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Abstract. Recently, a thermodynamically consistent non-linear constitutive
equation has been developed to describe the large deformation cyclic response

of viscoelastic polyamides (see [17]). In this paper, two boundary value prob-

lems within the context of the above model, namely the stress relaxation of a
right circular annular cylinder subject to twisting, and the inflation of a sphere

are studied. In addition to solving the above problems numerically, investiga-

tion of the merits and pitfalls of studying the same boundary value problem
for a special class of inhomogeneous body and its homogenized counterpart

is undertaken. This study finds that for moderate strains the differences in

relaxation time between the actual inhomogeneous body and its homogenized
counterparts may be significant.

1. Introduction. Two particles are said to be materially uniform if, for some
placement of the two particles along with their neighborhoods, they exhibit in-
distinguishable mechanical response. If all the particles that constitute a given
body are materially uniform with respect to a single placement then the body is
said to be homogeneous (cf. [25]). A body that is not homogeneous is said to be
inhomogeneous. Examples of inhomogeneous bodies abound. In fact, all bodies
are inhomogeneous. Apart from naturally occurring bodies, modern manufactur-
ing also often produces bodies with predetermined inhomogeneities, for example,
composites.

For the ease in the analysis one assumes many inhomogeneous bodies to be ho-
mogeneous. It is expected that idealizing the body to be homogeneous would still
result in an accurate estimate of the boundary traction required to realize a partic-
ular displacement or vice versa and the possibility of failure of the body for a given
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loading condition. This homogeneous approximation seems to be reasonable under
some circumstances and not in some others. Hence, it is of interest to document
the similarities and differences in the solution obtained for the inhomogeneous body
and its equivalent homogeneous counterpart.

An analysis to check the reasonableness of the homogeneous approximation can
proceed in a multitude of directions. In this study, we are interested in determining
the appropriateness or otherwise of replacing the inhomogeneous composite by an
equivalent homogeneous body with regard to how the body responds to external
mechanical stimuli. Clearly, it is not expected that the stress and displacement
time histories at various points in the homogeneous and inhomogeneous body will
be the same. Hence, there is a need to define in what sense the response of the
inhomogeneous body is to be compared to that of the corresponding homogeneous
body. Appropriate use entails a clear understanding of the underlying assumptions.

In the micromechanics approach ([9]), it is required that the volume averaged
stress and strain over a given representative volume element (RVE) be the same for
the inhomogeneous body and its homogeneous approximation. The micromechanics
approach needs to be used with care. It is possible that the material properties of
the homogeneous approximation depend on the shape of the representative volume
element, implying an undesirable homogenization procedure. It is also possible
that the maximum stress in the real body is larger than the volume averaged stress,
thus making such a homogenization procedure unsuitable to study failure. Further,
material properties obtained might depend on the boundary conditions applied on
the RVE. These limitations have been understood within the context of linearized
elasticity and linearized viscoelastic models. While for large deformation elasticity
these issues are being studied [20, 24, 3], these issues within the context nonlinear
viscoelastic models are largely unexplored. This study aims at addressing some of
the questions that arise when homogenizing nonlinear viscoelastic bodies.

An alternative to micromechanics based homogenization is asymptotic homog-
enization. Asymptotic homogenization is used for studying heterogeneous bodies
with the length of the inhomogeneity being εL, where L denotes the length scale
of the body and ε a non-dimensional constant. In asymptotic homogenization the
solution to the relevant boundary value problem is sought as a function of ε. Then,
the effective parameters are obtained from the limiting case where the parameter ε
tends to zero. A detailed exposition on asymptotic homogenization procedure can
be found in [18] and further advances can be found in [11, 10]. The method has been
applied for homogenization of elastic ([12, 2]) and viscoelastic bodies ([26, 5, 1]).
However, as pointed out in [4, 3], while this is a reasonable methodology the exis-
tence and uniqueness of the homogeneous parameters is an issue.

There are a number of studies (see [13, 7, 6] and the references cited therein) that
find bounds on the material parameters in the homogeneous approximation. For the
bounds to be useful they should be tight. By solving a number of boundary value
problems Saravanan and Rajagopal [22, 19, 20, 21] have shown that such bounds
cannot be tight at least for some popular constitutive models within the context
of large elastic deformations. Whether such tight bounds exists for a particular
nonlinear viscoelastic solid is investigated here.

The global response of a general inhomogeneous body depends on the direction
of loading. Hence, even if the constituents of inhomogeneous body are isotropic,
global response of the homogenized counterpart could be anisotropic in that it can
have different responses along different directions.
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Hill [8] and Chung et al [5] have reported anisotropic constitutive relations for
inhomogeneous bodies made of isotropic constituents. Due to change in the mate-
rial symmetry of the constitutive relation, the relationship between the principal
direction of the stress and the left Cauchy–Green tensor is different. Quantifica-
tion of the actual differences in the stress distributions for constitutive relations of
varying material symmetry is required; this aspect is not investigated in this study.

