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We study the influence of spinless impurities on a frustrated magnet featuring a spin-density wave
(stripe) phase by means of Monte Carlo simulations. We demonstrate that the interplay between
the impurities and an order parameter that breaks a real-space symmetry triggers the emergence
of a random-field mechanism which destroys the stripe-ordered phase. Importantly, the strength of
the emerging random fields can be tuned by the repulsion between the impurity atoms; they vanish
for perfect anticorrelations between neighboring impurities. This provides a novel way of controlling
the phase diagram of a many-particle system. In addition, we also investigate the effects of the
impurities on the character of the phase transitions between the stripe-ordered, ferromagnetic, and
paramagnetic phases.

I. INTRODUCTION

Low-temperature phases of many-particle systems usu-
ally break one or several of the symmetries of the inter-
actions spontaneously. This is well described by the con-
cept of order parameters (OPs), quantities that vanish
in the symmetric phase but are nonzero (and nonunique)
in the symmetry-broken phase (see, e.g., Ref. 1). A sim-
ple example of an OP is the total magnetization which
measures the degree to which the spin rotation symme-
try is broken. In recent years, lots of attention has been
attracted by phases that spontaneously break real-space
symmetries in addition to spin, phase, or gauge symme-
tries, for example by rendering the x and y directions in
a crystal inequivalent. Such phases include the charge-
density wave or stripe phases in cuprate superconduc-
tors, the Ising-nematic phases in the iron pnictides2–4,
valence-bond-solids in quantum magnets5–7 and the crys-
talline phases of certain lattice-gas models of hard-core
particles8.
Realistic materials always contain some quenched dis-

order or randomness in the form of vacancies, impurity
atoms, random strains, and other types of imperfections.
Consequently, the question of how such randomness af-
fects different broken symmetries and thus different OPs
is crucial for understanding the materials’ behaviors (for
recent reviews see, e.g., Refs. 9–11).
In this paper, we focus on the impact of random dis-

order on a phase that breaks a real space symmetry. To
do so we turn our attention to a frustrated Ising model
on a square lattice having ferromagnetic nearest-neighbor
interactions and antiferromagnetic next-nearest-neighbor
interactions. The disorder takes the form of spinless im-
purities or vacancies that dilute the magnetic lattice. The
resulting Hamiltonian reads

H = −J1
∑

〈ij〉

ρiρjSiSj − J2
∑

〈〈ij〉〉

ρiρjSiSj (1)

where the Si = ±1 are classical Ising variables, while
J1 > 0 and J2 < 0 are the nearest-neighbor and next-

nearest-neighbor interactions, respectively. The ρi are
quenched random variables that take the values 0 (va-
cancy) with probability p and 1 (site occupied by spin)
with probability 1 − p. We consider both uncorrelated
randomness for which the ρi are statistically indepen-
dent and anticorrelated randomness for which repulsion
between the impurities suppresses the simultaneous oc-
cupation of two nearest-neighbor sites by impurities.
In the absence of vacancies (p = 0), the phase dia-

gram and the phase transitions of this system are well-
understood (see Fig. 1 as well as Refs. 12–15 and refer-
ences therein). At high temperatures, it features a con-
ventional paramagnetic phase. Upon lowering the tem-
perature, two distinct symmetry-broken phases appear.
For g = |J2|/J1 < 1/2, the system enters a ferromag-
netic (FM) low-temperature phase that breaks the Z2

Ising symmetry but none of the real-space symmetries.
For g > 1/2, in contrast, the low-temperature phase dis-
plays a stripe-like spin order that breaks not only the
Ising symmetry but also the Z4 rotation symmetry of
the square lattice. The Hamiltonian (1) is therefore par-
ticulary well suited for our study of impurity effects on
different OPs as it allows us to contrast an OP that does
not break any real-space symmetries (the ferromagnetic
OP) with one that does (the stripe OP) .
The direct phase transition between the ferromagnetic

and stripe phases as a function of g is of first order. Ex-
tensive numerical simulations13,14 have also established
that the transition from the stripe phase to the para-
magnetic phase is first order for g < g∗ ≈ 0.67. The
line of first order transition terminates at g∗ and gives
rise to critical behavior in the Ashkin-Teller16,17 univer-
sality class18. Finally, the transition from the ferromag-
netic phase to the high temperature paramagnetic phase
is known to lie in the Ising universality class12–15.
To analyze how the site dilution influences the frus-

