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A real square matrix A is said to be almost skew-symmetric 
if its symmetric part has rank one. In this article certain 
fundamental questions on almost skew-symmetric matrices 
are considered. Among other things, necessary and sufficient 
conditions on the entries of a matrix in order for it to be almost 
skew-symmetric are presented. Sums and subdirect sums are 
studied. Certain new results for the Moore–Penrose inverse of 
an almost skew-symmetric matrix are proved. An interesting 
analogue of Tucker’s theorem for skew-symmetric matrices is 
derived for almost skew-symmetric matrices. Surprisingly, this 
analogue leads to a proof of Farkas’ lemma.
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1. Introduction

In this article, we study matrices A ∈ R
n×n which have the property that their 

symmetric part is of rank one. Such matrices are called almost skew-symmetric. The 
motivation for this notion seems to have come from tournament matrices and their 
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extensions. The spectra of almost skew-symmetric matrices were also considered in the 
literature. We refer the reader to [8] and the references cited therein, for these details. 
There, certain interesting results on eigenvalues and numerical range of almost skew-
symmetric matrices are also derived. In [9], the authors study inheritance properties 
of almost skew-symmetry by the Schur complement and a generalized principal pivot 
transform.

The outline of the present work is as follows: This introductory section is followed by 
a short section on the preliminary results that will be required in the rest of the article. 
This includes some terminology. In Section 3, first we derive a fundamental result on the 
structure of an almost skew-symmetric matrix by giving certain conditions for the entries 
of the matrix. This is presented in Theorem 3.3. We then present a characterization 
for the sum of two almost skew-symmetric matrices to be almost skew-symmetric, in 
Theorem 3.4. A similar question for the subdirect sum is considered next. An answer 
is provided in Theorem 3.5. A partial converse is proved in Theorem 3.6. Section 4
presents generalizations of some results for invertible almost skew-symmetric matrices 
to the case of the Moore–Penrose inverse. These are given in Theorem 4.1, Theorem 4.2
and Theorem 4.3. For a skew-symmetric matrix A, a result of Tucker [11, Theorem 5]
asserts that, there exists a nonnegative vector u such that Au is nonnegative and the 
vector Au + u is strictly positive. This is widely referred to as Tucker’s theorem in the 
literature. Broyden has shown that this theorem is equivalent to Farkas’ lemma, a very 
well known theorem of alternative. In Section 5, a version of Tucker’s theorem for almost 
skew-symmetric matrices is presented in Theorem 5.2. Quite surprisingly, we are able 
to prove Farkas’ lemma from this result. We conclude the article by mentioning certain 
preservers of almost skew-symmetry.

2. Preliminaries

Let Rn×n denote the set of all m × n matrices over the real numbers. For A ∈ R
n×n

let S(A), K(A), R(A), N(A) and rk(A) denote the symmetric part of A (1
2 (A +At)), the 

skew-symmetric part of A (1
2 (A −At)), the range space of A, the null space of A and the 

rank of A. For A = (aij) ∈ R
n×n let diag(A) denote the column vector of diagonal entries 

of A: diag(A) = (a11, a22, . . . , ann)t. The Moore–Penrose inverse of a matrix A ∈ R
m×n

is the unique matrix X ∈ R
n×m satisfying A = AXA, X = XAX, (AX)T = AX and 

(XA)T = XA and is denoted by A†. The group inverse of a matrix A ∈ R
n×n, if it exists, 

is the unique matrix X ∈ R
n×n satisfying A = AXA, X = XAX and AX = XA and is 

denoted by A#. If A is nonsingular, then A−1 = A† = A#. Recall that A ∈ R
n×n is called 

range-symmetric if R(A) = R(At). If A is range-symmetric, then A† = A# [2, Theorem 4, 
p. 157]. A ∈ R

n×n, n ≥ 2 is called an almost skew-symmetric matrix if rk(S(A)) = 1, 
where S(A) is the symmetric part of A. It follows at once that A is almost skew-symmetric 
if and only if AT is almost skew-symmetric. The nonzero eigenvalue of S(A) is denoted 
by δ(A). In the remainder of the article we assume that δ(A) > 0; otherwise, our results 
are applicable to −A. It follows that if A is an almost skew-symmetric matrix then 