Here, a systematic procedure to study twisting of an annular cylinder and infla-
tion of a sphere for rate type constitutive relations, developed using the framework
presented in [15], is outlined.

It is evident from the literature that the predictive capability of the homogeneous
approximation of a given inhomogeneous body using a constitutive relation of the
same form as that of the constituents of the inhomogeneous body is limited. In
fact, Suquet [23] found that the inhomogeneous body made up of a material whose
constitutive relation is given by the Maxwell viscoelastic model cannot be approx-
imated as a homogeneous body made of a Maxwell material, especially when the
relaxation times of the constituent materials are different. While Suquet [23] used
a viscoelastic fluid like model, here a viscoelastic solid model that describes the
response of polyamide 6 is used to study whether the constitutive relation for the
homogeneous approximation can be of the same form as that of the constituents
of the inhomogeneous body. A thermodynamically consistent nonlinear viscoelastic
solid constitutive relation reported in [17] is used in this study. A parameter in
the model developed in [17] which is related to the relaxation time is assumed to
have a continuous spatial variation in case of the inhomogeneous body and to be a
constant for its equivalent homogeneous approximation.

It is found that all the boundary loads required to be applied on various surfaces
of the body to engender a given boundary displacement in the actual inhomogeneous
body and its homogeneous approximation cannot be predicted equally well when
the form of the constitutive relation for the homogeneous approximation is same
as that of the constituents of the inhomogeneous body. Further, it is found that
even if the mean of the spatial variation of the material parameter is the same, its
value obtained from correlating the boundary force (or moment or traction) differs
with the actual spatial variation of the material parameter and geometry of the
body. Examining the stress distribution in the actual inhomogeneous body and its
homogeneous counterpart having the same form for the constitutive relation as that
of the constituents of the inhomogeneous body, it is found that qualitative features
of the stress distribution such as the sense of the stresses or the gradient of the
variation in the stresses are captured reasonably well for the magnitude of strains
under consideration in the problems studied.

The organization of the paper is as follows. In section 2, the two boundary value
problems are formulated, the governing equations are derived and solved for the
thermodynamically consistent model developed in [17]. The procedure adopted to
arrive at the constant material parameters in the homogeneous approximation is
outlined in the section 3. The value of the material parameters obtained in the
homogenized approximation for different cases are reported in section 4. The stress
distributions in the actual inhomogeneous body and its homogenized counterpart
are also presented in section 4. The implications of the simulations carried out
and the results are detailed in section 5. The final section is devoted to concluding
remarks.
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2. Boundary value problem. Two boundary value problems are considered in
this study. These boundary value problems are formulated in this section.

2.1. Twisting of an annular cylinder. First boundary value problem considered
is that of twisting of an annular cylinder. A cylindrical polar coordinate system is
used to study this problem. The annular cylinder in the reference configuration
is assumed to occupy, B = {(R,Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ H},
where (R,Θ, Z) represent the coordinates of a typical point (X) in the reference
configuration of the body, Ri is the inner radius of the right circular annular cylinder,
Ro is the outer radius of the annular cylinder, H is the height of the annular cylinder.
In the deformed configuration X moves to x.

This cylinder is assumed to be comprised of materials that are incompressible.
While the rotation of the surface defined by Z = 0 is zero, the surface defined by
Z = H rotates by an angle, ψH. In order to be able to realize this rotation at
the surface defined by Z = H, a torsional moment, M is applied to this end. The
cylinder is prevented from deforming axially by an axial load, L. By applying a
suitable radial component of the normal stress at the inner surface of the cylinder
(R = Ri), Pi, radial displacement of this surface is prevented. The outer surface of
the cylinder defined by R = Ro is assumed to be traction free.

Appealing to a semi-inverse method, a motion of the following form is assumed,

r = r(R, t), θ = Θ + ψ(t)Z, z = Z, (1)

where (r, θ, z) represent the cylindrical polar coordinates of a material particle in
the current configuration which occupied the point (R,Θ, Z) in the reference con-
figuration. r(R, t) is an unknown function of R and time, t, represents the deformed
radial location of a point, ψ(t) represents the angle of twist per unit length and is
a prescribed function of time.

The cylindrical polar coordinate components of the deformation gradient, FκR

for the above motion (1) is obtained as,

FκR
:=

∂x

∂X
=


∂r

∂R
0 0

0 r
R rψ(t)

0 0 1

 . (2)

Since, the cylinder is incompressible, det(FκR
) = 1. This incompressibility con-

straint yields a first order differential equation in r(R, t) which can be solved to
obtain,

r =
√
R2 −R2

i + (ri(t))2, (3)

where, ri(t) represents the deformed inner radius of the cylinder at time t. Since,
there is no radial displacement at the inner surface, ri(t) = Ri it follows that, r =
R. Hence, the expression for deformation gradient (2) simplifies to,

FκR
=

1 0 0
0 1 Rψ(t)
0 0 1

 , (4)

and the material time derivative of the deformation gradient, ḞκR
is computed as,