trated Ising model (1), we perform extensive Monte Carlo
simulations. We also determine the exact ground states
of small plaquettes to understand the disorder effects mi-
croscopically. Our results are illustrated by the phase
diagram shown in Fig. 1 and can be summarized as fol-
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FIG. 1. Phase diagram of J1-J2 Hamiltonian (1) for both
uncorrelated and anti-correlated site dilution at an impu-
rity concentration of p = 1/8 compared to the phase di-
agram of the undiluted system12,13. For uncorrelated im-
purities, the emergent random field mechanism destroys the
stripe-ordered phase. In contrast, this phase survives the in-
troduction of anti-correlated disorder. The first-order phase
boundaries of the clean model are depicted by dashed lines,
the clean ferromagnet-to-paramagnet transition is marked by
open squares; and the open triangles represent the Ashkin-
Teller critical behavior16,17 for the stripe-to-paramagnet tran-
sition. The phase boundaries of the diluted system are marked
by filled symbols.

lows. The ferromagnetic low-temperature phase survives
moderate dilution with both uncorrelated and anticor-
related impurities but its Curie temperature Tc is sup-
pressed (as is clearly seen in Fig. 1). In contrast, the
stripe-ordered low-temperature phase is completely ab-
sent for uncorrelated impurities. This is caused by an
effective random field for the stripe order that emerges
due to the interplay of the impurities and the broken real-
space symmetry. This emergent random field destroys
the stripe order via domain formation19,20. Importantly,
the strength of the random fields can be controlled by
the repulsion between the impurities; it completely van-
ishes if the repulsion prohibits the simultaneous occupa-
tion of nearest-neighbor sites by impurities. In this case
of perfect local anticorrelations between the impurities,
the stripe-ordered low-temperature phase survives, albeit
with a depressed critical temperature Tc compared to the
undiluted system. This tunable random-field mechanism
is the main result of this paper. In addition, we demon-
strate that the first-order phase transitions of the undi-
luted system are rounded by the disorder, in line with
the Aizenmann-Wehr theorem21,22. At low enough tem-
peratures and close to g = 1/2, the combined effects of
disorder and frustration might result in the formation of
Spin Glass (SG) like order. However, we have not been
able to identify such a phase beyond doubt in the tem-
perature range we have been able to simulate.

In the rest of this paper, we discuss our simulations, ex-
plain the tunable random-field mechanism, and put our
results into a broader perspective. The paper is orga-
nized in the following manner: Sec. II is dedicated to a
description of the primary observables that we calculate
via the Monte Carlo simulations. It also gives details of
the system parameters. Sec. III focusses on the effect
of impurities on the stripe phase. In Sec. IV, we de-
scribe the emergent random field mechanism that desta-
bilizes the stripe phase. In this section, we also explain
how the emergent random field mechanism can be tuned
by introducing anticorrelations into the disorder distri-
bution. Sec. V briefly describes the impact of dilution on
the ferromagnetic phase. The fate of the various phase
transitions under the influence of disorder is discussed in
Sec. VI. We conclude with Sec. VII. Some technical de-
tails of our calculations are relegated to the Appendices.

II. MONTE CARLO SIMULATIONS

We employ standard single-spin flip Metropolis23 sim-
ulations of the Hamiltonian (1). We study square lattices
of linear sizes between L = 8 to 80, averaging the results
over 500 to 1000 disorder configurations. Details of the
simulation algorithm and parameter values can be found
in Appendix A. The primary observables are the OPs for
the ferromagnetic and stripe phases. The two-component
stripe OP ψ ≡ (ψx, ψy) is defined as14,15

ψx =
1

L2

∑

i

ρiSi(−1)xi, ψy =
1

L2

∑

i

ρiSi(−1)yi , (2)

where (xi, yi) are the coordinates of site i whereas the
ferromagnetic OP, i.e., the magnetization, reads

m =
1

L2

∑

i

ρiSi . (3)

We also analyze the corresponding susceptibilities χS =
L2
[

〈ψ2〉 − 〈|ψ|〉2
]

/T and χF = L2
[

〈m2〉 − 〈|m|〉2
]

/T as
well as the Binder cumulants

US = 2

(

1−
1

2

[

〈ψ4〉
]

[〈ψ2〉]
2

)

, UF =
3

2

(

1−
1

3

[

〈m4〉
]

[〈m2〉]
2

)

.

