure as the GK

module (see Fig 1, where we have provided a schematic depiction of the BL model, forM = 2).

Therefore, it is pertinent to enquire whether ZOU is present also in the BL model. In the GK

system (M = 2 in our model), fluctuations in activity are known to be large near the ZOU tran-

sition. In E. coli chemotaxis, intrinsic fluctuations are expected to play an important role. The

flagellar motor responds ultrasensitively to [CheYp] (p denoting the phosphorylated form);

the sensitive part of the motor response curve is less than 1μM in width [16, 17], hence it is

likely that spontaneous and random fluctuations in activity are crucial in generating the run-

and-tumble motion of the organism [12]. For this reason, we believe that a detailed study of

ZOU in the BL model, including a systematic treatment of fluctuations will make a useful addi-

tion to existing literature on ZOU as well as chemotaxis in E. coli. This is the motivation

behind this paper.

Materials and methods

Model details

Let us denote by V the volume of a cell having a total of N = A0V receptor proteins (substrate),

and two enzymes. In E. coli, these correspond to the methyltransferase CheR and methylester-

ase CheB, the total concentrations of each are denoted by R0 and B0 respectively. In the pres-

ently accepted model of signal transduction in E. coli, CheR methylates the receptor, while

Fig 1. A schematic figure of the 3-state BL model showing all the biochemical reactions. The red boxes denote the three states; ξ0, ξ1 and ξ2 being

the fractional concentrations of receptors in each. Blue dotted arrows with rates νr show the methylation process resulting in the increment in the state index

while the green ones with rates νb depict demethylation with the decrement in the same.

https://doi.org/10.1371/journal.pone.0175309.g001
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CheB demethylates it. According to the two-state model [18] the receptor exists in a complex

form involving two more proteins, CheW and CheA, and the complex may exist in one of two

conformational states, which we refer to as active and inactive. In the active state, CheA under-

goes autophosphorylation and also phosphorylates the cytoplasmic messenger protein CheY.

CheA phosphorylates CheB also, a process crucial in adaptation, but ignored here for the sake

of maintaining close structural similarity with the GK system. The probability to be in the

active state is an increasing function of the methylation level of the receptor. Chemoattractant

molecules, if present, also bind to the receptor, and this process increases the probability to

find the receptor in inactive state (with chemorepellents, it is the reverse) [8].

BL proposed a quantitative model [10] of the signal transduction cascade, based on the

two-state model of Asakura and Honda [18]. In this model, CheR binds only to inactive recep-

tors, while CheB binds only to active receptors [19]. In general, we denote byM the total num-

ber of methylation sites. Let Am symbolically represent a receptor in methylation statem, and

~Am denotes its enzyme-bound form; the same symbols will also be used to denote the corre-

sponding numbers (out of a total of N). The inactive and active versions are identified by

superscripts i and a respectively. The binding rate of CheR to a receptor is k+ and k− is the dis-

sociation rate; for CheB, the corresponding quantities are k0
þ

and k0
�

respectively. Attractant

binding is relevant only for the intermediate state; we assume that the binding rate is ka, disso-

ciation rate is kd and attractant concentration is L (assumed uniform). νr and νb represent the

product formation rates from CheR and CheB-bound intermediate states, respectively. The

concentrations of the free forms of CheR and CheB are denoted by Rf and Bf respectively. We

also define a set of dissociation constants: Kr ¼ k� =kþ;Kb ¼ k0� =k
0
þ
;KL ¼ kd=ka.

If ξm(t) denote the fraction of receptors in methylation statem at time t, the total active frac-

tion of receptors is given by xaðtÞ ¼
PM

m¼0
amðLÞxmðtÞ, where am(L) is the probability for a

receptor in statem to be active, L being the (uniform) attractant concentration. We assume

that the lowest state (m = 0) is always inactive, whilem =M is always active; the intermediate

state(s) can be either active or inactive, depending on whether it is attractant-bound. A simple

mathematical form satisfying these conditions is am(L) = am(0)Km/(L + Km) where Km is the

dissociation constant for attractant binding to a receptor in statem [14, 15, 20]. To satisfy the

earlier assumption, we choose K0 = 0 and KM =1 (these are ideal values). We further choose

a0
m ¼ m=M [19], a simple mathematical form which satisfies our earlier assumptions.

1 Fokker-Planck equation for M = 2

We will first carry out a detailed mathematical analysis of the properties of the BL model with

M = 2. Fig 1 shows a schematic depiction of this case, showing all the biochemical reactions. In

the limit where the modification rates νr and νb are very small in comparison with the other

rates, it may be visualized as a combination of three weakly-coupled modules (the boxes in

Fig 1); the fractional populations of receptors in each module are ξm withm = 0, 1, 2; hence
P2

m¼0
xm ¼ 1. In general, for a complete stochastic description of the dynamics of this system,

we also need to keep track of time evolution of the intra-modular populations viz., xm and ~xm.

Form = 1, there is a further sub-division: x1 ¼ xa1 þ x
i
1

and ~x1 ¼ ~xa
1
þ ~xi

1
, as explained in the

previous section. For eachm, xm ¼ xm þ ~xm. It was shown by us in an earlier paper [2] that

these intra-modular fractions can be ‘integrated out’ using one of the quasi-steady state

approximation schemes (QSSA) [21], whereby the replacement xi ! �xiðξÞ naturally appears

in the relevant inter-modular conversion rates. Here, we have introduced the compact vector

symbol ξ� (ξ0, ξ2) (because of the normalization constraint mentioned above, only two of the

fractions ξm are independent, we shall take these to be ξ0 and ξ2 purely for reasons of

convenience).
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Therefore, within this approximation, the inter-modular dynamics may be expressed in

terms of a probability density P(ξ;t), which satisfies a non-linear Fokker-Planck equation

(FPE) in the form of a local equation of continuity [2]:

@Pðξ; tÞ
@t

¼ �
@

@ξ
� J ð1Þ

where J� {J0, J2} with Jm ¼ vmP � @

@xm
ðDmPÞ (form = 0, 2) denoting the components of the

state space probability current “vector”. Here, the drift and diffusion coefficients are given by

vm ¼ dðo1m � om1Þ ; Dm ¼
d

2

2
ðo1m þ om1Þ ; m ¼ 0; 2 ð2Þ

with δ = N−1, o10 ¼ Nnb~xa1, o01 ¼ Nnr~x0, o12 ¼ Nnr~xi1 and o21 ¼ Nnb~x2.

Incorporating the rates ωmn in the above expressions for vm and Dm and employing the

inter-module dynamics under the standard quasi-steady state approximation (sQSSA) as dis-

cussed in Appendix 1, we arrive at the following expressions for the drift and diffusion coeffi-

cients:

v0ðξÞ ¼
nbBf

Bf þ Kb

KL
Lþ KL

� �

ð1 � x0 � x2Þ �
nrRf

Rf þ Kr
x0;

v2ðξÞ ¼
nrRf

Rf þ Kr

L
Lþ KL

� �

ð1 � x0 � x2Þ �
nbBf

Bf þ Kb
x2;

ð3Þ

and

D0ðξÞ ¼
1

2N
nbBf

Bf þ Kb

KL
Lþ KL

� �

ð1 � x0 � x2Þ þ
nrRf

Rf þ Kr
x0

" #

;

D2ðξÞ ¼
1

2N
nrRf

Rf þ Kr

L
Lþ KL

� �

ð1 � x0 � x2Þ þ
nbBf

Bf þ Kb
x2

" #

:

ð4Þ

The free enzyme concentrations Rf and Bf are also functions of ξ0, ξ2, and the expressions

are given by (see Appendix 1)

Rf ðξÞ ¼
R0KrðLþ KLÞ

KrðLþ KLÞ þ A0½KLx0 þ Lð1 � x2Þ�
;

Bf ðξÞ ¼
B0KbðLþ KLÞ

KbðLþ KLÞ þ A0½KLð1 � x0Þ þ Lx2�
:

ð5Þ

Results

1.1 Averages as fixed points

From Eq (1), it is seen after the required averaging that the time evolution of the mean receptor

fractions is given by the vector equation

d�ξ
dt
¼ vðξÞ; ð6Þ

where vðξÞ � ðv0ðξÞ; v2ðξÞÞ is the drift “vector”. In general, this vector vanishes at one or more

points in the (ξ0, ξ2) space; following van Kampen [22], we shall refer to this point (assuming
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only one exists) as the fixed point, denoted ξ� ¼ ðx�
0
; x
�

2
Þ. It can be shown (see later) that in the

large N-limit, the fixed point becomes identical to the mean value �ξ.