ḞκR
=

 0 −ψ̇(t)Z −Rψ(t)ψ̇(t)Z

ψ̇(t)Z 0 Rψ̇(t)
0 0 0

 , (5)
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where ψ̇ =
dψ

dt
. The cylindrical polar coordinate components of the spatial velocity

gradient is found to be,

LκR
=

 0 −ψ̇(t)Z 0

ψ̇(t)Z 0 Rψ̇(t)
0 0 0

 . (6)

The left Cauchy–Green deformation tensor is computed as,

BκR
= FκR

FκR

t =

1 0 0
0 1 + (Rψ(t))2 Rψ(t)
0 Rψ(t) 1

 . (7)

The torsional moment applied on the cylinder to effect a given time history of
the angle of twist per unit length, ψ(t), is evaluated as,

M(t) =

∫ ro

ri

Tθz2πr
2dr = 2π

∫ Ro

Ri

TθzR
2dR, (8)

where the Cauchy shear stress Tθz is to be computed from the constitutive relation
for the assumed motion. The last equality holds since for the assumed motion (1),
the incompressibility condition requires that r = R. The radial component of the
normal stress that needs to be applied at the inner surface is computed as,

Pi(t) =

∫ ro

ri

Trr − Tθθ
r

dr =

∫ Ro

Ri

Trr − Tθθ
R

dR, (9)

by integrating the radial component of the equilibrium equation and using the fact
that the outer surface of the cylinder is traction free and r = R from incompress-
ibility constraint. Here Trr and Tθθ are respectively the radial and circumferential
component of the Cauchy stress to be determined from the constitutive relation for
the assumed motion field. Similarly, the axial load that is applied to prevent the
cylinder from expanding is given by,

L(t) =

∫ ro

ri

Tzz2πrdr = π

∫ Ro

Ri

[2Tzz − Trr − Tθθ]RdR−R2
iPi(t), (10)

where Tzz is the z component of the normal Cauchy stress to be determined from
the constitutive relation for the assumed motion. The last equality is obtained
using the result in [25] on observing that the components of the Cauchy stress is a
function of only r and that r = R in order to satisfy the incompressibility condition.

2.2. Inflation of a spherical shell. The second boundary value problem studied
is that of the inflation of a spherical shell. A spherical coordinate system is used to
study this problem. A sphere in the reference configuration is assumed to occupy,
B = {(R,Θ,Φ)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π}, where (R,Θ,Φ) represent
the coordinates of a typical point in the reference configuration of the body. Ri
represents the inner radius of the sphere. Ro represents the outer radius of the
sphere. This sphere is assumed to be made of an incompressible material. The
sphere is subjected to a radial component of the normal stress at the inner surface
defined by R = Ri and the outer surface (R = Ro) is traction free.

The motion is assumed to be,

r = r(R, t), θ = Θ, φ = Φ, (11)

where (r, θ, φ) represent the spherical coordinates of a material particle in the cur-
rent configuration which occupied the point (R,Θ,Φ) in the reference configuration
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r(R, t) represents the inflation of the sphere and is a yet to be determined function
of radial coordinate in the reference configuration (R) and time (t). The spherical
coordinate components of the deformation gradient FκR

for this motion field is,

FκR
=


∂r

∂R
0 0

0
r

R
0

0 0
r

R

 . (12)

Since, the material is assumed to be incompressible, det(FκR
) = 1. Using this

condition, the resulting first order differential equation in r is solved along with the
boundary condition that r(Ri, t) = ri(t) to obtain,

r(R, t) = 3

√
R3 −R3

i + (ri(t))3. (13)

Substituting Eq. (13) in Eq. (12),

FκR
=


R2

r2
0 0

0
r

R
0

0 0
r

R

 . (14)

The material time derivative of the deformation gradient, ḞκR
is evaluated as,

ḞκR
=


−2R2ṙ

r3
0 0

0
ṙ

R
0

0 0
ṙ

R

 , (15)

where ṙ =
dri
dt

r2i
r2

. The spherical coordinate components of the spatial velocity

gradient is computed as,

LκR
=


−2ṙ

r
0 0

0
ṙ

r
0

0 0
ṙ

r

 . (16)

The left Cauchy deformation tensor is obtained as,

BκR
=


R4

r4(t)
0 0

0
r2(t)

R2
0

0 0
r2(t)

R2

 . (17)

Integrating the radial component of the equilibrium equation and using the
boundary condition that the outer surface of sphere is traction free, the radial
component of the normal stress acting on the inner surface, Psph is obtained as,

Psph(t) =

∫ ro

ri

2Trr − Tθθ − Tφφ
r

dr =

∫ Ro

Ri

2Trr − Tθθ − Tφφ
r3

R2dR, (18)
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where, Trr, Tθθ, Tφφ are the respective spherical components of the Cauchy stress
to be determined from the constitutive relation for the assumed motion.

