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The non homogeneous backward Cauchy problem ut + Au = f(t), u(τ) = φ for 
0 ≤ t < τ is considered, where A is a densely defined positive self-adjoint unbounded 
operator on a Hilbert space H with f ∈ L1([0, τ ], H) and φ ∈ H is known to be an ill-
posed problem. A truncated spectral representation of the mild solution of the above 
problem is shown to be a regularized approximation, and error analysis is considered 
when both φ and f are noisy. Error estimates are derived under appropriate choice 
of the regularization parameter. The results obtained unify and generalize many of 
the results available in the literature.
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1. Introduction

Let H be a Hilbert space and A : D(A) ⊂ H → H be a densely defined positive self-adjoint unbounded 
operator. For τ > 0, φ ∈ H and f ∈ L1([0, τ ], H), consider the problem of solving the final value problem, 
denoted briefly as FVP,

ut + Au = f(t), 0 ≤ t < τ (1.1)

u(τ) = φ. (1.2)

Here, L1([0, τ ], H) denotes the space of all H-valued integrable functions on [0, τ ], i.e., g ∈ L1([0, τ ], H) if 
and only if g : [0, τ ] → H is measurable and

τ∫
0

‖g(t)‖dt < ∞.
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The problem is to find a function u : [0, τ ] → H which is differentiable and satisfies the equations (1.1)
and (1.2). It is well known that the above FVP is ill-posed (cf. Goldstein [6]). Therefore, in order to obtain 
stable approximate solutions for (1.1)–(1.2), some regularization method has to be employed. A particular 
case of the above FVP which has got wide applications in science and engineering is the backward heat 
conduction problem (BHCP) in which the Hilbert space H is the space L2(Ω), where Ω is a domain in Rk

for some k ∈ N, and −A = Δ, the Laplacian operator in L2(Ω) (see Isakov [7], Nair [10]).
The homogeneous FVP, that is, when f = 0, has been studied by many authors using different approaches. 

Many of them have used the quasi-reversibility method, introduced by Lattes and Lions [8]. The main idea 
of this method is to consider a perturbed form of the operator A (see e.g., Miller [9], Showalter [12] and 
Boussetila and Rebbani [2]). Another approach to study the homogeneous FVP considered by some authors 
is by perturbing the final value; such method is called quasi-boundary value method (see, e.g. Clark and 
Oppenheimer [3], Denche and Bessila [4], Denche and Djezzar [5]). Clark and Oppenheimer, Denche and 
Bessila have restricted their study of quasi-boundary value method when operator A is having discrete 
spectrum. In [1], Boussetila and Rebbani have studied homogeneous FVB by perturbing the final value as 
well as the operator A.

We may recall from semigroup theory (cf. [11]) that if u(·) is a solution of the equation

ut + Au = f(t), 0 < t ≤ τ,

then it has the representation

u(t) = S(t)φ0 +
t∫

0

S(t− s)f(s)ds

where φ0 = u(0) and {S(t) : t ≥ 0} is the C0 semigroup generated by −A. In fact,

S(t) = e−tA :=
∞∫
0

e−tλdEλ,

where {Eλ : λ ≥ 0} is the resolution of identity of A, and {e−tA : t ≥ 0} is a differentiable semigroup 
(cf. [11]). With the above notation,

u(t) =
∞∫
0

e−tλdEλφ0 +
t∫

0

⎛
⎝

∞∫
0

e−(t−s)λdEλf(s)

⎞
⎠ ds.

Note that the above representation is meaningful whenever f ∈ L1([0, τ ], H), and in that case u : [0, τ ] → H

defined by

u(t) =
∞∫
0

e−tλdEλφ0 +
t∫

0

⎛
⎝

∞∫
0

e−(t−s)λdEλf(s)

⎞
⎠ ds (1.3)

is called the mild solution of the initial value problem (IVP)

ut + Au = f(t), 0 < t ≤ τ, (1.4)

u(0) = φ0 (1.5)
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for φ0 ∈ H. If the final value φ := u(τ) is known instead of the initial value φ0 := u(0), then u(·) in (1.3)
can be written as

u(t) =
∞∫
0

e(τ−t)λdEλφ−
τ∫

t

⎛
⎝

∞∫
0

e(s−t)λdEλf(s)

⎞
⎠ ds, t ∈ [0, τ ], (1.6)

provided

∞∫
0

e2τλd‖Eλφ‖2 < ∞ and
τ∫

0

∥∥∥
∞∫
0

eλsdEλf(s)
∥∥∥ds < ∞. (1.7)

We shall justify this statement in Section 2.
In particular, for the homogeneous FVP, that is, for f = 0, we have

u(t) =
∞∫
0

e(τ−t)λdEλφ, t ∈ [0, τ ]

whenever
∞∫
0

e2τλd‖Eλφ‖2 < ∞.