Under conditions Rf� Kr and Bf� Kb, which we shall assume to hold for reasons of sim-

plicity, it follows from Eq (3) that the fixed point is given by

x
�

0
¼

B�2f K
2
r n2

bKL
ðB�f Krnb þ R�f KbnrÞðB�f KrnbKL þ R�f KbnrLÞ

x
�

2
¼

R�2f K
2
b n2

r L
ðB�f Krnb þ R�f KbnrÞðB�f KrnbKL þ R�f KbnrLÞ

;

ð7Þ

where R�f � Rf ðξ
�
Þ and B�f � Bf ðξ

�
Þ are given by Eq (5), with the replacement ξ! ξ� in the

right hand side of the equations. Eqs (5) and (7) implicitly give the fixed point ξ�.

1.2 Evaluation of the covariance matrix from the linear FPE

Next, we expand vm and Dm in Taylor Series about the fixed point values. Let us define the

deviation ξ0 = ξ − ξ�; we also define its probability distribution F(ξ0)� P(ξ� + ξ0), which satis-

fies the equation

@Fðξ0; tÞ
@t

¼ �
@

@ξ0
� J0 ð8Þ

where J0ðξ0Þ � Jðξ� þ ξ0Þ, and may be expanded as follows:

J 0mðξ
0
Þ ¼ Fðξ0Þ vmðξ

�
Þ þ

X

n

x
0

n
@vm
@xn

�
�
�
ξ�
þ :::

" #

�
@

@x
0

m

Fðξ0Þ Dmðξ
�
Þ þ

X

l

x
0

l
@Dm
@xl

�
�
�
ξ�
þ :::

 !" #

ð9Þ

Keeping the leading term in each, and noting that vðξ�Þ ¼ 0, we arrive at (form = 0, 2)

J 0m ’ Fðξ0Þ
X

n¼0;2

bmnx
0

n � D
�

m
@Fðξ0Þ
@x
0

m
ð10Þ

where bmn ¼
@vm
@xn
jξ� , D�m � Dmðξ

�
Þ. Substitution of Eq (10) in Eq (8) leads to the multivariate

linear Fokker-Planck equation (LFPE) [22]

@Fðξ0; tÞ
@t

¼ �
X

m¼0;2

@

@x
0

m

F
X

n¼0;2

bmnx
0

n

" #

þ
X

m¼0;2

D�m
@

2
F

@x
0

m
2
; ð11Þ

Let us now define the covariances smn ¼ hx
0

mx
0

ni form, n = 0, 2 (form = n these become the

variances), which are evaluated in a convenient way by defining the moment generating func-

tion (Fourier transform)

Gðμ; tÞ ¼
Z 1

� 1

dx
0

0
dx
0

2
e� iμ�ξ

0

Fðξ0; tÞ ð12Þ

where μ = (μ0, μ2). The moment generating function admits the Taylor expansion

Gðμ; tÞ ¼ 1 � iμ � ξ0ðtÞ �
1

2

X

m;n¼0;2

mmmnsmnðtÞ þ ::::::::: ð13Þ
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Since F(ξ0) satisfies the LFPE given by Eq (11), the moment generating function satisfies

the equation

@Gðμ; tÞ
@t

¼
X

m;n¼0;2

bmnmm
@G
@mn
� G

X

m¼0;2

D�mm2

m ð14Þ

Under stationary conditions (t!1), the left hand side of Eq (14) becomes zero; next we

substitute Eq (13) in Eq (14), and find that �ξ0 ¼ 0 in the long-time limit. Therefore, within

LNA, the fixed point values are equal to the statistical means of the respective quantities. The

steady state covariance matrix satisfies the Lyapunov equation [22]

bσ þ σb
T
þ 2D ¼ 0 ð15Þ

where Dmn ¼ D�mdmn are the elements of the (diagonal) diffusion matrix D. The following

expressions follow from Eq (15):

s00 ¼ � D� 1½ðb22ðb00 þ b22Þ � b02b20ÞD�0 þ b
2

02
D�

2
�

s22 ¼ � D� 1½b
2

20
D�

0
þ ðb00ðb00 þ b22Þ � b02b20ÞD�2�

s02 ¼ D� 1½b20b22D�0 þ b00b02D�2�

ð16Þ

where D ¼ ðb00 þ b22Þðb00b22 � b02b20Þ. Explicit expressions for the coefficients βmn are to be

found in Appendix 2.

1.3 Mean and fluctuations in activity

The active fraction of receptors in the present model is given by

xa ¼ x
a
1
þ x2 ¼

ð1 � x0Þ

1þ ‘
þ

‘

1þ ‘
x2: ð17Þ

where ℓ = L/KL. Within LNA, the average fractions �xm ¼ x
�

m, hence �xa ¼ x
�

a, where x
�

a is given

by Eq (17), with the replacements xm ! x
�

m in the right hand side and x
�

m given by Eq (7).

The variance of the active fraction is given by s2
a ¼ x

2

a � x
2

a, which is also computed using

Eq (17). In terms of the covariances σmn, this is given by

s2
a ¼

s00 þ ‘
2
s22 � 2‘s02

ð1þ ‘Þ
2

: ð18Þ

1.4 Ultrasensitivity in the mean activity

We will now explore the large A0 limit of the fixed point. The fixed point values x
�

0
and x

�

2

given by Eq (7) can be expressed alternatively as

x
�

0
¼ 1þ

R�f
B�f

 !2

K2
b n2

r ‘

K2
r n2

b
þ

R�f
B�f

 !
Kbnrð‘þ 1Þ

Krnb

" #� 1

x
�

2
¼ 1þ

B�f
R�f

 !2

K2
r n2

b

K2
b n2

r ‘
þ

B�f
R�f

 !
Krnbð‘þ 1Þ

Kbnr‘

" #� 1
ð19Þ
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In order to understand the behavior of the above expressions in the A0!1 limit, let us

conjecture expansions of the form

x
�

m ¼ x
ð0Þ

m þ
1

A0

x
ð1Þ

m þ
1

A2
0

x
ð2Þ

m þ ::: ð20Þ

Consider now the expressions for Rf and Bf as given in Eq (5); after using the expansions

given by Eq (20), we find the following asymptotic forms in the large A0 limit:

Rf �
1

A0

Rð1Þf þ
1

A2
0

Rð2Þf þ :::

Bf �
1

A0

Bð1Þf þ
1

A2
0

Bð2Þf þ :::
ð21Þ

where

Rð1Þf ¼
R0Krð‘þ 1Þ

x
ð0Þ

0
þ ‘ð1 � x

ð0Þ

2
Þ

Rð2Þf ¼ �
R0Krð‘þ 1Þ½Krð‘þ 1Þ þ x

ð1Þ

0
� ‘x

ð1Þ

2
�

½x
ð0Þ

0
þ ‘ð1 � x

ð0Þ

2
Þ�

2

Bð1Þf ¼
B0Kbð‘þ 1Þ

1 � x
ð0Þ

0
þ ‘x

ð0Þ

2

Bð2Þf ¼ �
B0Kbð‘þ 1Þ½Kbð‘þ 1Þ � x

ð1Þ

0
þ ‘x

ð1Þ

2
�

½1 � x
ð0Þ

0
þ ‘x

ð0Þ

2
�
2

:

ð22Þ

The ratio Rf/Bf, upto Oð1=A0Þ, is given by

Rf
Bf
¼

Rð1Þf
Bð1Þf

1þ
1

A0

Rð2Þf
Rð1Þf
�
Bð2Þf
Bð1Þf

 !