P.N. Choudhury, K.C. Sivakumar / Linear Algebra Appl. 482 (2015) 55–69 57
S(A) = wwt for some w ∈ R
n. It then follows that xtS(A)x = xtwwtx = (wtx)2 ≥ 0

for all x ∈ R
n. Thus the symmetric part of an almost skew-symmetric matrix is positive 

semidefinite. Given an almost skew-symmetric matrix A ∈ R
n×n with S(A) = wwt, the 

variance of A is denoted by V (A) = ‖K(A)w‖2

‖w‖2 , where ‖ . ‖ denotes the Euclidean norm. 
Given A = (aij) ∈ R

n×n, let A[i, j] denote the 2 ×2 submatrix of A obtained by excluding 
all the elements of the rows and columns of A indexed by 1, 2, . . . , i − 1, i + 1, . . . , n:

A[i, j] =
(
aii aij
aji ajj

)
.

The k-subdirect sum of two matrices

A =
(
A11 A12
A21 A22

)
∈ R

m×m and B =
(
B11 B12
B21 B22

)
∈ R

n×n,

in which A22, B11 ∈ R
k×k and 0 ≤ k ≤ m, n is denoted and defined as

A⊕k B =

⎛
⎝A11 A12 0

A21 A22 + B11 B12
0 B21 B22

⎞
⎠ .

Next, we list a couple of theorems to be used later. The first result is Tucker’s theorem 
for a skew-symmetric matrix. We use the notation x ≥ 0 for x ∈ R

n to denote the fact 
that the coordinates of x are nonnegative. x > 0 will signify that all the coordinates are 
positive.

Theorem 2.1. (See [11, Theorem], [4, Theorem 3.4].) Let M ∈ R
n×n be an arbitrary 

skew-symmetric matrix. Then there exists x ≥ 0 such that Mx ≥ 0 and Mx + x > 0.

The next result recalls the formula for the Moore–Penrose inverse of a structured rank-
one perturbation. We shall refer to this as the generalized Sherman–Morrison–Woodbury 
formula.

Theorem 2.2. (See [1, Theorem 2.1].) Let A ∈ R
m×n, b ∈ R(A), c ∈ R(At). Let M be a 

rank-one perturbation of A in the form M = A + bct and let λ = 1 + ctA†b �= 0. Then 
M† = A† − λ−1A†bctA†.

3. Structure of almost skew-symmetric matrices, sums and subdirect sums

If A ∈ R
n×n is a positive definite matrix then A is invertible. We have the following 

generalization for a positive semidefinite matrix. This extension has been proved in [3]
and [7]. However due to its importance and for the sake of completeness, we provide a 
proof of it.
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Theorem 3.1. Let A ∈ R
n×n be a positive semidefinite matrix. Then A is range-

symmetric. In particular, A# exists and A# = A†.

Proof. Let Ax = 0. Then xtAx = 0 so that xtAx + xtAtx = 0. Thus xt(A + At)x = 0. 
Let C = A + At. Then C is symmetric and positive semidefinite, since A is positive 
semidefinite. Therefore, there exists S ∈ R

n×n such that C = SSt. So, xtSStx = 0 so 
that Stx = 0. Thus 0 = Cx = (A + At)x. Thus Atx = 0. So N(A) ⊆ N(At). Similarly, 
we can show that N(At) ⊆ N(A). So N(A) = N(At). Hence A is range-symmetric. It 
now follows that A# exists and A# = A†. �
Theorem 3.2. Let A ∈ R

n×n be an almost skew-symmetric matrix. Then A is positive 
semidefinite.

Proof. Suppose that A is almost skew-symmetric. Then S(A) = wwt for some w ∈ R
n. 

For every x ∈ R
n, since K(A) is skew-symmetric, we have xtK(A)x = 0. So, for every 

x ∈ R
n,

xtAx = xtwwtx + xtK(A)x = (wtx)t(wtx) ≥ 0.

Hence A is positive semidefinite. �
Remark 3.1. From the results above, it follows that the group inverse and the Moore–
Penrose inverse of an almost skew-symmetric matrix coincide.

Theorem 3.3. Let A = (aij) ∈ R
n×n. If A is an almost skew-symmetric matrix, then the 

following hold:

(i) All the diagonal elements of A are nonnegative.
(ii) At least one diagonal element of A is positive.
(iii) If a diagonal element aii = 0 then aik+aki = 0 for all k = 1, 2, . . . , i −1, i +1, . . . , n.
(iv) If two diagonal elements are nonzero, say aii �= 0 and ajj �= 0, then aij+aji = 2kaii

where k2 = ajj/aii.