(4)
Here, [· · · ] denotes the average over disorder realizations
whereas 〈· · · 〉 indicates the usual thermodynamic (Monte
Carlo) average. The Binder cumulants are normalized
such that they take the limiting values UF,S → 1 deep in
the corresponding ordered phases and UF,S → 0 deep in
the disordered phase. The crossing of the Binder cumu-
lant curves for different system sizes yields the location of
the phase transition. The Binder cumulant also allows us
to determine the order of the transition: For a continuous
transition, it is a monotonic function of temperature24.
At a first-order transition, in contrast, the Binder cumu-
lant shows a minimum that becomes more pronounced
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FIG. 2. Stripe order-parameter ψ and stripe susceptibility
χS as functions of temperature T for frustration parameter
g = 1, dilution p = 1/4 and several system sizes. Data for un-
correlated vacancies are shown in panels (a) and (c) whereas
panels (b) and (d) show results for anti-correlated vacancies.

with increasing system size25 and is caused by the ex-
istence of multiple peaks in the OP distribution. This
non-monotonic temperature dependence can serve as an
indicator of a first-order transition.

III. STRIPE PHASE

We now turn to the central question of this manuscript,
the fate of the stripe phase upon introducing spinless
impurities. Figure 2 depicts the stripe OP and the as-
sociated susceptibility for dilution p = 1/4, contrast-
ing the cases of uncorrelated impurities and perfectly
anticorrelated impurities (where the simultaneous occu-
pation of nearest-neighbor sites by impurities is forbid-
den). The frustration parameter is g = |J2|/J1 = 1 for
which the undiluted system features a stripe-ordered low-
temperature phase. Figure 2(a) shows that the stripe
order-parameter at low temperatures decreases with in-
creasing system size for the case of uncorrelated impu-
rities. In this case, the stripe susceptibility shown in
Fig. 2(c) develops a pronounced secondary peak at low
temperatures. As suggested in Ref. 20, these observa-
tions indicate the absence of long-range stripe order in
the thermodynamic limit. In contrast, in the case of anti-
correlated disorder, the stripe order-parameter saturates
at a size-independent nonzero value at low temperatures,
as shown in Fig. 2(b). The corresponding stripe sus-
ceptibility, shown in Fig. 2(d), displays the conventional
behavior associated with a continuous phase transition.
These observations suggest that the stripe order survives
in the case of anticorrelated impurities.
To provide further evidence, we compare the behav-

ior of the stripe Binder cumulants US(T ) for uncorre-
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FIG. 3. Stripe Binder cumulant US vs. temperature T for
frustration parameter g = 1, dilution p = 1/4 and several
system sizes. Panel (a) shows data for uncorrelated impuri-
ties whereas results for anticorrelated impurities are presented
in panel (b). Panel (c): Local nematic OP ηi for a single sys-
tem of 100 × 100 sites, uncorrelated impurities with dilution
p = 1/4, T = 0.55, and g = 1. Panel (d) shows the scaling
collapse (with χ̄2 = 0.97) of the stripe Binder cumulant for
anticorrelated impurities and g = 1, p = 1/4.

lated and anticorrelated impurities. Figure 3 depicts the
Binder cumulants for the same parameters used above,
viz., p = 1/4 and g = 1. Focussing on Fig. 3(a), we
see that for uncorrelated impurities, the Binder cumulant
vs. temperature curves for different system sizes do not
cross. With increasing size, the Binder cumulant shifts
to smaller and smaller values, i.e., towards the disordered
phase, confirming the absence of long-range stripe order
for the case of uncorrelated impurities. The fate of the
stripe phase can be further illustrated via the nematic
OP η = ψ2

x − ψ2
y which measures the local preference for

vertical vs. horizontal stripes. The color plot in Fig. 3(c)
shows the local nematic OP for each 2 × 2 plaquette,
clearly demonstrating competing domains of horizontal
and vertical stripes, (see Appendix C).