þ :::

" #

ð23Þ

Substituting Eq (23) in Eq (19), we find

x
ð0Þ

0
¼ 1þ

Rð1Þf
Bð1Þf

Kbnr
Krnb

Rð1Þf
Bð1Þf

Kbnr
Krnb

‘þ ð‘þ 1Þ

" #" #� 1

x
ð0Þ

2
¼ 1þ

Bð1Þf
Rð1Þf

Krnb
Kbnr

Bð1Þf
Rð1Þf

Krnb
Kbnr

1

‘
þ
‘þ 1

‘

" #" #� 1
ð24Þ

which give the leading terms in the expansions in Eq (20), and are valid for arbitrary ℓ. In

order to take the analysis further, we study the limits ℓ! 0 and ℓ!1 separately.

1.4.1 Small ℓ expansion. Consider now the limit of small ligand concentrations, ℓ� 1.

We assume that, in this case, the zeroth order terms x
ð0Þ

m in Eq (24) can be expanded as

x
ð0Þ

m ¼ x
00

m þ ‘x
01

m þ ‘
2
x

02

m þ ::: ð25Þ

From Eq (22), we have

Rð1Þf
Bð1Þf
¼
R0Kr
B0Kb

1 � x
ð0Þ

0
þ ‘x

ð0Þ

2

x
ð0Þ

0
þ ‘ð1 � x

ð0Þ

2
Þ

" #

ð26Þ
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Substituting the small ℓ expansions of x
ð0Þ

m as given in Eq (25), we obtain

Rð1Þf
Bð1Þf

�
�
�
�
‘¼0

¼
R0Kr
B0Kb

1 � x
00

0

x
00

0

" #

ð27Þ

Substituting Eq (27) in Eq (24) leads to the equations

x
00

0
ðx

00

0
� 1Þð1 � aÞ ¼ 0 ; x

00

2
¼ 0: ð28Þ

where

a ¼
R0nr
B0nb

ð29Þ

is the control parameter that characterizes ZOU. The implications are (a) the population in the

highest methylation state is vanishingly small in the limits ℓ! 0 and A0!1 (b) x
00

0
¼ 0 or 1

unless α = 1: this points to a jump-like behavior for ξ0 (and therefore, ξ1, considering that

x
00

0
þ x

00

1
¼ 1) in these limits. The ‘critical point’ αc = 1 is the same as what was derived in the

seminal paper of Goldbeter and Koshland [1], and referred to as the GK point in our earlier

paper [2].

1.4.2 Large ℓ expansion. We next consider a large ℓ expansion of the zeroth order term

x
ð0Þ

m of large A0 expansion in the following form

x
ð0Þ

m ¼ x
00

m
þ

1

‘
x

01

m
þ

1

‘
2

x
02

m
þ ::: ð30Þ

Substituting these in Eq (26), we obtain

Rð1Þf
Bð1Þf

�
�
�
�
‘!1

¼
R0Kr
B0Kb

x
00

2

1 � x
00

2

" #

ð31Þ

Therefore, after substitution of Eq (31) in Eq (24), we find

x
00

0
¼ 0 ; x

00

2
ðx

00

2
� 1Þða � 1Þ ¼ 0 ð32Þ

which mirror Eq (28) derived in the opposite, ℓ! 0 limit. In the present case, it is ξ2 that dis-

plays the jump transition from 1 to 0 as α crosses 1 (and ξ1 does the reverse), while ξ0 is vanish-

ingly small at all α. These analytical results, given in Eqs (28) and (32) are supported by

numerical simulations, to be discussed in the following section.

2 Stochastic gillespie simulations

ForM = 2, we simulated the reaction scheme given in Fig 1 using Gillespie algorithm [23]. The

specific numerical values for various parameters correspond to the methylation–demethyla-

tion reactions of chemotaxis receptors in the bacterium E. coli, previously used by various

authors [2, 15]. Initially, we choose all the receptors to be in inactive, unbound configuration

at the lowest methylation/inactive level (m = 0). The system then evolves with the preassigned

parameters (refer to Table 1) and eventually reaches its steady state where the mean receptor

number in each methylation level becomes time-independent. BL model withM = 2 comprises

of 8 conformational states and the total number of possible biochemical reactions is 9 (5

reversible and 4 irreversible reactions).

Similarly forM = 3, there are 12 configuration states and 14 biochemical reactions while for

M = 4, these numbers become 16 and 19 respectively. Once it is ensured that the system has
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reached its steady state, we study the average and variance of the active receptor fraction ξa by

varying R0, N, L and finallyM, while B0 was kept constant throughout. The fractions of recep-

tors in different methylation levels were also kept track of.

2.1 Simulation results for M = 2

For fixed A0, the mean active fraction of receptors ξa undergoes a sharp rise as R0 is increased,

as shown in Fig 2. ξa is independent of ℓ, as is clear from the figure, and agrees with the analyti-

cal prediction (fixed point). The inset shows the variance in activity, which depends on ℓ in a

non-monotonic manner (see Fig 3). In all cases, the maximum of the variance occurs close to

the point of the steepest rise in the mean. Note also that for A0 = 5.3μM (Fig 2a), the rise is less

steeper compared to A0 = 13.6μM (Fig 2b); for same ℓ, the variance is more in (a), but has a

sharper peak in (b). For fixed ℓ, and changing A0, the mean shows the expected ultrasensitive

rise as function of R0 (Fig 4). For the set of parameters used here in Table 1, the critical value

for R0 corresponding to α = 1 Eq (29) is Rc
0
¼ 0:224mM, which agrees with our observations in

Fig 4. The variance (Fig 4 inset) develops a sharper peak for larger A0. However, note that,

unlike our earlier observations [2] in the GK model (M = 1) with only fully inactive and fully

active states, the peak value of the variance here does not seem to increase with A0.

Why would s2
a show a non-monotonic variation with ℓ? To find out, we studied the mathe-

matical expressions for the individual variances σ00, σ22 and the covariance σ02 as functions of

R0 and ℓ, at fixed A0. The plots, shown in Fig 5, indicate that the non-monotonicity originates

from the covariance σ02 between the fully inactive and fully active methylation levels. Both σ00

(Fig 5a) and σ22 (Fig 5b) have their peaks near Rc; but while the peak value of σ00 is a decreasing

function of ℓ, that of σ22 is an increasing function of ℓ. σ02 (Fig 5c and 5d) is negative through-

out and has its minimum near Rc; however, in (c) the lowest value changes non-monotonically

with ℓ. From Eq (17), it is seen that s2
a is dominated by σ00 for small ℓ, while the large ℓ behav-

ior is dominated by σ22. In the intermediate ℓ regime, σ02 also contributes significantly, and

therefore the non-monotonic variation of its minimum value with ℓ affects the peak value of

s2
a, which appears to be minimized near ℓ = 2.