Conversely, if A satisfies all the conditions as above, then A is an almost skew-symmetric
matrix.

Proof. Suppose A = [aij ] is almost skew-symmetric. Then A is positive semidefinite. So, 
aii = etiAei ≥ 0. Hence (i) is true.

(ii) Let us suppose that all the diagonal elements are zero. Then tr(S(A)) = tr(A) = 0. 
But δ(A) = tr(S(A)) and δ(A) > 0, a contradiction. Hence at least one diagonal element 
of A is positive.
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(iii) Suppose that the aii = 0 for some i and suppose that there exists k ∈ {1, 2, . . . , i −
1, i + 1, . . . , n} such that aik + aki �= 0. Consider the submatrix

A[i, k] =
(
aii aik
aki akk

)
.

The symmetric part of this submatrix is

S(A[i, k]) =
(

aii
aik+aki

2
aik+aki

2 akk

)
.

Since aii = 0 and aik + aki �= 0, we have rk(S(A[i, j])) = 2. Then rk(S(A)) ≥ 2, 
a contradiction. Hence (iii) holds.

(iv) Suppose that aii �= 0 and ajj �= 0 for some i and j. Consider the submatrix

A[i, j] =
(
aii aij
aji ajj

)
.

The symmetric part of this submatrix is

S(A[i, j]) =
(

aii
aij+aji

2
aij+aji

2 ajj

)
.

Since rk(S(A)) = 1, we must have rk(S(A[i, j])) = 0 or 1. But aii �= 0 and ajj �= 0, and 
so rk(S(A[i, j])) = 1. Thus there exists a nonzero scalar k such that aij + aji = 2kaii
and ajj = 2k(aij + aji). Hence aij + aji = 2kaii where k2 = ajj/aii.

Conversely, suppose that A = [aij ] satisfies all the four properties as above. We shall 
show that S(A) has rank 1. From (i), all the diagonal elements of A are nonnegative. 
From (ii), A has at least one positive diagonal element and if any diagonal element is 
zero then by (iii), all the entries of the corresponding row and column of S(A) are zero. 
So these rows and columns of S(A) could be deleted without affecting the rank of S(A). 
So, without loss of generality, we may assume that all the diagonal elements are positive. 
Also from (iv), we have:

a22 = k2
1a11 and a12 + a21

2 = k1a11,

a33 = k2
2a11 and a13 + a31

2 = k2a11,

a33 = (k2

k1
)2a22 and a23 + a32

2 = k2

k1
a22 = k1k2a11.

By induction we then have, for j = 2, 3, 4, . . . , n,

ajj = k2
j−1a11 and a1j + aj1 = kj−1a11,
2
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ajj = (kj−1

k1
)2a22 and aj2 + a2j

2 = k1kj−1a11,

ajj = (kj−1

k2
)2a33 and a3j + aj3

2 = k2kj−1a11

and so on. So,

ajj = (kj−1

kj−2
)2aj−1j−1 and aj−1j + ajj−1

2 = kj−2kj−1a11.

Thus, S(A) is given by:

S(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 k1a11 k2a11 . . . kn−1a11
k1a11 k2

1a11 k1k2a11 . . . k1kn−1a11
k2a11 k2k1a11 k2

2a11 . . . k2kn−1a11
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

kn−1a11 kn−1k1a11 kn−1k2a11 . . . k2
n−1a11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Thus rk(S(A)) = 1. Hence A is almost skew-symmetric. �
Remark 3.2. Let a11, a22, . . . , ann be nonnegative real numbers, with at least one of these 
being nonzero. Using the theorem above, we can construct an almost skew-symmetric
matrix A with a11, a22, . . . , ann as its diagonal elements. If aii = 0, we choose any aik
and aki such that aik + aki = 0 for k = 1, 2, . . . , n. If aii �= 0 and ajj �= 0 then we take 
any aij and aji such that aij + aji = kaii, where k2 = ajj

aii
. Thus A = (aij) is an almost 

skew-symmetric matrix. If all aii are positive then S(A) is of the form (1), and each ki
has two possible values and so S(A) has 2n−1 possible choices.