2.3. Constitutive relation. To establish the thesis of this study, a nonlinear vis-
coelastic solid like model proposed in [17] to model polymeric materials is used.
The constitutive equation for this model is developed using the framework of mate-
rials with evolving natural configurations, the evolution of the natural configuration
being determined by the maximization of the rate of entropy production (see [15]):

T = −p1 + µ1Bκp(t) + µ2BκR
, (19)

and the evolution of Bκp(t) (the left Cauchy-Green tensor associated with the evolv-

ing natural configuration 1) is specified as,

∇
Bκp(t) = 2

(µ1

2ν

)( 1
2β−1 )

[
tr
(
Bκp(t)

)
− 9

tr
(
B−1κp(t)

)] 1−β
(2β−1)


×

[
3

tr
(
B−1κp(t)

)I−Bκp(t)

]
, (20)

where the upper convected Oldroyd derivative is defined as

∇
Bκp(t) = Ḃκp(t) − LκR

Bκp(t) −Bκp(t)LκR

t. (21)

In this study, the material parameters µ2, ν and β are assumed to be constants;
specifically: µ2 = 0.609 MPa, ν = 3.705 MPa(s(2β−1)) and β = 0.568. These
parameters are the same as that reported in [17] which are obtained so that the stress
relaxation behavior of polyamide 6 could be captured. The material parameter µ1

is assumed to vary spatially in the inhomogeneous body and to be a constant in
its homogeneous approximation. The intent here is to demonstrate that effect of
variation in one parameter in the model. This could have been the parameter that
influences the stiffness or the relaxation time of the material. It was felt that varying
stiffness would cause a variation similar to that reported for elastic response and
hence the parameter that influences the relaxation time is chosen for the analysis.
A more comprehensive study could undertake the study of influence of variation in
each of the other parameters and their interactions.

It can be seen that the relaxation time, Trelax for this constitutive relation is

Trelax =

(
2ν

µ1

)( 1
2β−1 )

. (22)

2.3.1. Spatial variation of µ1. For the purpose of our study here, the material pa-
rameter µ1 is assumed to vary only along the radial direction. This dependance on
the radial spatial coordinate R, is prescribed using,

R̄ =
R−Ri
Ro −Ri

, (23)

where Ri is the inner radius of the cylinder or sphere, Ro is the outer radius of the
cylinder or sphere. Note that, the normalized parameter R̄ varies between 0 and 1

1More details may be found in [17].
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over the domain of the body. µmean1 denotes the mean of the spatial variation, that
is,

µmean1 =

∫ Ro
Ri

µ1(R)dR∫ Ro
Ri

dR
=

∫ 1

0

µ1(R̄)dR̄. (24)

The following forms of inhomogeneity are considered:

2.3.2. Linear variation.

µ1(R̄) = µmean1

[
2(1− δ)R̄+ δ

]
, (25)

where, 0 < δ < 2.

2.3.3. Sine variation.

µ1(R̄) = µmean1

[
1 + δ sin(2kπR̄)

]
, (26)

where δ and k represents the amplitude and frequency of material property varia-
tion.

2.3.4. Cosine variation.

µ1(R̄) = µmean1

[
1 + δ cos(2kπR̄)

]
, (27)

where δ and k represents the amplitude and frequency of material property varia-
tion.

In this study, unless otherwise specified µmean1 = 1.978 MPa, a value that corre-
sponds to the stress relaxation experiments on polyamide 6. Small variations from
this mean value (about 5%, to 15%) are considered in this study. However, even
this small 5 to 15 percent variation in the parameter µ1 results in the relaxation
time of the material (see equation (22)) changing by 50 to 100 percent.

2.4. Governing equations and their solution. In this section the governing
equations that needs to be solved for each of the boundary value problems is doc-
umented. The solution procedure adopted to solve the governing differential equa-
tions is outlined.

2.4.1. Twisting of an annular cylinder. Motivated by the non zero cylindrical polar
components of the corresponding BκR

given in Eq. (7), the non zero cylindrical
polar components of Bκp(t) for twisting of an annular cylinder is assumed to be,

Bκp(t) =

D(r, t) 0 0
0 A(r, t) C(r, t)
0 C(r, t) B(r, t)

 , (28)

where A(r, t), B(r, t), C(r, t) and D(r, t) are yet to be determined functions of the
radial spatial coordinate and time.

Using the Eq. (28) in Eq. (20) and using the incompressibility condition, the
following equations are obtained

D =
1

AB − C2
, (29)

∂A

∂t
= 2

{[µ1

2ν

] 1
(2β−1)

[D +A+B − 9α]
1−β

(2β−1)

}
[3α−A] + 2Rψ̇C, (30)
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∂B

∂t
= 2

{[µ1

2ν

] 1
(2β−1)

[D +A+B − 9α]
1−β

(2β−1)

}
[3α−B] , (31)

∂C

∂t
= −2

{[µ1

2ν

] 1
(2β−1)

[D +A+B − 9α]
1−β

(2β−1)

}
C +Rψ̇B, (32)

where

α =
1

1

D
+

A+B

AB − C2

, (33)

and use is made of the relation r = R obtained from the incompressibility constraint.
Thus, for a given R, the first order differential equations in time, (30) through (32)
is numerically solved using ODE15s, a built in solver in MATLABr.