Next, we try to understand how the receptors distribute themselves among different meth-

ylation levels and the roles of ℓ and A0 in this distribution. For fixed A0 and very small ℓ, the

fraction of receptors in the lowest methylation level (always inactive) state shows an ultrasensi-

tive transition from near-unity to near-zero across Rc. With increase in ℓ, the transition

becomes less sharper/smoother leading to ξ0 being almost zero in the entire range of R0 for

Table 1. A list of values of the various parameters used in numerical simulations. (previously used in [2]

and [15]). The experimental values for the concentration of CheR in E. coli can be found in Table 2 in Appendix

3 but in our simulations, we have varied it in the range 10−2 − 10μM for the sake of exploring ZOU. For the

same reason, A0 is also varied in the range 5.3 − 27.2μM.

Symbol Quantity Estimated value

V Cell Volume 10−15 L (602.3μM−1)

B0 CheB concentration 0.28 μM

Kr CheR dissociation constant 0.39 μM

Kb CheB dissociation constant 0.54 μM

KL Ligand binding constant 0.1 μM

νr Methylation rate 0.75 s−1

νb Demethylation rate 0.6 s−1

https://doi.org/10.1371/journal.pone.0175309.t001
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very large ℓ, as given in Fig 6a. On the other hand, the fraction in the highest methylation level

(always active) state is almost zero for very small ℓ and then increases in the upper-critical

regime with increase in ℓ, finally leading to an ultrasensitive switch from near-zero to near-

unity for very large ℓ Fig 6b. But the fraction in the intermediate methylation level exhibits

switch-like behaviors of opposite nature at very low and high ℓ values; while for intermediate ℓ,
it shows non-monotonic change with R0 with a peak near Rc Fig 6c and 6d. With increase in

A0, the transitions in �x0, �x1 and �x2 become sharper (Fig 7), and agrees with the predictions

Fig 2. The mean total active fraction xa versus R0 is independent of ℓ; a manifestation of perfect adaptation as predicted by

BL model. The figures show the results for two values of A0, 5.3μM (a) and 13.6μM (b). In both the figures, the insets show the

corresponding variances. Note that the maximum of the variance occurs at the same R0 for various ℓ.

https://doi.org/10.1371/journal.pone.0175309.g002

Fig 3. The maximum variance, as determined from simulation data, is plotted against ℓ for three

different A0. Interestingly, the maximum is a non-monotonic function of ℓ, and appears to have a minimum

around ℓ = 2.

https://doi.org/10.1371/journal.pone.0175309.g003
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made in Eqs (28) and (32). Therefore, in the ℓ! 0 as well as ℓ!1 regimes, the system effec-

tively separates into two different GK-like two-state modules, with the population mostly

shared betweenm = 0 andm = 1 states in the first case, and betweenm = 1 andm = 2 in the

second case.

2.2 Simulation results for M > 2

Numerical simulations for models with more intermediate methylation levels, namelyM = 3

andM = 4 were also carried out for a limited range of values of ℓ and A0. Fig 8 shows a compar-

ison of the mean and variance in active fraction between models withM = 2, 3 and 4, for ℓ = 20

and A0 = 13.6μM. For largerM, the mean shows sharper rise near R0 = Rc, but the peak value

of the variance forM = 4 is only about a third of the corresponding number forM = 2. In gen-

eral, models with larger number of intermediate states has smaller fluctuations in activity, pre-

sumably due to the dominant role of inter-state covariances.

Next, we investigated whether the reduction to two independent two-state models which

was found forM = 2 works well for higherM as well. In Fig 9a–9d, we show, forM = 3, the

four mean populations �x0;
�x1;

�x2 and �x3 respectively for a limited range of ℓ and two different

values of A0. Similar to our observations inM = 2 model, we see that the system effectively

reduces to two different 2-state (M = 1) models. For low ℓ (e.g. ℓ = 20), most of the receptors

are inm = 0 orm = 3 states; in fact, �x0 and �x3 show near-ultrasensitive fall and rise respectively

across Rc. For high ℓ (e.g. ℓ = 20,000), while both �x0 and �x1 become smaller as A0 is increased,

�x2 and �x3 become dominant; now, �x2 falls abruptly as R0 crosses Rc, while �x3 rises in a similar

Fig 4. The mean active fraction of receptors xa plotted against R0 for three different A0 and fixed ℓ =

20. Inset: The corresponding variances.

https://doi.org/10.1371/journal.pone.0175309.g004
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way. Therefore, forM = 3 as well, we observe that the system splits into two different GK mod-

ules in the limits ℓ! 0 and ℓ!1.

The recent work by Pontius et al. [12] also studied mean and fluctuations in receptor activ-

ity in E. coli by varying the enzyme ratio [CheR]/[CheB]. While their model includes more fea-

tures of chemotaxis receptors like clustering, allosteric interactions and enzyme brachiation, it

also suffers from a few drawbacks, in our opinion. (a) In their analytical studies, the total meth-

ylation level in a cell is treated as the fundamental stochastic variable, whose dynamics is

described by a phenomenological Langevin equation obtained by invoking the LNA; by con-

trast, our model has the receptor populations in various methylation levels as the basic vari-

ables, whose joint probability distribution follows a multivariate LFPE. (b) No direct

quantitative comparisons between model predictions and stochastic simulations were done in

their paper, while our model predictions are shown to agree well with simulations. (c)

Fig 5. The theoretical plots show the variances σ00(a), σ22(b) and the covariance σ02(c and d). For fixed A0, near the critical point,

σ00 is a decreasing function of ℓ, while σ22 is an increasing function of the same. By contrast, the covariance σ02 (c) displays non-

monotonic change with ℓ near the critical point, with a minimum reached near ℓ = 2 (compare with Fig 3). But σ02 (d) varies monotonically

with A0 for fixed ℓ.

https://doi.org/10.1371/journal.pone.0175309.g005
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Attractant concentration was not included as a parameter in their model, while it is explicitly

included in ours, and its effect on the ZOU transition has been explored in detail.

2.3 Change in mean kinase activity in response to a change in attractant

concentration

Bacteria perform chemotaxis by responding to time-dependent changes in attractant/repellent

concentration in its immediate environment. In this section, we explore the response charac-

teristics of our 3-state model to a time-dependent change in attractant concentration, within

linear response theory, applicable to weak perturbations. Let us consider a situation when a

time-dependent change δL(t) in the external ligand concentration is switched on in the extra-

cellular environment of the bacterium at t = 0, such that L(t)!L + δL(t) for t� 0, while L(t) =

L for t< 0. Because ligand binding renders a receptor in the intermediate methylation level

inactive, there is a change in the mean net activity at later times, which may be expressed in

Fig 6. The average fractions of receptors in different methylation levels (a) x0 (b) x2 (c) x1 at low ligand concentrations, and (d)

x1 at high ligand concentrations, as a function of an internal enzyme concentration (R0), for fixed substrate concentration A0 =

13.6μM.

https://doi.org/10.1371/journal.pone.0175309.g006

Ultrasensitivity and fluctuations in Barkai-Leibler model

PLOS ONE | https://doi.org/10.1371/journal.pone.0175309 April 13, 2017 14 / 29

https://doi.org/10.1371/journal.pone.0175309.g006
https://doi.org/10.1371/journal.pone.0175309


Fig 7. A comparison of theoretical and simulation results for the mean fractions of receptors in three

states, viz., x0, x1 and x2 plotted against R0, for various substrate concentrations A0, for two different

values of ℓ (indicated in the figures).