In contrast, for the case of anticorrelated impurities,
the stripe Binder cumulants for different system sizes do
cross as evidenced in Fig. 3(b). This indicates the ex-
istence of a phase transitions and thus the survival of
the stripe-ordered low-temperature phase. Estimates of
the transition temperature Tc and the correlation length
exponent ν can be obtained from finite-size scaling26,27

(for details, see Appendix B). Figure 3(d) shows the
scaling collapse of the Binder cumulant in terms of the
scaled variable (T − Tc)L

1/ν , with Tc = 1.1729(5) and
ν = 1.26(3). The data collapse is very good; the un-
derlying least-square fit has a reduced χ̄2 = 0.9728. Be-
cause our systems are only moderately large, the value of
ν should be understood as an effective exponent rather
than the true asymptotic exponent.
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FIG. 4. Impurity configurations on 2× 2 plaquettes illustrat-
ing the emergence of random-field disorder for the stripe OP
(see text for further details).

IV. RANDOM FIELDS FROM SPINLESS

IMPURITIES

To explain the absence of the stripe phase for uncor-
related impurities, we now demonstrate that the impu-
rities induce effective random fields for the nematic OP
η = ψ2

x − ψ2
y. We focus on the ground state energies

of small plaquettes of 2 × 2 sites as seen in Fig. 4. If
impurities simultaneously occupy two vertical nearest-
neighbor sites (configurations C1 and C3 in Fig. 4), ver-
tical stripes (configuration C3) are favored over horizon-
tal stripes (configuration C1) as their ground state en-
ergy on the plaquette is lower by −2J1. Analogously, if
impurities occupy two horizontal nearest-neighbor sites
(configurations C2 and C4), horizontal stripes (C2) are
favored over vertical stripes (C4). In contrast, configu-
rations with either a single impurity or two impurities
across the diagonal of a plaquette (C5 and C6) do not
prefer one stripe orientation over the other.

This means that impurity configurations in which two
impurities occupy nearest neighbor sites locally break the
Z4 lattice rotation symmetry. They thus act as random
fields for the nematic OP η by locally preferring either
the ψx or the ψy component of the stripe OP (2). As was
argued by Imry and Ma19 in the context of the random-
field Ising model29 and later proven rigorously21, random
fields destroy the long-range ordered phase via domain
formation. Monte Carlo evidence for domains was pre-
sented in Fig. 3(c).

The typical size LD of these domains depends on the
strength of the random fields and thus on the dilution
p. In two dimensions, the dependence is expected to be
exponential, LD ∼ exp

(

const/p4
)

, for small p29. This
implies that the domain size will exceed the system size
for sufficiently small p, making the destruction of the
long-range order unobservable.

The fact that a local preference for vertical or hori-
zontal stripes only appears if two impurities occupy two
nearest-neighbor sites can be used to tune the strength of
the emerging random field mechanism. If the probabil-
ity for nearest-neighbor pairs of impurities is reduced, for
example because of a repulsive interaction between the
impurities, fewer random fields appear in the system. In
the limit of perfectly anticorrelated impurities where such
pairs are completely forbidden, the random-field mecha-
nism is switched off30. This explains why our simulations
showed that the stripe-ordered phase survives for anticor-
related impurities.

V. FERROMAGNETIC PHASE

In contrast to the stripe OP, the total magnetization
does not break a real-space symmetry. Therefore, spin-
less impurities do not create random fields coupling to the
ferromagnetic order. Instead, they act as much more be-
nign random-mass or random-Tc disorder. Consequently,
the ferromagnetic phase survives in the presence of im-
purities, be they uncorrelated or perfectly anticorrelated.
However, the Curie temperature Tc is reduced compared
to the undiluted system, as is shown in the phase diagram
in Fig. 1.