Then, the torsional shear stress is computed as,

Tθz = µ1(R)C(R, t) + µ2Rψ(t), (34)

is used in Eq.(8) to obtain the torsional moment applied to realize the angle of twist
per unit length, ψ(t). The integrand in Eq.(9) is used to find the radial component
of the normal stress at the inner surface,

Trr − Tθθ
R

=
µ1(R)

R
[D(R, t)−A(R, t)]− µ2R(ψ(t))2. (35)

Similarly, the integrand in Eq.(10) is used to find the magnitude of the axial load
applied,

[2Tzz − Trr − Tθ]R = µ1(R) [2B(R, t)−D(R, t)−A(R, t)]R− µ2R
3(ψ(t))2. (36)

2.4.2. Inflation of a spherical shell. Motivated by the non-zero spherical compo-
nents of BκR

in Eq.(17), the non-zero spherical components of Bκp(t) for inflation
of a sphere are assumed to be,

Bκp(t) =


E(r, t) 0 0

0
1√
E(r, t)

0

0 0
1√
E(r, t)

 , (37)

where, E(R, t) is an yet to be determined function of the radial spatial coordinate
and time. Note that the assumed Bκp(t) satisfies the incompressibility requirement.

Using the Eq.(37) in Eq.(20) results in following differential equation,

∂E

∂t
= 2


(µ1

2ν

)( 1
2β−1 )

E +
2√
E
− 9

1

E
+ 2
√
E


1−β

(2β−1)


×

 3
1

E
+ 2
√
E
− E

− dri
dt

4E

R3 −R3
i + (ri(t))3

r2i , (38)

where Eq.(13) is used to convert the differential equation with r and t as variables
to R and t as independent variables. For a given R, the first order differential
equations in time, (38) is numerically solved using ODE15s, a built in solver in
MATLABr.
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The integrand in Eq. (18) is then evaluated as

2Trr − Tθθ − Tφφ
r3

R2 =
2R2

R3 −R3
i + (ri(t))3

{
µ1(R)

[
E − 1√

E

]
+ µ2

[
R4

(R3 −R3
i + (ri(t))3)4/3

− (R3 −R3
i + (ri(t))

3)2/3

R2

]}
, (39)

from which the radial component of the normal stress applied at the inner surface
determined.

3. Finding material parameters in the homogenized approximation. As
discussed in introduction, there are various measures by which one can seek a ho-
mogeneous approximation for a given inhomogeneous body. Each of these measures
have their own merits and demerits. Here, the equivalence is sought such that the
boundary force (or moment or traction) time history required to realize a given
boundary displacement time history is same between the actual inhomogeneous
body and its homogeneous approximation. Also, as discussed in the introduction,
the form of the constitutive relation in the homogeneous approximation is assumed
to be the same as that of its constituents, except that the material parameter which
varied spatially is now assumed to be constant.

The boundary displacement time history considered corresponds to that of a
stress relaxation experiment. Here too as in the case of a real experiment, the
boundary displacement time history is not given by a heaviside function. The
boundary displacement is varied linearly from zero to the targeted boundary dis-
placement. This is done because as discussed in [14], it is possible that smooth
solutions such as those sought here might not exist for the nonlinear model when
the boundary displacement is not a continuous function of time. Again, since the
viscoelastic model is nonlinear, it is possible that a different boundary displacement
time history could yield an entirely different homogeneous approximation for a given
inhomogeneous body. This aspect of dependance of the material parameters in the
homogeneous approximation on the boundary displacement time history is investi-
gated only to a limited extent. Particularly, only the influence of rate of loading to
reach the targeted boundary displacement is studied.

The procedure detailed below applies for both the twisting of an annular cylinder
and the inflation of a sphere:

1. The boundary force and moment (or traction) required to engender the given
boundary displacement corresponding to that of a stress relaxation experiment
(see Figure 1) for the inhomogeneous body corresponding to a given spatial
variation of µ1 is computed (see Figure 2).

2. The inhomogeneous body is replaced by an homogenized body of identical
geometry. The constitutive relation for the homogenized approximation is as-
sumed to be the same as that given in Eq.(19) and Eq.(20) except that the spa-

tially varying material parameter µ1 is replaced with a constant µmean−hom1 .
The value of other material parameters (µ2, ν, β) are assumed to be same as
that in case of the inhomogeneous body.

3. The value of µmean−hom1 is obtained through optimization such that the overall
error, εtot is less than 2 percent and the maximum error εmax is less than 1
percent for the boundary force (or moment or traction) required to engender
the given boundary displacement corresponding to that of a stress relaxation
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Figure 1. Targeted boundary displacement in the inhomogeneous body
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Figure 2. Applied boundary force on the inhomogeneous body to
realize the desired boundary displacement

experiment. The overall error, εtot is defined as,

εtot =
100

N

N∑
i=1

(
1− Finhom(ti)

Fhom(ti)

)
, (40)

where N is the number of time instances when the boundary force (or moment
or traction) on the inhomogeneous body and its homogenized counterpart are
compared. Finhom denotes the boundary force (or moment or traction) in
the inhomogeneous body and Fhom the same boundary force (or moment or
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traction). The maximum error εmax is defined as,

εmax = 100×max

(
1− Finhom(ti)

Fhom(ti)

)
. (41)

It is noted that other limiting values may also be chosen for these error mea-
sures depending on the requirement of closeness of agreement between re-
sponse of homogenized body to that of the inhomogeneous body. But the
values used here appear to give a good approximation with the value of the
inferred µmean−hom1 not changing significantly on lowering the limiting values
for the error measures.