https://doi.org/10.1371/journal.pone.0175309.g007
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the general form

d �xaðtÞ ¼
Z t

0

dt0waðt � t
0ÞdLðt0Þ ð33Þ

where χa(t) is the response function for mean receptor activity, which can be computed by sub-

mitting the system to a (small) step-like change in ligand concentration; δL(t) = δLsΘ(t) where

Θ(t) is the Heaviside theta-function and δLs is the size of the step. Let d �xa
ðstepÞðtÞ be the corre-

sponding response. From Eq (33), it follows that

waðtÞ ¼
1

dLs

d
dt

d�xðstepÞ
a ðtÞ ð34Þ

From Eq (17), we find

d�xaðtÞ ¼ �
KL

Lþ KL
d�x0ðtÞ þ

L
Lþ KL

d�x2ðtÞ �
KL

ðLþ KLÞ
2
ð1 � x

�

0
� x

�

2
ÞdLðtÞ; ð35Þ

where d�x0ðtÞ and d�x2ðtÞ are the changes in �x0 and �x2, respectively, in response to a change δL
(t) in the ligand concentration, and are evaluated using Eq (6). The resulting equations have

the form

d
dt

d�xm ¼
X

n¼0;2

bmnd
�xnðtÞ þ gmdLðtÞ m ¼ 0; 2 ð36Þ

Fig 8. The mean active fractions of receptors in BL models with M = 2, 3, 4 in simulations, with

substrate concentration fixed at A0 = 13.6μM. The attractant concentration is ℓ = 20. The inset displays the

corresponding variances. The numerical results establish that the qualitative behavior of the BL model, in

particular, the ZOU transition, remains unchanged in presence of additional intermediate methylation levels.

https://doi.org/10.1371/journal.pone.0175309.g008
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where the coefficients βmn have been defined earlier, following Eq (10), while γm = @vm/@L|ξ�.

Explicit expressions for both βmn and γm are given in Appendix 2.

It is convenient to subject Eqs (35) and (36) to Laplace transforms, after putting δL(t) =

δLsΘ(t), and use Eq (34) to compute the response function. For the Laplace transform of χa(t),
we find

~waðsÞ ¼ �
KL

Lþ KL
~w

0
ðsÞ þ

L
Lþ KL

~w
2
ðsÞ �

KL
ðLþ KLÞ

2
ð1 � x

�

0
� x

�

2
Þ ð37Þ

where ~wmðsÞ are Laplace transforms of χm(t) (m = 0, 2) which are defined through the relations

d�xmðtÞ ¼
R t

0
wmðt � t0ÞdLðt0Þdt0. The explicit expressions turn out to be

~w
0
ðsÞ ¼ ½ðs � b22Þg0 þ b02g2�=d

~w
2
ðsÞ ¼ ½b20g0 þ ðs � b00Þg2�=d;

ð38Þ

where d = (s − β00)(s − β22) − β02 β20. We have confirmed that the response function curve

computed in Eq (37) encloses zero area, i.e., ~wað0Þ ¼ 0, which is a manifestation of the perfect

adaptation (regaining the pre-stimulus state within few seconds) property of the bacterium,

Fig 9. Simulation results for the mean fractions of receptors in methylation states (a) m = 0 (b) m = 1 (c) m = 2 and (d) m = 3 in

M = 3 model, for two different substrate concentrations A0 = 5.3μM and 13.6μM, and a few different values of ℓ.

https://doi.org/10.1371/journal.pone.0175309.g009

Ultrasensitivity and fluctuations in Barkai-Leibler model

PLOS ONE | https://doi.org/10.1371/journal.pone.0175309 April 13, 2017 17 / 29

https://doi.org/10.1371/journal.pone.0175309.g009
https://doi.org/10.1371/journal.pone.0175309


reproduced in the BL model (in our notation, this property implies lack of dependence of �xa
on ℓ in steady state, recall Fig 2). In Appendix 3, we use the results in Eqs (37) and (38) to

derive the chemotactic response function, which determines the fractional change in clockwise

bias of the flagellar motor in response to temporal variations in attractant concentration, and

consequently the chemotactic drift.

Discussion

The subject of the present study is the BL model of conformational dynamics of chemotaxis

receptors in Escherichia coli. According to this model, a receptor undergoes stochastic switch-

ing between its active and inactive states, depending on its level of methylation and liganda-

tion. The methylation and demethylation of receptors is carried out by two enzymes, viz.

methyltransferase CheR and methylesterase CheB, acting antagonistically; the overall structure

of the circuit is similar to the two-state (e.g. active/inactive) covalent modification scheme

studied originally by GK [1]. This system is characterized by ZOU, a switch-like transition

between all-inactive to all-active phases, in the limit of infinitely large substrate concentration.

In the present paper, we investigated ZOU in the BL model within a stochastic formulation

where the number N of receptors is treated finite. For analytical tractability, we first study a

model with a single intermediate partially active state sandwiched between the fully inactive

and fully active states. We show rigorously that the mean activity shows ultrasensitive response

to increase in [CheR] (at fixed [CheB]) in the limit N!1, independent of the attractant con-

centration L. At the same time, its variance s2
a is a non-monotonic function of [CheR] and L,

as deduced from linear-noise approximation (LNA) and confirmed in numerical simulations.

Interestingly, for very low and very high L, the system effectively reduces to two different

“two-state” modules, akin to GK switches. The analysis is extended to models with more inter-

mediate methylation levels (E. coli receptor has 3) via numerical simulations. By and large,

qualitatively similar behavior is found in all the cases. For E. coli parameters, we find that

σa’ 10−2 in the vicinity of the critical point of ZOU, for a large range of L, spanning almost

8 orders of magnitude. This estimate agrees with another recent computational study where

explicit receptor clustering was included, and receptor activation-inactivation dynamics was

stimulated using an equilibrium MWC model [12]. In Appendix 3, we show that this is also

consistent with experimental measurements of [CheYp] fluctuations.

Biochemical noise is likely to be a crucial factor in the motility of E. coli for the following

reason. The transition from run to tumble mode of a flagellar motor in E. coli is brought about

by a switch in its direction of rotation, from counter-clockwise (CCW) to clockwise (CW).

The latter switching is known to occur in an ultrasensitive fashion as a function of [CheYp],

the concentration of phosphorylated CheY, which is the response regulator cytoplasmic pro-

tein (the phosphorylation being done by active receptors). The ultrasensitive response of flagel-

lar motor for the CW bias with the variation in the concentration of CheYp, was first reported

by Cluzel et al. [17] by performing in vivo experiments in single cells in absence of stimulant

(attractant/repellent). The authors observed cell to cell variability in the amount of CheYp

which was distributed around a mean value (ranging from 0.8 to 6μM) even for a given con-

centration of the inducer isopropyl β-D-thiogalactoside, in short IPTG (used to express

CHEY-GFP in PS2001 E. coli strain). CW bias in various cells, pre-induced with different

inducer levels, collapsed onto a single sigmoid curve when plotted against CheYp. The mea-

sured CW bias in the range 0.1 to 0.9 could be fitted to a Hill plot with Hill coefficient

H* 10.3 ± 1.1, with the sensitive part being less than 3μM in width. The ability of the cell to

execute runs and tumbles in succession depends on placing the intracellular [CheYp] some-

what precisely in this window.
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Cluzel et al. proposed that an additional molecular mechanism such as CheZ acting as the

[CheYp] regulator can help in retaining the concentration of the latter in the narrow sensitive

window of operation. Later, Yuan et al. [24] found from their experiments with cheRcheB cells

that the flagellar motor can partially adapt to changes in [CheYp] over a time scale of several

minutes, and thereby laterally shift its operating range by about 0.5μM. Any likelihood of par-

tial adaptation due to dynamic localization of CheZ (suggested by Lipkow [25]) was ruled out

by working with cheRcheBcheZ cells and explicitly showing similar results in both the cases. In

2013, Yuan and Berg [16] carried out a new set of experiments with pre-adapted motors,

which showed that the response curve in this case is much steeper, compared to adapted

motors (as in [17]) with Hill coefficients *16.5±1.1 and 20.7±1.6 for CW biases of 0.8±0.1 and

0.5±0.1 respectively. Because of the higher Hill coefficient, the sensitive window of [CheYp] is

reduced to about 1μM in this case, with center around 3μM.