Remark 3.3. The set of all skew-symmetric matrices is topologically closed. How-
ever, the set of all almost skew-symmetric matrices does not share this property. Let 

An =
( 1

n 0
0 0

)
, n ∈ N. Then An is an almost skew-symmetric matrix for each n and 

converges to the zero matrix, which is not almost skew-symmetric. The sum of two al-
most skew-symmetric matrices may not be an almost skew-symmetric matrix. Consider 

A =
(

1 0
0 0

)
and B =

(
0 0
0 1

)
. Both A and B are almost skew-symmetric matrices but 

A + B is not. In the next result, we characterize those almost skew-symmetric matrices 
A and B having the property that A + B is also almost skew-symmetric.

Theorem 3.4. Let A, B ∈ R
n×n be two almost skew-symmetric matrices with δ(A) > 0

and δ(B) > 0. Suppose that S(A) = uut and S(B) = wwt for some u, w ∈ R
n. Then 

A +B is an almost skew-symmetric matrix if and only if u and w are linearly dependent.
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Proof. Let w = αu where α ∈ R. Then S(A + B) = S(A) + S(B) = (1 + α2)uut. Thus 
rk(S(A + B)) = 1. Hence A + B is an almost skew-symmetric matrix. Conversely, let 
A + B be an almost skew-symmetric matrix. Then for some v ∈ R

n,

vvt = S(A + B) = S(A) + S(B) = uut + wwt.

It now follows that u and w are multiples of v. �
Corollary 3.1. Let A = (aij), B = (bij) ∈ R

n×n be two almost skew-symmetric matrices 
with δ(A) > 0 and δ(B) > 0. Then A + B is an almost skew-symmetric matrix if and 
only if diag(A) and diag(B) are linearly dependent.

Proof. Let diag(B) = αdiag(A) where α ∈ R. From Theorem 3.3, diag(A) and 
diag(B) are nonnegative and have at least one positive coordinate. So α > 0. By 
the same result, it follows that, S(B) = αS(A). Thus S(A + B) = (1 + α)S(A)
and so rk(S(A + B)) = 1. Hence A + B is an almost skew-symmetric matrix. Con-
versely, let A + B be an almost skew-symmetric matrix and let S(A) = uut and 
S(B) = wwt for some u, w ∈ R

n. By Theorem 3.4, w = αu where α ∈ R. Thus 
diag(B) = (w2

1, w
2
2, . . . , w

2
n)t = α2(u2

1, u
2
2, . . . , u

2
n)t = α2diag(A), showing that diag(A)

and diag(B) are linearly dependent. �
Corollary 3.2. Let A, B ∈ R

n×n be two almost skew-symmetric matrices with δ(A) > 0
and δ(B) > 0. Suppose that S(A) = uut and S(B) = wwt for some u, w ∈ R

n. Then 
A −B is an almost skew-symmetric matrix if and only if u and w are linearly dependent 
with u �= ±w.

Proof. Let w = αu where α ∈ R and α �= ±1. Then S(A − B) = S(A) − S(B) =
(1 −α2)uut. Thus rk(S(A −B)) = 1. Hence A −B is almost skew-symmetric. Conversely, 
let A −B be an almost skew-symmetric matrix. If δ(A −B) > 0 then for some 0 �= v ∈ R

n, 
vvt = S(A −B) = S(A) −S(B) = uut−wwt. Again, it follows that u and w are linearly 
dependent. If δ(A −B) < 0 we consider B−A and a similar argument shows that u and 
w are linearly dependent. �
Remark 3.4. It is easy to see that the subdirect sum of two skew-symmetric matrices 
is skew-symmetric. However, the subdirect sum of two almost skew-symmetric matrices 

may not be an almost skew-symmetric. Consider A =
(

1 0
0 0

)
and B =

(
0 0
0 1

)
. Both 

A and B are almost skew-symmetric matrices but A ⊕1 B is not. In the next result, we 
characterize those almost skew-symmetric matrices A and B having the property that 
A ⊕k B is also almost skew-symmetric.
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Theorem 3.5. Let 0 ≤ k ≤ m, n and A22, B11 ∈ R
k×k. Suppose that A =

(
A11 A12
A21 A22

)
∈

R
m×m and B =

(
B11 B12
B21 B22

)
∈ R

n×n are two almost skew-symmetric matrices with 

δ(A) > 0 and δ(B) > 0. Then A ⊕k B is an almost skew-symmetric matrix if and only 
if the following hold:

(i) diag(A11) and diag(B22) are zero vectors.
(ii) diag(A22) and diag(B11) are linearly dependent.