4. Results. First results concerning the variation of µmean−hom1 with the geome-
try of the body for different correlations are presented and discussed. Then, the
variation in the stress distribution between the inhomogeneous and homogeneous
body is studied.

4.1. Variation of µmean−hom1 . Defining

µmean−hom =
µmean−hom1

µmean1

, (42)

and,

% change in relaxation time = 100× Trelax−inhom − Trelax−hom
Trelax−inhom

, (43)

where Trelax−inhom is computed using µmean1 in Eq.(22) and Trelax−hom is computed

using µmean−hom1 in Eq.(22), a study is conducted on the variation of µmean−hom
with respect to the two boundary value problems studied here. Specifically for the
twisting of an annular cylinder, investigations are carried to quantify the variation
of µmean−hom (also the percentage variation in the relaxation time (Eq.(43))) with
(a) the thickness of the cylinder (b) actual spatial variation of µ1(R) (c) correlation
of the torsional moment versus axial load versus radial component of the normal
stress at the inner surface of the cylinder (d) magnitude of the maximum twisting
angle (e) rate of twisting. Similarly, for inflation of a spherical shell, quantification
of the variation of µmean−hom with respect to (a) the thickness of the sphere (b)
actual spatial variation of µ1(R) is reported. With this information conclusions are
drawn on the feasibility of homogenizing the viscoelastic solid like body comprised
of a material whose response is captured by the constitutive relation studied here.

4.1.1. Twisting of an annular cylinder. In all the simulations carried out Ro = 1
and H = 1. Since, the outer radius of the cylinder is taken as the characteristic
length for this problem, Ro = 1. H = 1 allows no distinction between angle of twist
per unit length and angle of twist.

Figure 3 shows the variation of µmean−hom with respect to the thickness of cylin-
der for different spatial variations - linear, sine and cosine variation - of the param-
eter µ1 when the cylinder is twisted at a rate of 0.04 rad/s to a maximum twist
angle of 0.01 rad, so that the torsional moment required to engender a given angle
of twist is the same both in the actual inhomogeneous body and its homogeneous
counterpart. It can be seen from the Figure 3 that the µmean−hom tends to µmean1

as the thickness of the cylinder decreases, irrespective of the spatial variation of µ1.
A 15 percent spatial variation in µ1 causes 9 percent variation in µmean−hom (100
percent variation in relaxation time, from Eq.(22)) just due to the change in thick-
ness of the cylinder even though µmean1 for these various thicknesses is same (see
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Figure 3. Variation of µmean−hom with different inner to outer ra-
dius ratio Ri/Ro for different spatial variations of µ1 in the in-
homogeneous model obtained by correlating the variation of the
torsional moment required to engender a given angle of twist
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Figure 4. Variation in percentage relaxation time with Ri/Ro for
linear variation of µ1 obtained by correlating the variation of the
torsional moment required to engender a given angle of twist

Figure 3a). For a given thickness of the cylinder depending on whether µ1 increases
or decreases with radial location changes the value of µmean−hom from 0.91 to 1.09
for the thickest annular cylinder studied (see Figure 3a). It can be inferred from the
Figure 3b that as the frequency of the spatial variation increases µmean−hom tends
to µmean1 , irrespective of the amplitude of the variation. For the same frequency
and amplitude of spatial variation of µ1, the value of µmean−hom changes depend-
ing on whether the spatial variation is sine or cosine. Thus, it can be inferred from
Figure 3 that the value of µmean−hom depends on the spatial variation of µ1 and
the thickness of the cylinder. The changes in relaxation time with thickness are far
greater than the changes in µmean−hom (see Figure 4).

The variation of µmean−hom with the thickness of cylinder, for the linear varia-
tion of the parameter µ1 along the radial direction, when the cylinder is twisted at
a rate of 0.04 rad/s to a maximum twist angle of 0.01 rad, so that the radial compo-
nent of the normal stress applied at the inner surface to prevent the displacement of
the inner surface for the given angle of twist is equal (for both inhomogeneous and
corresponding homogenized body), is plotted in Figure 5a. When the cylinder is
twisted at a rate of 0.04 rad/s to a maximum twist angle of 0.01 rad and the param-
eter µ1 varies linearly along the radial direction, equating the axial load required
to maintain the cylinder at its native length while twisting, for the inhomogeneous
body and its homogeneous counterpart, requires µmean−hom to vary with the thick-
ness of the cylinder as shown in Figure 5b. Comparing Figures 3a, 5a and 5b it is
apparent that different correlations for the same boundary value problem and spa-
tial variation of µ1 requires the value of µmean−hom to be different. The maximum
observed difference is about 5 percent in the value of µmean−hom between different
correlations when the spatial variation of µ1 is about 15 percent. An interesting
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Figure 5. Variation of µmean−hom with Ri/Ro for linear variation
of µ1 obtained by different correlations to engender a given angle
of twist