VI. PHASE TRANSITIONS

We now turn to the phase transitions between the para-
magnetic, ferromagnetic, and stripe phases. As explained
in the Introduction, the transitions of the undiluted sys-
tem are well understood12–15. There is a direct first-order
phase transition between the ferromagnetic and stripe
phases at low temperatures. The transition between
the ferromagnetic and paramagnetic phases is continu-
ous and belongs to the 2D Ising universality class. Ex-
tensive numerical simulations have also established that
the transition from the stripe phase to the paramagnetic
phase is of first order for 0.5 < g < g∗ ≈ 0.67. The line
of first-order transition terminates at g∗ and gives rise to
critical behavior that belongs to the Ashkin-Teller uni-
versality class16.
In the presence of anticorrelated disorder, the ferro-

magnetic and stripe phases both survive. According to
Landau31, phase transitions between two ordered phases
that break different symmetries must be of first order.
However, the Aizenman-Wehr theorem21 forbids first-
order transitions in two-dimensional disordered systems.
This implies that the ferromagnetic and stripe phases
must be separated by an intermediate phase. This could
simply be the paramagnetic phase extending all the way
to zero temperature, or there could be a spin glass (SG)
phase at low temperatures and g close to 0.5. Unequivo-
cally resolving the phases in this parameter region is be-
yond the scope of this paper. Interestingly, a similar glass
phase was recently found via a Monte Carlo based anal-
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ysis of a disordered XY magnet defined on a pyrochlore
lattice32.
The stripe to paramagnetic transition of the undiluted

system is of first-order for 0.5 < g < g∗ ≈ 0.67. To
determine the character of this transition in the presence
of anticorrelated impurities, we analyze the stripe Binder
cumulant US in Fig. 5. In the undiluted system depicted
in Fig. 5(a), US shows a pronounced minimum close to
the transition which gets deeper with system size (see also
Fig. 5(d)). This clearly indicates a first-order transition.
In contrast, in the diluted system with p = 1/8 and g =
0.6 shown in Fig. 5(c), US does not feature any minima,
demonstrating that the first-order transition is rounded
to a continuous one, in agreement with the Aizenman-
Wehr theorem21. For the diluted system at g = 0.56,
the Binder cumulant shows weak minima, but they do
not deepen with system size. This can be attributed to
the fact that the clean first-order transition is stronger at
smaller g. The disorder-induced rounding will therefore
occur at a larger length scale beyond the moderate sizes
used in our simulations. This is compatible with the size
dependence of U⋆ shown in Fig. 5(d).
The ferromagnetic to paramagnetic transition survives

for both uncorrelated and anticorrelated impurities. The
critical behavior across all phase transition lines in the
diluted case is compatible with the two-dimensional Ising
universality class with logarithmic corrections, as is dis-
cussed in Appendix B.

VII. CONCLUSIONS

In summary, we have studied the effects of spinless im-
purities on the phases of a frustrated Ising magnet. As

the impurities do not break the Ising symmetry of the fer-
romagnetic OP, they act as rather benign random-mass
disorder in the ferromagnetic phase. Consequently, this
phase survives in the presence of the impurities, albeit
with reduced Curie temperature. In contrast, the impu-
rities can locally break the symmetry between horizon-
tal and vertical stripes and thus create effective random
fields for the nematic OP. These emerging random fields
destroy the stripe phase via domain formation.

The microscopic understanding of the random fields
has allowed us to identify a way to tune their strength.
The random fields are suppressed with increasing re-
pulsion between the impurities and completely vanish
if nearest-neighbor pairs of impurities are forbidden.
Therefore, the stripe phase survives for such perfectly
anticorrelated impurities. This mechanism offers a novel
way of controlling the phase diagram of a many-particle
system. Note that the protection of the stripe phase by
local (anti-)correlations between the impurities is similar
to the protection of a clean quantum critical point by
local disorder correlations discussed in Ref. 33.

Disorder effects in the J1 − J2 model have been previ-
ously studied in Refs. 34 and 35 by introducing quenched
bond disorder. In these references, the random field
mechanism is seemingly absent (rendering stripe phase
stable) even though symmetry arguments analog to ours
would suggest that it should be present. In Ref. 35, this
likely stems from the fact that the generalized mean-field
theory does not consider the possibility of random-field
physics at all. In the Wang-Landau study in Ref. 34, the
reason is less clear, it may have to do with the disorder
being too weak and/or the system sizes being too small.