Proof. Suppose that A ⊕kB is almost skew-symmetric. If diag(A11) and diag(B22) both 
are nonzero vectors then rk(S(A ⊕k B)) ≥ 2, a contradiction. So, at least one of these is 
zero. Without loss of generality, let diag(A11) �= 0 and diag(B22) = 0. Since B is almost 
skew-symmetric matrix and diag(B22) = 0 so, B11 is almost skew-symmetric matrix with 
δ(B11) > 0. If diag(A22) = 0 then, by Theorem 3.3,

S(A⊕k B) =

⎛
⎝S(A11) 0 0

0 S(B11) 0
0 0 0

⎞
⎠ .

If diag(A22) �= 0 then

S(A⊕k B) =

⎛
⎝ S(A11) 1

2 (A12 + A21) 0
1
2 (A12 + A21) S(A22 + B11) 0

0 0 0

⎞
⎠ .

From Eq. (1), in both cases rk(S(A ⊕kB)) ≥ 2, a contradiction. Thus, both diag(A11) and 
diag(B22) are zero vectors. Since A is almost skew-symmetric matrix and diag(A11) = 0
so, A22 is almost skew-symmetric matrix with δ(A22) > 0. Since A ⊕k B is almost 
skew-symmetric matrix it follows that A22 +B11 is also almost skew-symmetric matrix. 
Hence by Corollary 3.1, diag(A22) and diag(B11) are linearly dependent.

Conversely, suppose that A and B satisfy both the properties. Then, by Theorem 3.3,

S(A⊕k B) =

⎛
⎝ 0 0 0

0 S(A22 + B11) 0
0 0 0

⎞
⎠ .

Since A and B are almost skew-symmetric matrices with δ(A) > 0, δ(B) > 0 and 
diag(A11) = 0, diag(B22) = 0 it follows that A22 and B11 are almost skew-symmetric 
matrices with δ(A22) > 0, δ(B11) > 0. Thus by Corollary 3.1, we have rk(S(A22 +
B11)) = 1. Hence rk(S(A ⊕k B)) = 1. �

In the next result, we study the converse question.
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Theorem 3.6. Let C =

⎛
⎝C11 C12 0

C21 C22 C23
0 C32 C33

⎞
⎠ be an almost skew-symmetric matrix with 

δ(C) > 0 where C11, C22, and C33 are square matrices. Then C can be written as either 
a subdirect sum of an almost skew-symmetric matrix A and a skew-symmetric matrix B
or as a subdirect sum of two almost skew-symmetric matrices A and B.

Proof. We observe that at least one of diag(C11), diag(C33) is the zero vector. Without 
loss of generality, suppose that diag(C11) �= 0 and diag(C33) = 0. Since C is almost 
skew-symmetric and diag(C33) = 0, it follows that

A =
(
C11 C12
C21 c22

)

is almost skew-symmetric. Thus C can be written as a subdirect sum of an almost 
skew-symmetric matrix A and a skew-symmetric matrix B, where

B =
(

0 C23
C32 C33

)
.

If both diag(C11) and diag(C33) are zero vectors then C22 is an almost skew-symmetric 
matrix, since C is almost skew-symmetric. In this case, C = A ⊕k B where

A =
(
C11 C12
C21

1
2C22

)

and

B =
( 1

2C22 C23
C32 C33

)
. �

Remark 3.5. Let A =
(
A11 A12
A21 A22

)
∈ R

n×n be an almost skew-symmetric matrix with 

δ(A) > 0, diag(A11) = 0 and A22 ∈ R
k×k. Suppose that B = uut where u =

(
u1
u2

)
∈

R
n×n. Further, let diag(u1u

t
1) and diag(A22) be linearly dependent. Then B is also an 

almost skew-symmetric matrix with δ(B) > 0. By Theorem 3.5, A ⊕k B is an almost 

skew-symmetric matrix if and only if B =
(
u1u

t
1 0

0 0

)
, since diag(B22) = 0 and so 

u2 = 0.