What is the impact of receptor-level noise on the clockwise bias of a single cell? It is clear

that spontaneous fluctuations in receptor activity will produce corresponding changes in

[CheYp], which would, in turn, affect the CW bias of the motor(s). In Appendix 4 we estimate

that the maximum standard deviation in clockwise bias (arising from spontaneous fluctuations

in [CheYp]) δPCW lies in the range 0.15-0.36 for Hill coefficient H = 20 [16], with the lower

value corresponding to mean CW bias * 0.5 and the upper value for mean CW bias * 0.1. It

therefore appears that intrinsic noise could rescue a cell with mean [CheYp] outside the opti-

mal range from being forced to “run forever” without tumbling. The motor-level adaptation

modifies these estimates a little, but our detailed analysis presented in Appendix 5 shows that

this effect is negligible when [CheYp] lies in the range 2.5μM − 4μM, which more than covers

the sensitive window. Outside this range, motor-level adaptation increases the standard devia-

tion in CW bias, (see Appendix 5). We conclude, therefore, that intrinsic noise plays an impor-

tant role in the run and tumble behavior of E. coli, and by extension, in chemotactic drift as

well. A detailed analysis of the latter is presently being carried out and will be reported in the

near future.

Being a study focused primarily on exploring the occurrence of ZOU in the BL model, we

have not included all the features of signal transduction in E. coli here, even at the level of

receptor dynamics. In particular, clustering of receptors and allosteric interactions among

them have not been included here, but have been studied recently by other authors [12, 26,

27]. In [12], the authors show via numerical simulations that receptor clustering and enzyme

localization make the mean activity a less sensitive function of [CheR], and thus makes the net-

work robust to variations in protein numbers. At the same time, enzyme localization also leads

to larger fluctuations in activity, with almost 10-fold increase in variance. Intrinsic biochemical

noise arising from spontaneous fluctuations in receptor activity has been shown to be impor-

tant in explaining the kinetics of flagellar motor-switching [28, 29]. Using a set of parameters

extracted from the literature, we show in Appendix 3 that the variance in activity measured in

our simulations (as well as predicted using LNA) appear to be sufficiently large in magnitude

to generate the [CheYp] fluctuations observed in experiments [28]. It is therefore likely that

receptor clustering and enzyme localization may not be necessary to enhance the noise levels,

although it could be important in other aspects of signaling, e.g. signal amplification.

Appendix 1 Intra and inter-module dynamics in the 3-state receptor-level

biochemical reactions

To evaluate the number of receptors in each of the configurations, we employ sQSSA. The

essence of sQSSA lies in the assumption that all the modules are weakly coupled (νr and νb
assumed to be very small compared to other rates involved in the system) and hence detailed
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balance exists within each module. Under this condition, the mean numbers of intermediate

complexes can be expressed in terms of their unbound counterparts as

~x0 ¼
Rf
Kr
x0 ; ~xi

1
¼
Rf
Kr
xi

1
; ~xa

1
¼
Bf
Kb
xa

1
; ~x2 ¼

Bf
Kb
x2 ; xi

1
¼
L
KL
xa

1
: ð39Þ

where Rf and Bf are the mean concentrations of free/unbound R and B enzymes respectively.

After using the module-wise normalization conditions x0 þ ~x0 ¼ x0, xi
1
þ ~xi

1
¼ x

i
1
, xa

1
þ ~xa

1
¼

x
a
1

and x2 þ ~x2 ¼ x2, we find

~x0ðξÞ ¼
Rf

Rf þ Kr
x0

~xi
1
ðξÞ ¼

Rf
Rf þ Kr

x
i
1

~xa
1
ðξÞ ¼

Bf
Bf þ Kb

x
a
1

~x2ðξÞ ¼
Bf

Bf þ Kb
x2

x
i
1
¼

L
KL

x
a
1
:

ð40Þ

In the last equation, we have used the assumption of infinitely fast ligand binding and disso-

ciation kinetics. Inter-module equilibrium is expressed through the following flux-balance

relations which determine the fixed point ξ�:

nr~x0ðξ
�
Þ � nb~xa1ðξ

�
Þ ¼ 0 ¼ nr~xi1ðξ

�
Þ � nb~x2ðξ

�
Þ: ð41Þ

The free enzyme concentrations Rf and Bf are determined by the normalization conditions

Rf ðξÞ þ A0½ ~x0 þ ~xi
1
� ¼ R0

Bf ðξÞ þ A0½ ~x2 þ ~xa
1
� ¼ B0

ð42Þ

Using Eq (40) in Eq (42) leads to Eq (5).

Perfect adaptation (insensitivity of average activity to L). Although the fixed point ξ�

depends on L, the mean total active fraction does not; this can be easily shown as follows. The

Eq (41) for intermodule dynamics, after summing the left hand side give

nrð~x0 þ ~xi
1
Þ ¼ nbð~xa1 þ ~x2Þ ð43Þ

After substituting the equations for intra-module dynamics Eq (40) (in the limit Rf� Kr, Bf
� Kb) and the expression for ξa in terms of ξm Eq (17) in Eq (43), the following quadratic

equation for x
�

a, independent of L, is obtained:

x
�2

a ðnbB0 � nrR0Þ þ x
�

a½nrR0ðA0 � KbÞ � nbB0ðKr þ A0Þ� þ nrR0A0Kb ¼ 0: ð44Þ

Ultrasensitivity and fluctuations in Barkai-Leibler model

PLOS ONE | https://doi.org/10.1371/journal.pone.0175309 April 13, 2017 20 / 29

https://doi.org/10.1371/journal.pone.0175309


The solution to the above equation is

x
�

a ¼
nbB0ðA0 þ KrÞ � nrR0ðA0 � KbÞ

2ðnbB0 � nrR0Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½nbB0ðA0 þ KrÞ � nrR0ðA0 � KbÞ�
2
� 4nrR0A0KbðnbB0 � nrR0Þ

q

2ðnbB0 � nrR0Þ

ð45Þ

Appendix 2 Evaluation of various parameters

The expressions of βmn can be obtained by differentiating Eq (3). Note that the expressions for

vm contain Rf and Bf which are in turn functions of ξm. Therefore,

bmn ¼
@vm
@xn
þ
@vm
@Rf

@Rf
@xn
þ
@vm
@Bf

@Bf
@xn

 !