Finally, we comment on the possibility of a nematic
phase in the Hamiltonian (1). In principle, the para-
magnetic to stripe phase transition could split into two
separate transitions: The Z4 lattice symmetry is broken
first, leading to nematic order, while the Ising spin sym-
metry is broken at a lower temperature. Nematic order
has indeed been observed in a J1-J2 model in an external
field36. However, our simulations have not provided any
indications of a nematic phase in our problem.
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APPENDIX A: DETAILS OF MONTE-CARLO

PROCEDURE

Even though cluster-flip methods such as the
Swendsen-Wang37 and Wolff38 algorithms can be used to
study random systems such as the disordered ferromag-
netic Ising model39, in the case of the disordered J1-J2
model, the efficiency of cluster algorithms is severely cur-
tailed due to the presence of the frustrated interactions40.
Thus, we are restricted to the classical single-spin-flip
Metropolis algorithm23 to perform our simulations. We
study square lattices of linear size L = 8 to 80. Each
Monte Carlo simulation consists of an equilibration pe-
riod of 106 Monte Carlo sweeps (a sweep corresponds to
one attempted spin flip per lattice site), followed by a
measurement period of another 106 sweeps, with mea-
surements taken after each sweep. To improve the equili-
bration performance, we adopt a cooling procedure. We
start the simulations at high temperatures and lower the
temperature in small steps, using the final state of the
higher temperature simulation as the initial condition for
the next lower temperature.

We investigate frustration parameters g = |J2|/J1 be-
tween 0.1 and 1.0. To study the influence of disorder, a
total number of Nimp = pL2 spinless impurity sites are
introduced into the lattice. These impurities are either
completely uncorrelated or they are perfectly anticorre-
lated such that the simultaneous occupation of nearest-
neighbor sites by impurities is forbidden. We simulate
dilutions of p = 1/8 and 1/4. We expect, however, that
the qualitative results hold for all values of p that are
sufficiently small such that lattice percolation effects do
not play a role. All observables are averaged over a large
number of impurity configurations. Specifically, we use
1000 configurations for the smaller system sizes, L = 8
to 32, and 500 configurations for the larger sizes. Using
comparatively short Monte Carlo runs for a large number
of disorder configurations improves the overall numerical
efficiency (see Ref. 41 and references therein).

APPENDIX B: FINITE-SIZE SCALING

ANALYSIS

In this section we describe the methodology adopted to
extract the critical temperature Tc and the critical expo-
nents from the Monte Carlo data of the site-diluted J1-J2
model. The analysis is based on finite-size scaling26,27 of
the stripe and ferromagnetic Binder cumulants US and
UF as well as the corresponding susceptibilities χS and
χF .
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FIG. 6. Scaling collapse of the ferromagnetic binder cumulant
UF [panels (a) and (b)] and the scaled ferromagnetic suscepti-

bility χFL
−7/4 [panels (c) and (d)] for uncorrelated impurities

at p = 1/8 and frustration parameters g = 0 and 0.3.

BI: Ferromagnetic transition

We start by analyzing the ferromagnetic Binder cumu-
lant UF defined as

UF =
3

2

(

1−
1

3

[

〈m4〉
]

[〈m2〉]
2

)

. (5)

According to finite-size scaling, the Binder cumulant
values for different system sizes L and temperatures T
should collapse onto a single master curve when plot-
ted as a function of the scaling variable x = (T −Tc)L

1/ν

where ν is the correlation length critical exponent. More-
over, as the Binder cumulant is a dimensionless quantity,
its value right at Tc should be size-independent, implying
a Taylor expansion

UF,S(T, L) = f(x) = a0 + a1x+ a2x
2 + . . . . (6)

sufficiently close to the critical point. Figures 6(a) and
(b) show examples of such scaling plots for uncorrelated
impurities at concentration p = 1/8 and frustration pa-
rameters g = 0 and 0.3, respectively. The values of Tc
and ν are extracted from fits of the UF data to the expan-
sion (6) truncated after the quadratic term. The qual-
ity of the fit can be estimated from the reduced sum of
squared errors (per degree of freedom) χ̄2 defined as