4. Considerations involving the Moore–Penrose inverse

In what follows, we show that results hitherto known for invertible almost skew-
symmetric matrices have extensions to the Moore–Penrose inverse case. The first result 
(Theorem 4.1) extends the statement that if A is an invertible almost skew-symmetric 
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matrix then A−1 is also almost skew-symmetric matrix. This generalization to the 
Moore–Penrose inverse was also proved in [9, Theorem 4.1] with an additional assump-
tion that A is range-symmetric. The next result (Theorem 4.2) proves an analogue 
of the statement: If A is an invertible almost skew-symmetric matrix then the skew-
symmetric part K(A) satisfies K(A−1) = K(A−tAA−t) [8, Theorem 4.1]. In the third 
assertion (Theorem 4.3), we extends formulas for K(A−1), S(A−1) and V (A−1) (proved 
in [8, Theorem 4.2]) to the case of the Moore–Penrose inverse.

Theorem 4.1. Let A ∈ R
n×n. Then A is almost skew-symmetric if and only if A† is 

almost skew-symmetric.

Proof. Since the operation of Moore–Penrose inversion is involutory, it suffices to prove 
the implication in one direction. Suppose A is an almost skew-symmetric matrix. Then 
A is range-symmetric. So, AA†At = At and A(A†+(A†)t)At = At+A. Thus rk(S(A)) ≤
rk(S(A†)). Since A† is also range-symmetric by reversing the roles of A and A†, we have 
A†A(A†)t = (A†)t and A†(A + At(A†)t) = (A†)t + A†. Thus rk(S(A†)) ≤ rk(S(A)). 
Hence rk(S(A)) = rk(S(A†)) and so A† is almost skew-symmetric. �
Theorem 4.2. Let A ∈ R

n×n be an almost skew-symmetric matrix. Then K(A†) =
K((A†)tA(A†)t).

Proof. Suppose that A is an almost skew-symmetric matrix such that S(A) = wwt, 
w ∈ R

n. First we shall show that w ∈ R(A). Now A + At = 2wwt so that for any 
x ∈ R

n, Ax + Atx = 2wtxw. Thus w ∈ R(A) + R(At). Since R(A) = R(At), we have 
w ∈ R(A). Now, we shall show that λ = 1 − 2wtA†w �= 0. If λ = 0, then wtA†w = 1

2 . 
Now, 1

2 (A + At) = wwt and so 1
2 (A + At)A†w = wwtA†w = 1

2w. Since w ∈ R(A), we 
have AA†w = w. Thus AtA†w = 0. Thus A†w ∈ N(At) ∩ R(A†). Since R(A†) = R(A)
and N(At) = R(A)⊥, we have A†w = 0, contradicting wtA†w = 1

2 . So λ �= 0. Since 
w ∈ R(A) and λ �= 0, applying the generalized Sherman–Morrison–Woodbury formula 
to At = −A + 2wwt, we obtain:

(At)† = (−A)† − 2λ−1A†wwtA†.

Thus S(A†) = −λ−1A†wwtA†. Since S(A†) is symmetric, we have A†wwtA† =
(A†wwtA†)t = (A†)twwt(A†)t. Then

1
2(A†(A + At)A†) = 1

2((A†)t(A + At)(A†)t).

Upon premultiplying by A and postmultiplying by At, we have

1(AA†(A + At)A†At) = 1(A(At)†(A + At)(A†)tAt).
2 2
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This simplifies to

1
2(At + AtA†At) = 1

2(A(A†)tA + A).

Thus 1
2 (A − At) = 1

2 (AtA†At − A(A†)tA) so that K(A) = K(AtA†At). Interchanging 
the roles of A and A† yields the desired conclusion. �
Theorem 4.3. Let A ∈ R

n×n be an almost skew-symmetric matrix. Then

(i) K(A†) = K(A)†.

Let S(A) = wwt and u = K(A)†w. Then the following hold:

(ii) S(A†) = uut and
(iii) V (A†) = ‖K(A)†u‖2

‖u‖2 .

Proof. As before, we have w ∈ R(A) and μ = 1 + wtK(A)†w = 1. Note that 
(K(A†))t = (K(A)t)† = −(K(A))†, i.e., K(A)† is skew-symmetric. Applying the gener-
alized Sherman–Morrison–Woodbury formula to A = K(A) + wwt, we obtain

A† = K(A)† −K(A)†wwtK(A)†

= K(A)† + K(A)†wwt(K(A)†)t

= uut + K(A)†.