observation here is that while µmean−hom tends to µmean1 as the thickness of the
cylinder reduces for cases where µmean−hom is obtained by equating the moment
or the radial component of the normal stress at the inner surface, in the case of
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µmean−hom obtained from equating the axial load required to maintain the length
of the cylinder while twisting, the deviation from µmean1 increases as the thickness
of the cylinder decreases. Thus, comparing Figures 3a and 5 it can be seen that the
value of µmean−hom obtained for a given thickness of the cylinder and spatial vari-
ation of µ1, depends on what is correlated - moment, stress or force - between the
actual inhomogeneous body and its homogenized counterpart to engender identical
displacement fields.

Figure 6a depicts the variation of percentage change in relaxation time with
rate of twisting for different thicknesses of the cylinder and linear variation of µ1

by equating the torsional moment required to engender a given maximum angle
of twist (0.01 rad). Figure 6b portrays the variation of the percentage change in
relaxation time with rate of twisting for different thicknesses of the cylinder and
linear variation of µ1 by equating the torsional moment required to engender a given
angle of twist when the time of twisting is held constant (0.25 s). Thus, while Figure
6a portrays the variation of the percentage change in relaxation time with rate of
loading (0.02 to 0.049 rad/s), Figure 6b shows the variation of the percentage change
in relaxation time with rate of loading as well as magnitude of angle of twist (0.005
to 0.01225 rad). For the time histories of boundary displacement studied, there is
no significant variation in the estimated value of the percentage change in relaxation
time, obtained by equating the torsional moment between the inhomogeneous body
and its homogenized counterpart with rate of twist. While the results are not
sensitive to strain rate for a fixed variation in µ1 and for a fixed geometry, it is
clear that changing the cylinder thickness and the magnitude of variation in µ1 can
significantly alter the relaxation times.

4.1.2. Inflation of a spherical shell. In all the simulations carried out as part of this
study, Ro is taken as the characteristic length for the problem and hence, Ro = 1.

Figure 7 shows the variation of µmean−hom with respect to the thickness of sphere
for different spatial variations - linear, sine and cosine variation - of the parameter
µ1(R) when the sphere is inflated at a rate of 0.004Ro/s to a maximum deformed
inner radius of 1.001Ri, so that the radial component of the normal stress applied at
the inner surface of the sphere to realize a given deformed inner radius of the sphere
is same between the actual inhomogeneous body and its homogenized counterpart.
It can be seen from Figure 7 that µmean−hom tends to µmean1 as the thickness
of the sphere decreases, irrespective of the spatial variation of µ1. A 15 percent
spatial variation in µ1 causes 8 percent variation in µmean−hom just due to change
in thickness of the sphere even though µmean1 for these various thickness is same (see
Figure 7b). For a given thickness of the sphere depending on whether µ1 increases
or decreases with radial location changes the value of µmean−hom from 0.93 to 1.07
(see Figure 7a). It can be inferred from the Figure 7b that as the frequency of the
spatial variation increases µmean−hom tends to µmean1 , irrespective of the amplitude
of the variation. For the same frequency and amplitude of spatial variation of µ1,
the value of µmean−hom changes depending on whether the spatial variation is sine
or cosine. Thus, it can be inferred from Figure 7 that the value of µmean−hom
depends on the spatial variation of µ1 and the thickness of the sphere, as in the
case of cylinder.

In this case too, µmean−hom did not vary with the rate of inflation in the range
0.002Ro/s to 0.0049Ro/s or with the maximum deformed inner radius in the range
1.0005Ri to 1.0012 Ri. However, for brevity these results are not presented here.
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Figure 6. Percentage variation in relaxation time with rate of twist-
ing and different thicknesses of the cylinder for linear variation of
µ1 obtained by correlating the variation of the torsional moment

4.2. Variation in stress. We next examine, if the stresses in the homogenized
body are qualitatively similar to that in the actual inhomogeneous body under
identical displacement time histories.
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Figure 7. Variation of µmean−hom with Ri/Ro for different spatial
variations of µ1 obtained by correlating the variation of the radial
component of the normal stress applied at the inner surface of the
sphere to engender a given inflation
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Figure 8. Radial variation of the cylindrical polar components of
the Cauchy stress at time t = 0.25 s for different radial variations
of µ1 when the annular cylinder is subjected to pure twist.