χ̄2 =
1

N −M

N
∑

i=1

[UF,i − f(xi)]
2

σ2
i

. (7)

Here, N is the number of data points, M is the number
of fit-parameters, and σ2

i is the (Monte Carlo) variance
of the value UF,i. The fits are considered of good quality
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anticorrelated uncorrelated

g Tc ν χ̄2 Tc ν χ̄2

0 1.7574(1) 1.16(1) 1.19 1.8036(1) 1.12(1) 1.36

0.1 1.4724(1) 1.11(1) 0.71 1.5234(1) 1.13(2) 1.37

0.2 1.1728(1) 1.14(3) 1.01 1.2294(1) 1.17(2) 1.10

0.3 0.8450(2) 1.14(4) 0.82 0.9108(2) 1.15(4) 1.45

TABLE I. Critical temperatures Tc, effective correlation
length exponents ν, and reduced error sums χ̄2 obtained from
the scaling analysis of the ferromagnetic Binder cumulant UF .
Results are shown for various values of the frustration param-
eter g and dilution p = 1/8 for both uncorrelated and anti-
correlated impurities. The numbers in parentheses give the
error of the last digit.

when χ̄2 / 1. Results of this analysis for both uncorre-
lated and anticorrelated impurities and several values of
the frustration parameter g are presented in Table I.
How do our results for the correlation length exponent

ν compare to theoretical predictions? The ferromagnetic-
to-paramagnetic transition in the clean, undiluted system
belongs to the two-dimensional Ising universality class.
Its correlation length exponent takes the value νcl = 1
implying that random-mass disorder is exactly marginal
according to the Harris criterion dν > 242. The fate of
the phase transition in the two-dimensional disordered
Ising model has been controversially discussed in the lit-
erature (see, e.g., Ref. 41 and references therein). Re-
cent numerical results41 demonstrate, however, that the
critical behavior of the disordered Ising model is con-
trolled by the clean two-dimensional Ising critical point
but with universal logarithmic corrections as predicted
by perturbative renormalization group calculations. Our
system sizes are too small to reliably extract logarith-
mic corrections. The ν values in Table I must therefore
be considered effective rather than asymptotic exponent
values. They are comparable to effective ν values found
in the above-mentioned high-precision study of the dis-
ordered Ising model. We thus conclude that our results
are consistent with the critical behavior of the ferromag-
netic transition belonging the disordered Ising universal-
ity class.
Further evidence is provided by the ferromagnetic sus-

ceptibility χF . Anticipating two-dimensional Ising crit-
ical behavior for which the susceptibility has a scale
dimension of 7/4, we analyze the scaling collapse of
L−7/4χF

43. Figures 6(c) and (d) show the scaling plots
of the susceptibility data for uncorrelated impurities at
concentration p = 1/8 and frustration parameters g = 0
and 0.3, respectively. As in the case of the Binder cu-
mulants, the data collapse is of good quality. Values for
Tc and ν can be found by fitting the susceptibility to the
expansion

L−7/4χF,S(T, L) = f(x) = a0 + a1x+ a2x
2 + . . . . (8)

The resulting values are summarized in Table II. They

anticorrelated uncorrelated

g Tc ν χ̄2 Tc ν χ̄2

0 1.7573(2) 1.14(3) 0.64 1.8031(2) 1.10(2) 0.80

0.1 1.4719(2) 1.10(2) 1.05 1.5234(3) 1.13(4) 0.97

0.2 1.1720(2) 1.12(3) 0.96 1.2287(2) 1.22(4) 0.72

0.3 0.8440(4) 1.04(6) 0.77 0.9102(3) 1.18(4) 1.21

TABLE II. Critical temperatures Tc, effective correlation
length exponents ν, and reduced error sums χ̄2 obtained from
the scaling analysis of the ferromagnetic susceptibility χF .
Results are shown for various values of the frustration pa-
rameter g and dilution p = 1/8 for both uncorrelated and
anticorrelated impurities.
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FIG. 7. Scaling plots of the stripe cumulant US [panels (a)
and (b)] and the stripe susceptibility χS [panels (c) and (d)]
for anticorrelated impurities of concentration of p = 1/8 and
frustration parameters g = 0.75 and g = 1.

agree well with those from the analysis of the Binder
cumulant. (For the effective exponent ν, the deviations
are within one standard deviation; for Tc they are within
two standard deviations.)