Since K(A)† is skew-symmetric and uut is symmetric, the uniqueness of the decomposi-
tion of a matrix into symmetric and skew-symmetric summands yields (i) and (ii).

(iii) Since A is almost skew-symmetric, A† is also almost skew-symmetric, by Theo-
rem 4.1. Thus rk(S(A†)) = 1 and hence u �= 0. Using (i) and (ii) and from the definition 
of variance, it follows that

V (A†) = ‖K(A)†u‖2

‖u‖2 . �

5. Tucker’s theorem for almost skew-symmetric matrices

It is well known that, among the theorems of the alternative, the Farkas lemma, 
proved in the early part of the twentieth century, stands out. This is perhaps due to 
the all important application of the proof of the duality theorem in linear programming. 
A proof of the existence of a stationary probability vector of a Markov matrix also has 
been shown to follow from Farkas’ lemma. For more details of these statements and 
proofs we refer to the excellent book [6]. Over the period of eleven decades, Farkas’ 
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lemma has undergone a plethora of generalizations. Several new proofs have also been 
given. Let us recall a proof of Farkas’ lemma, given by Broyden [4]. He shows that 
(Theorem 1.3 in [4]) if Q is an orthogonal matrix, then there exists a positive vector x
such that Qx = Sx, where S is a diagonal matrix whose diagonal elements are equal to 
either plus or minus one (such a matrix being called a sign matrix). Using this result he 
proves Tucker’s theorem from which Farkas’ lemma is an easy corollary. For a proof of 
the other theorems of the alternative using Tucker’s theorem, we refer to [5]. This section 
presents the outcome of an attempt to explore a version of Tucker’s theorem for almost 
skew-symmetric matrices. This is presented in Theorem 5.2. Surprisingly, the latter is 
obtained from the original Tucker’s theorem. More intriguingly, this leads to yet another 
proof of Farkas’ lemma. It is perplexing for the reason that one would expect a result 
resembling Farkas’ lemma and not the result itself. This is presented in Theorem 5.3. 
On the other hand, Tucker’s theorem also has been proved using Farkas’ lemma [5,10]
where in the latter a version called Motzkin transportation theorem is utilized. In the 
light of these results, it follows that Tucker’s theorem and Farkas’ lemma are equivalent. 
With this perspective, let us add that our result of a version of Tucker’s theorem is 
sandwiched between Tucker’s theorem for skew-symmetric matrices and Farkas’ lemma 
and hence it is also equivalent to these two. This perhaps is the most interesting aspect 
of Theorem 5.2.

In the proof of Tucker’s theorem [4], the following fact is used: If A is a skew-symmetric 
matrix, then the Cayley transformation of A given by Q = (I + A)−1(I − A) is well 
defined and is an orthogonal matrix. The curiosity of whether the Cayley transformation 
exists for an almost skew-symmetric matrix and the question as to what extent it differs 
from an orthogonal matrix is answered in the following theorem. This is presented as 
a stand alone result. However, we believe that this could be the starting point of other 
investigations on the Cayley transformation of almost skew-symmetric matrices. Hence, 
this is interesting in its own right.

Theorem 5.1. Let A ∈ R
n×n be an almost skew-symmetric matrix with δ(A) > 0. Then 

(I+A) is invertible. Further, if Q = (I+A)−1(I−A), then rk(I−QtQ) = rk(I−QQt) = 1.

Proof. Let (I + A)x = 0. Then 0 ≤ xtAx = −xtx = ‖x‖. So, x = 0. Hence (I + A) is 
invertible. Let

Q = (I + A)−1(I −A) = (I −A)(I + A)−1.

Then

I −QtQ = (I + At)−1(I + At)(I + A)(I + A)−1 − (I + At)−1(I −At)(I −A)(I + A)−1

= (I + At)−1(2(A + At))(I + A)−1

= 4(I + At)−1S(A)(I + A)−1.
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Thus rk(I −QtQ) = 1. Similarly we get

I −QQt = 4(I + A)−1S(A)(I + At)−1.

Hence rk(I −QQt) = 1. �
As was mentioned in the introduction, Tucker’s theorem states that if A is a skew-

symmetric matrix then there exists a vector u satisfying: u ≥ 0, Au ≥ 0 and Au +u > 0. 
In what follows, we prove a version for almost skew-symmetric matrices.