ξ�

; ð46Þ

where

@v0

@x0

¼ �
nbBf
Kb

KL
Lþ KL

þ
nrRf
Kr

� �

@v0

@x2

¼ �
nbBf
Kb

KL
Lþ KL

@v2

@x0

¼ �
nrRf
Kr

L
Lþ KL

@v2

@x2

¼ �
nrRf
Kr

L
Lþ KL

þ
nbBf
Kb

� �

ð47Þ

@v0

@Rf
¼ �

nr
Kr

x0

@v0

@Bf
¼

nb
Kb

KL
Lþ KL

ð1 � x0 � x2Þ

@v2

@Rf
¼

nr
Kr

L
Lþ KL

ð1 � x0 � x2Þ

@v2

@Bf
¼ �

nb
Kb

x
�

2

ð48Þ

@Rf
@x0

¼ �
R0KrðLþ KLÞA0KL

½KrðLþ KLÞ þ A0ðKLx0 þ Lð1 � x2ÞÞ�
2

@Rf
@x2

¼
R0KrðLþ KLÞA0L

½KrðLþ KLÞ þ A0ðKLx0 þ Lð1 � x2ÞÞ�
2

@Bf
@x0

¼
B0KbðLþ KLÞA0KL

½KbðLþ KLÞ þ A0ðKLð1 � x0Þ þ Lx2Þ�
2

@Bf
@x2

¼ �
B0KbðLþ KLÞA0L

½KbðLþ KLÞ þ A0ðKLð1 � x0Þ þ Lx2Þ�
2

ð49Þ

To evaluate the linear response function, we have to consider the derivative γm, the explicit
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expression of which is

gm ¼
@vm
@L
þ
@vm
@Rf

@Rf
@L
þ
@vm
@Bf

@Bf
@L

 !

ξ�

: ð50Þ

The relevant quantities involving derivatives with respect to L are listed below:

@v0

@L
¼ �

nbBf
Kb

KL
ðLþ KLÞ

2
ð1 � x0 � x2Þ

@v2

@L
¼

nrRf
Kr

KL
ðLþ KLÞ

2
ð1 � x0 � x2Þ

ð51Þ

@Rf
@L

¼ �
R0KrA0KLð1 � x0 � x2Þ

½KrðLþ KLÞ þ A0ðKLx0 þ Lð1 � x2ÞÞ�
2

@Bf
@L

¼
B0KbA0KLð1 � x0 � x2Þ

½KbðLþ KLÞ þ A0ðKLð1 � x0Þ þ Lx2Þ�
2

ð52Þ

In the computation of the coefficients βmn and γm, all the above mentioned quantities are to be

evaluated at the fixed point (ξ�, Rf(ξ�), Bf(ξ�) and it has been assumed that Rf� Kr and Bf� Kb.

Appendix 3 Chemotactic response function

In E. coli, the receptor complex acts as the processing unit for any input signal (e.g. changes in

the extracellular environment of the bacterium) while the flagellar motor, which controls the

switching kinetics of the flagella, regulate the output (run/tumble motion). While the CCW

mode of rotation of flagella corresponds to straight motion of the bacterium, the CW mode

corresponds to tumbles. These two key constituents of the signaling network are connected by

the response regulator CheY. Attractant binding to the receptors results in suppression of the

activity of the latter, hence leads to less phosphorylation of CheY. Phosphorylated CheY

(CheYp) binds to flagellar motors and enhances the rate of CCW!CW switching, hence a

temporal increase in attractant concentration as sensed by the bacterium would result in elon-

gated run durations when swimming in favorable directions. The dynamics of phosphorylated

CheY may be described by the equation

dYðtÞ
dt
¼ aY ½Y0 � YðtÞ�A0xaðtÞ � lYYðtÞ ð53Þ

where aY is rate for binding of (non-phosphorylated) CheY to an active receptor, which leads

to its phosphorylation, Y0 is the total concentration of CheY (henceforth assumed much larger

than Y(t)) and λY is the rate of degradation of CheYp (due to the dephosphatase CheZ). The

steady state mean concentration of CheYp can be obtained from Eq (53) by equating left hand

side to 0,

Y� ¼
aYY0A0

lY
x
�

a: ð54Þ

In response to a change in attractant concentration L! L + δL(t) for t� 0, the mean [CheYp]
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undergoes a shift Y� ! Y� + δY(t), with δY(t) given by

dYðtÞ ¼ aYY0A0

Z t

0

e� lY ðt� t0Þd �xaðt
0Þdt0: ð55Þ

The clockwise bias, i.e., the probability PCW for a flagellar motor to be in clockwise-spinning

state (corresponding to tumble) has been found in experiments to be an ultrasensitive function

of Y [13, 16, 17]:

PCWðYÞ �
YH

YH þ KH
Y

; ð56Þ

whereH is the Hill coefficient symbolizing the steepness of the transition. It follows that frac-

tional changes in the CW bias PCW and Y are related as

dPCWðtÞ
PCW

¼ Hð1 � PCWÞ
dYðtÞ
Y
¼

Z t

0

wbðt � t
0ÞdLðt0Þdt0; ð57Þ

where, in the second part, we have defined the response function χb(t) for the bias. Using Eqs

(55) and (54) in Eq (57), it follows that, in steady state, χb(t) is related to χa(t) through

wbðtÞ ¼
HlY
x
�

a

½1 � PCWðY
�Þ�

Z t

0

e� lY ðt� t0Þwaðt
0Þdt0 ð58Þ

From Eq (58), it follows that the Laplace transforms of χb(t) and χa(t) are related linearly:

~wbðsÞ / ~waðsÞ=ðsþ lYÞ, hence ~wbð0Þ ¼ 0, i.e., the response curve for the bias too encloses zero

area [9, 15]. After using Eqs (37) and (38) in Eq (58), and performing the inversion, we arrive

at the following multi-exponential form for χb(t):

wbðtÞ ¼
HlY
x
�

a

½1 � PCWðY
�Þ�

"

e� lY t �
KLX0

Lþ KL
þ

LX2

Lþ KL
�
KLð1 � x

�

0
� x

�

2
Þ

ðLþ KLÞ
2

 !

þe� At �
KLY0

Lþ KL
þ

LY2

Lþ KL

� �

þ e� Bt �
KLZ0

Lþ KL
þ

LZ2

Lþ KL

� �# ð59Þ

The rate constants A and B, as well as the coefficients Xm, Ym and Zm(m = 0, 2) are expressed

in terms of βmn and γm as follows:

A ¼ �
1

2
ðb00 þ b22Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb00 � b22Þ
2
� 4b02b20

q� �

B ¼ �
1

2
ðb00 þ b22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb00 � b22Þ
2
� 4b02b20

q� � ð60Þ

X0 ¼
� ðlY þ b22Þg0 þ b02g2

ðlY þ AÞðlY þ BÞ
; X2 ¼

b20g0 � ðlY þ b00Þg2

ðlY þ AÞðlY þ BÞ

Y0 ¼
ðA � b22Þg0 þ b02g2

ðlY þ AÞðA � BÞ
; Y2 ¼

b20g0 � ðA � b00Þg2

ðlY þ AÞðA � BÞ

Z0 ¼
ðB � b22Þg0 þ b02g2

ðlY þ BÞðB � AÞ
; Z2 ¼

b20g0 þ ðB � b00Þg2

ðlY þ BÞðB � AÞ

ð61Þ

In Fig 10, we show plots of the mathematical expression for χb(t) obtained in Eq (59), (a) by

varying B0 and (b) varying ℓ. The curves closely resemble the experimentally measured
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responses to short-lived stimuli [9, 30], for somewhat large values of B0, in agreement with ear-

lier results in a mean-field BL model [15]. In (a), with increase in B0, there is an overall reduc-

tion in time scales and an increase in the depth of the negative lobe. In (b), with increase in ℓ,
the depth of the negative lobe decreases with no change in the time scales. For ℓ� 1, the nega-

tive lobe effectively disappears.