Figure 8 portrays the radial variation of the cylindrical polar components of the
Cauchy stress at the instant when the maximum angle of twist is attained (t = 0.25s)
for a thick annular cylinder with Ri = 0.5Ro subjected to pure twisting for different
radial variations of the parameter µ1 in the constitutive relation. It can be seen
from the Figure 8 that the magnitude and sense of the cylindrical polar components
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Figure 9. Radial variation of the spherical polar components of the
Cauchy stress at time t = 0.25 s for different radial variations of
µ1 when the annular sphere is subjected to inflation.

of the Cauchy stress predicted by the homogenized approximation (obtained by
equating the moment) is in excellent agreement with that obtained from the actual
inhomogeneous body when both are subjected to identical deformation field time
histories.
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Figure 9 displays the radial variation of the spherical components of the Cauchy
stress at the instant when the maximum deformed inner radius of the sphere is
attained (t = 0.25s) for a thick annular sphere with Ri = 0.5Ro subjected to inflation
for different radial variations of the parameter µ1 in the constitutive relation. It can
be seen from Figure 9 that the magnitude and sense of the spherical components
of the Cauchy stress predicted by the homogenized approximation (obtained by
equating the normal stress on the inner surface) is in good agreement with that
obtained from the actual inhomogeneous body when both are subjected to identical
deformation field time histories.

For all the radial variations of the parameter µ1 studied, deformation field time
histories considered and different time instances at which the Cauchy stress deter-
mined, the magnitude and the sense of the Cauchy stress predicted by the homog-
enized approximation is in agreement with that obtained from the actual inhomo-
geneous body. These results are not shown here.

5. Discussion. The material parameter in the homogenized approximation is ar-
rived at by either requiring the torque employed to engender a given twist or the
axial force required to maintain a given axial length for a specified twisting angle or
the radial component of the normal stress to be applied for a given twist to prevent
the displacement of the inner radius, to be the same for both the inhomogeneous
and “equivalent” homogenized body. It is found that the material parameter ob-
tained by different correlations are not the same. This variation in the material
parameter depending on whether the forces or moments or traction are equated for
the same boundary value problem suggests the inappropriateness of the constitutive
relation used for the homogenized approximation, that is the homogeneous model
cannot be described by the same class of constitutive relations as that of the inho-
mogeneous body. Also, in this study, contrary to the usual practice of formulating
the constitutive relation for the homogenized approximation from the response of a
representative volume element subjected to a uniform state of stress or a homoge-
neous deformation, inhomogeneous deformation fields are used to find the material
parameters in the constitutive relation for the homogenized approximation.

The response of a given geometry of the body to three different spatial varia-
tions of the relaxation time having the same mean is compared. It is found that
even though the mean of the spatial variations is the same, the responses of the
respective inhomogeneous bodies are different. Similarly, for a given spatial varia-
tion of the relaxation time if the geometry of the body is varied such that the mean
relaxation time is the same, the material parameters in the constitutive relation
for the homogenized approximation changes. This dependance on the material pa-
rameters in the constitutive relation of the homogenized approximation on the size
and shape of the body is consistent with the observation in [22, 19, 20, 21]. Thus,
erroneous idealization of an inhomogeneous body as a homogeneous body results in
the material parameters in the homogeneous model sought varying with the geom-
etry of the body. Further studies are needed to check whether this variation of the
homogeneous material parameters with geometry explain the size and shape effect
reported in the literature for heterogeneous bodies like concrete when modeled as a
homogeneous body.

The material parameters in the homogenized approximation are insensitive to
the temporal variation of the boundary displacement for the cases studied here.
This is because even though the constitutive relation is nonlinear, the numerical
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simulations are carried out for small deformations. In case of small deformations,
the nonlinear viscoelastic model studied can be approximated by a linear viscoelastic
model. Also, the temporal variations considered are limited to changes in the rate
of twisting to achieve a constant angle of twist. It is known that [16] for linear
viscoelastic models the relaxation of the stress with time does not depend on the
rate of twisting. Hence, it is not surprising that the material parameters found for
the homogeneous approximation is independent of the rate of deformation. More
studies are required to understand the role of temporal variation on the inferred
homogeneous constitutive relation.

The agreement of the magnitude and sense of the Cauchy stress components
determined using the homogenized approximation with that of the actual inhomo-
geneous body is in contradiction with the results documented in [22, 19]. This may
be because the simulations in this study, are limited to small deformations or be-
cause of the form of the inhomogeneities considered in this study, or both. It is
worthwhile to point out that Saravanan and Rajagopal [22, 19] observed qualitative
differences in the stress field for piecewise constant variation of the material param-
eters, a form of inhomogeneity not studied here. Hence, this qualitative agreement
in the stress distribution has to be cautiously interpreted and more studies are
warranted before arriving at general conclusions.

6. Summary. Two boundary value problems corresponding to that of pure twist-
ing of an annular right circular cylinder and inflation of a sphere were formulated for
an inhomogeneous body comprised of incompressible materials. The nonlinear vis-
coelastic constitutive relation proposed in [17] is used to describe the material that
the inhomogeneous body is comprised of. One of the parameters in the model which
is related to the relaxation time is assumed to vary spatially and simulations were
performed for three special spatial variations. Using the chosen nonlinear viscoelas-
tic constitutive model, geometry of the body and boundary value problems, the
limitations in arriving at homogenized models in describing inhomogeneous bodies
is investigated.
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