BII: Stripe transition

The stripe-ordered to paramagnetic transition can be
analyzed along the same lines as the ferromagnetic tran-
sition above. Because uncorrelated impurities completely
destroy the stripe phase, we only consider perfectly anti-
correlated impurities. Figure 7 presents example scaling
plots of the stripe Binder cumulant US and the stripe
susceptibility χS for impurity concentration p = 1/8 and
frustration parameters g = 0.75 and g = 1. The values
of Tc and the correlation length exponent ν can again be
determined from fits to Eqs. (6) and (8). The results are
summarized in Table III. In the undiluted, clean system,
the stripe to paramagnetic transition is either of first-



8

Binder cumulant US susceptibility χS

g Tc ν χ̄2 Tc ν χ̄2

0.60 0.70766(9) 0.93(2) 0.92

0.70 0.9827(1) 0.99(3) 1.10 0.9838(1) 1.04(2) 1.57

0.75 1.1020(1) 1.00(2) 1.09 1.1029(1) 1.04(2) 1.34

1 1.6361(1) 1.05(2) 1.09 1.6362(1) 1.07(1) 1.01

TABLE III. Critical temperatures Tc, effective correlation
length exponents ν, and reduced error sums χ̄2 obtained from
the scaling analysis of the stripe Binder cumulant US and the
stripe susceptibility χS. Results are shown for various val-
ues of the frustration parameter g and dilution p = 1/8 for
perfectly anticorrelated impurities.

order (for g < g∗ ≈ 0.67) or belongs to the Ashkin-Teller
universality class (for g > g∗)12–15. We have shown in the
main text that the first-order transition is rounded to a
continuous one in the presence of anticorrelated impuri-
ties, as is expected from the Aizenman-Wehr theorem21.
Our results in Table III show that the critical exponent
ν of the diluted system is close to the clean Ising value of
unity for all studied values of g. In particular, ν does not
vary systematically with g as would be expected for the
clean Ashkin-Teller universality class. The effects of dis-
order on the Ashkin-Teller universality class were studied
by Murthy44 and Cardy45 via a renormalization group
analysis that predicted clean Ising critical behavior with
universal logarithmic corrections just as in the disordered
Ising model. This was recently confirmed by large-scale
simulations41. As in the case of the ferromagnetic tran-
sition above, the system sizes in our present work are
too small to extract logarithmic corrections. However,
the effective ν values in Table III are close to the clean
two-dimensional Ising value of unity. We conclude that
our results are consistent with the critical behavior of the
stripe transition belonging to the disordered Ising univer-
sality class.

APPENDIX C: DOMAINS

p = 1/8, T = 0.55, g = 1
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FIG. 8. Local nematic order parameter ηi for each 2 × 2
plaquette of a single system of 100 × 100 sites for T = 0.55,
g = 1, and uncorrelated impurities of concentration p = 1/8
(left panel) and p = 1/4 (right panel).

As discussed in the main text, spinless impurities in
the J1-J2 Hamiltonian create random fields for the ne-
matic order parameter η = ψ2

x − ψ2
y which measures the

local preference for vertical vs. horizontal stripes. These
random fields destroy the long-range stripe order via do-
main formation. In order to image these domains, we
define a local version of the nematic order parameter via
ηi = (ψ̄2

i,x − ψ̄2
i,y) where ψ̄i,x and ψ̄i,y are formed by av-

eraging ψi,x = ρiSi(−1)xi , and ψi,y = ρiSi(−1)yi over
2× 2 plaquette number i.

Figure 8 illustrates the emergence of the domains in a
system of linear size L = 100 at g = 1 and T = 0.55 as we
increase the concentration p of impurities. For impurity
concentration p = 1/8, the local order parameter fluc-
tuates only slightly, i.e., the entire system belongs to a
single domain. For the more disordered sample, p = 1/4,
the characteristic domain size has fallen below the system
size. The figure now shows random-field induced domain
walls percolating throughout the sample, thus leading to
the destruction of long-range stripe order.
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