Theorem 5.2. Let A ∈ R
n×n be an almost skew-symmetric matrix with δ(A) > 0. Then 

there exist vectors u ≥ 0, v ≥ 0 and v ∈ N(S(A)) such that Au ≥ 0, Au + v > 0 and 
u −Atv > 0.

Proof. Let A be an almost skew-symmetric matrix with δ(A) > 0. Define the block 
matrix M ∈ R

2n×2n by

M =
(

0 A

−At 0

)
.

Then M is a skew-symmetric matrix. By Theorem 2.1, there exists x ≥ 0 such that

Mx ≥ 0 and Mx + x > 0.

Let x = (vt, ut)t. Then u ≥ 0 and v ≥ 0 such that

Au ≥ 0, −Atv ≥ 0, Au + v > 0 and u−Atv > 0.

Now, we only require to show that v ∈ N(S(A)). We have −Atv ≥ 0 so that −vtAtv ≥ 0
and so −vtAv ≥ 0. Thus −vt(A +At)v ≥ 0 so that vtS(A)v ≤ 0. But vtS(A)v ≥ 0, since 
S(A) is positive semidefinite. Thus vtS(A)v = 0. This means that vtwwtv = 0 so that 
wtv = 0. Thus v ∈ N(S(A)). �

Using Theorem 5.2 we now prove Farkas’ lemma.

Theorem 5.3. Let A ∈ R
m×n and b ∈ R

m. Then either

(a) Ax = b has solution x ≥ 0

or (exclusive)

(b) there exists z ∈ R
m such that Atz ≤ 0 and btz > 0.
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Proof. Define the block matrix B ∈ R
(2m+n+1)×(2m+n+1) by

B =

⎛
⎜⎜⎝

0 0 A −b

0 0 −A b

−At At 0 0
bt −bt 0 1

⎞
⎟⎟⎠ .

Then B is an almost skew-symmetric matrix with symmetric part S(B) = diag(0, 0,
. . . , 1). By Theorem 5.2, there exist vectors u ≥ 0, v ≥ 0 and v ∈ N(S(B)) such that

Bu ≥ 0, Bu + v > 0 and u−Btv > 0.

Now

N(S(B)) = {(vt1, vt2, vt3, 0)t: v1, v2 ∈ R
m and v3 ∈ R

n}.

If Bu = 0, then from Bu + v > 0 we obtain v > 0, a contradiction, since v ∈ N(S(B)). 
So 0 �= Bu ≥ 0. Let u = (zt1, zt2, xt, p)t, p ∈ R. Then

⎛
⎜⎜⎝

0 0 A −b

0 0 −A b

−At At 0 0
bt −bt 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z1
z2
x

p

⎞
⎟⎟⎠ ≥ 0.

Now, we consider the two cases p > 0 and p = 0. If p > 0 then the vector u can be 
normalized so that p = 1. This yields

Ax− b ≥ 0 and −Ax + b ≥ 0.

Thus Ax = b, giving (a). If p = 0 then

−Atz1 + Atz2 ≥ 0 and btz1 − btz2 ≥ 0.

Let z = z1 − z2. Then

Atz ≤ 0 and btz ≥ 0.

If btz = 0, then the last coordinate of Bu +v will be 0, a contradiction, since Bu +v > 0. 
So btz > 0, yielding (b). �
6. Preservers of almost skew-symmetry

In this short section, we present certain preservers of almost skew-symmetric matrices. 
First, consider the mapping φ : Rn×n → R

n×n defined by φ(A) = PAPT , where P is a 
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fixed invertible matrix. Then φ is linear, bijective and φ−1 also has a similar form. Also, 
φ(A) is almost skew-symmetric if and only if so is A (with a similar statement being true 
for the inverse map φ−1). In particular, if PT = P−1, then δ(φ(A)) = δ(A). The argument 
as above, is applicable for the mapping A �→ PATPT . Next, define ψ : Rn×n → R

n×n

by ψ(A) = PA†PT . Then ψ is bijective and not linear. By Theorem 4.1, it now follows 
that ψ(A) is almost skew-symmetric if and only if A is almost skew-symmetric (with 
a similar statement being true for the inverse map ψ−1). Let us conclude by pointing 
however, that we are not aware of the most general form of a linear preserver of almost 
skew-symmetry.
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