Appendix 4 On the role of biochemical noise in the run and tumble

motion of E. coli

From Eq (56), it follows that a fluctuation in [CheYp] equal to its standard deviation in magni-

tude would cause the following change in PCW:

dPCW ¼
H
KY

�yðH� 1Þ

ð1þ �yHÞ2
sY ð62Þ

where y = Y/KY and �y is its mean value in steady state. The function �yH� 1=ð1þ �yHÞ2 has a sin-

gle maximum (and no minimum) at �y ¼ ½ðH � 1Þ=ðH þ 1Þ�
1=H
� ~y, with maximum value 1/4

forH� 1. Using this property in Eq (62) leads to the following upper bound on δPCW:

dPCW �
H

4KY
sY ð63Þ

The standard deviation σY has been measured in experiments, and the range of variation

has been estimated [28] as

0:09 < sY < 0:22; ð64Þ

with the actual value depending on the mean clockwise bias, �PCW. The dissociation constant

KY’ 3μM and the Hill coefficient H’ 20 (for pre-adapted motors) have also been measured

in single cell experiments [16]. Using this estimate in Eq (63), we find δPCW� 0.15 − 0.367

Fig 10. The bilobed chemotactic response function χb(t) Eq (59) as a function of time obtained for various values of (a)

methylesterase CheB (B0) and (b) ligand (ℓ = L/KL) concentrations. In (a), we have fixed ℓ = 0.2. All other (fixed) parameters take

the values mentioned in Table 1. We have also used λY = 30s−1 [14, 15, 31], H = 20 [16] and PCW(Y*) = 0.5.

https://doi.org/10.1371/journal.pone.0175309.g010
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(assuming �y � ~y). So there is a maximum fluctuation of 18% forH = 20 corresponding to a

CW bias of 0.5 and [CheYp] *3μM around which the transition becomes ultrasensitive.

Therefore, the fluctuations in [CheYp] appear sufficiently large to affect the switching behavior

of the motor.

Next, how large the fluctuations in activity need to be, to produce the observed standard

deviation in [CheYp]? The following simple picture helps us to obtain an estimate. In E. coli,
active receptors undergo autophosphorylation, and then transfer the phosphoryl groups to the

proteins CheB and CheY. For simplicity, we ignore phosphorylation of CheB and focus on

CheY. The dynamics of Y(t) is expressed in Eq (53). Under steady state conditions, the vari-

ance s2
Y ¼ hY

2i � hYi2 is given by the expression

s2
Y ¼

ðaYY0A0Þ
2

lYðlY þ lxÞ
s2

a ð65Þ

where, we have introduced the correlation length λξ for the fluctuations in ξa, defined through

the relation hdxaðtÞdxaðt0Þi ¼ s2
a exp ð� lxjt � t0jÞ in steady state, where dxaðtÞ ¼ xaðtÞ � �xa is

the fluctuation in activity relative to its steady state value. From Eq (65), the inequality

sY �
aYY0A0

lY
sa ð66Þ

follows, the equality being satisfied in the limit λξ� λY (which we shall assume henceforth).

Various estimates for the parameters in Eq (66) are available in the literature (see Table 2).

Using Eq (64), we identify the following ranges for the standard deviation σa of receptor

activity:

4:7� 10� 3 < sa < 10� 2 ðiÞ

3� 10� 4 < sa < 7:4� 10� 4 ðiiÞ

5:2� 10� 4 < sa < 10� 3 ðiiiÞ

ð67Þ

It is also of interest to compare the values of the ZOU parameter α across these sets of

parameters, which turn out to be 0.547 (i), 0.076 (ii) and 0.035 (iii) (Table 2). Note that the esti-

mated variance in (ii) and (iii) are smaller than (i), which is consistent with our expectation of

Table 2. A list of relevant parameter values collected from the literature.

Numerical values

Symbol Quantity Morton-Firth et al. [32] Rao et al. [31] Kollmann et al. [14]

aY CheY phosphorylation rate 3 μM−1 s−1 100 μM−1 s−1 100 μM−1 s−1

λY CheYp dephosphorylation rate 14.15 s−1 30.1 s−1 30.1 s−1

Y0 CheY concentration 18 μM 17.9 μM 9.7 μM

A0 CheA concentration 5 μM 5 μM 5.3 μM

R0 CheR concentration 0.235 μM 0.3 μM 0.16 μM

B0 CheB concentration 2.27 μM 2 μM 0.28 μM

νr Methylation rate 0.819 s−1 0.255 s−1 0.39 s−1

νb Demethylation rate 0.155 s−1 0.5 s−1 6.3 s−1

α Eq (29) ZOU parameter 0.547 0.076 0.035

https://doi.org/10.1371/journal.pone.0175309.t002
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maximum variance near α = 1, over a large range of values of ℓ. The magnitude of receptor

noise predicted by Eq (67) also agrees with our predictions (see Fig 3, also Fig 8).

Appendix 5 Effect of flagellar motor level adaptation on fluctuations in

clockwise bias

From the experimental data of Yuan and Berg (2013) [16], we propose that the change in

clockwise bias in response to a time-dependent change in [CheYp] (denoted δY(t) henceforth)

be written in the general linear form

dPCWðtÞ ¼
Z t

� 1

wmðt � t
0ÞdYðt0Þdt0 ð68Þ

where χm(τ) (defined for τ> 0) is the linear response function for the motor, which we assume

to consist of two terms:

wmðtÞ ¼ anadðtÞ þ Ge� lmt ð69Þ

where ana ¼ @YPna
CW, and Pna

CW is the bias of the non-adapted motor, as measured by Yuan and

Berg (2013), with Hill coefficient H� 20. The second term represents the slow change in the

bias originating from motor-level adaptation, with l
� 1

m being the time scale for the same. Now,

for a step-like change in Y such that Y! Y0 + ΔY at t = 0, let us put δY(t) = ΔYΘ(t); using this

in Eq (68) yields the response for the same:

dPstep
CWðtÞ ¼ DY

Z t

0

wmðtÞdt ð70Þ

As t!1, the system will adapt, and hence dPstep
CWðtÞ ! aaDY , where aa ¼ @YPa

CW, and Pa
CW is

the clockwise bias of the adapted motor. From Eq (69), it then follows that Γ = λ(αa − αna). Let

us now compute the effect on the CW bias of random fluctuations in Y, and define the root-

mean square change of bias by dPCW �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hdPCWðtÞi
2

q

, with the average to be carried out over

different realizations of the fluctuations in [CheYp]. From Eq (68), it turns out that

hdPCWðtÞi
2
¼

Z t

� 1

dt1

Z t

� 1

dt2wmðt � t1Þwmðt � t2ÞhdYðt1ÞdYðt2Þi; ð71Þ

where, in steady state, we expect hdYðt1ÞdYðt2Þi ¼ s2
Ye
� lY ðt1 � t2Þ for t1 > t2, s2

Y is the steady state

variance of Y as given by Eq (65) and λY is the dephosphorylation rate of [CheYp]. Using the

expression for χm(t) from Eq (69) and completing the calculations yields the final result

dPCW ¼ sYana

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
lm
lY

aa

ana
1 �

aa

ana

� �� �s

ð72Þ

The term outside the square root is precisely the result in Eq (62) in Appendix 3. Explicit evalu-

ation of the term in brackets (see Fig 11) shows, however, that the contribution of motor-level

adaptation to the fluctuations in bias is negligible in the sensitive part of the response curve.
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Fig 11. The term inside the square root in Eq (72) is plotted against Y. Note the flat region, nearly 1.5μM

in width, where the correction arising from motor-level adaptation is negligible. αa and αna have been

computed from Eq (56) with Ha = 10 [17] and Hna = 20 [16]. We have taken λm = 0.0167s−1 considering that

motor adaptation takes place over a minute [24] and λY = 30s−1 [14, 31].

https://doi.org/10.1371/journal.pone.0175309.g011
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