Since the operator e(τ−t)A and e(s−t)A are unbounded, the representation of u(·) in (1.6) shows small 
perturbations in φ or f or in both can lead to large deviations in the solution. Therefore, if the data φ and 
f are noisy, then to get a stable approximate solution, some regularization method has to be employed.

In [13], Tuan considered a regularized solution for the homogeneous problem by using the truncation of 
the above representation, namely

uβ(t) =
β∫

0

e(τ−t)λdEλφ, t ∈ [0, τ ], β > 0.

Analogously, in [14], the authors Tuan and Trong considered the regularized solution of the non-
homogeneous FVP, as

uβ(t) =
β∫

0

e(τ−t)λdEλφ−
τ∫

t

⎛
⎝

β∫
0

e(s−t)λdEλf(s)

⎞
⎠ ds, t ∈ [0, τ ], β > 0 (1.8)

and obtained the error estimate as

‖uβ(t) − u(t)‖ = O(e−tβ), t ∈ [0, τ ], β > 0 (1.9)

under certain assumptions on φ and f so that the representation of u(·) in (1.6) is meaningful. Note that 
the estimate (1.9) is not useful if t = 0. For obtaining an estimate which also includes the case of t = 0, the 
conditions considered in [14] are

∞∫
λ2pd‖Eλu(t)‖ < ∞ and

∞∫
e2λqd‖Eλu(t)‖ < ∞
0 0
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for some p > 0, q > 0, which lead to the estimates

‖uβ(t) − u(t)‖ = O(e−tββ−p)

and

‖uβ(t) − u(t)‖ = O(e−β(t+q)),

respectively. They restricted their study for inexact data in φ only.
In this paper, we carry out a unified error analysis by suggesting conditions on φ and f as

∞∫
0

[h(λ)]2e2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

[h(λ)]eλsdEλf(s)
∥∥∥ds ≤ η

for some ρ > 0 and η ≥ 0, where h : (0, ∞) → (0, ∞) is a monotonically increasing piecewise continuous 
function. In fact, we prove that

‖uβ(t) − u(t)‖ ≤ O

(
e−tβ

h(β)

)
, t ∈ [0, τ ].

When the data φ and f are noisy, that is, if we have φε and fδ in place of φ and f respectively with

‖φε − φ‖ ≤ ε and ‖f − fδ‖ ≤ δ

for some ε, δ > 0, then we suggest a strategy of choosing the regularization parameter β := β(ε, δ) which 
yields an error estimate in terms of a function of ε, δ as well as the convergence

uβ,ε,δ(t) → u(t) as ε → 0 and δ → 0,

for each t ∈ [0, τ ].
In Section 2 we present the preliminary results required for our analysis, where we also define the concept 

of a mild solution of the FVP using the spectral representation of functions of the unbounded operator A
and also prove some properties of the mild solution. In Section 3, a regularized approximation of the mild 
solution is defined using spectral cut-off, and prove our main theorems of the paper with exact data φ, f and 
also with noisy data φε, fδ, and deduce as special cases many of the known results. Analysis for separate 
noisy data in φ and f is obtained as particular cases of what we have discussed in Section 3.

2. Preliminaries

2.1. Some consequences of spectral theorem

Let A : D(A) ⊂ H → H be a densely defined positive self-adjoint unbounded operator on the Hilbert 
space H. Recall from spectral theorem (cf. Yosida [15]) that

Au :=
∞∫
0

λdEλu, u ∈ D(A)

where

D(A) := {u ∈ H :
∞∫
λ2d‖Eλu‖2 < ∞},
0
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and for any continuous or piecewise continuous function g : [0, ∞) → [0, ∞), the operator g(A) is defined by

g(A)u :=
∞∫
0

g(λ)dEλu, u ∈ D(g(A)),

where

D(g(A)) := {u ∈ H :
∞∫
0

g(λ)2d‖Eλu‖2 < ∞}.

In particular, we define the operator etA as

etAu :=
∞∫
0

eλtdEλu, ∀u ∈ D(etA)

where

D(etA) := {u ∈ H :
∞∫
0

e2λtd‖Eλu‖2 < ∞}.

We may also observe that, with

S(t) = e−tA :=
∞∫
0

e−tλdEλ, t ≥ 0,

the family {S(t) : t ≥ 0} of bounded linear operators on H is a differentiable strongly continuous (or C0) 
semigroup with ‖S(t)‖ ≤ 1 for all t ≥ 0, −A is its infinitesimal generator (cf. [11]). With these notations, 
the following lemmas can be proved.

Lemma 2.1. For t > 0, let us denote the range of the operator e−tA by R(e−tA) and domain of the operator 
etA by D(etA). Then

R(e−tA) ⊆ D(etA) ⊆ D(An) ∀n ∈ N.

Lemma 2.2. For t ≥ 0,

e−tAetA = I on D(etA),

etAe−tA = I on H.

In particular, for t > 0, the operator etA is a closed operator and S(t) := e−tA is injective with its range 
D(etA).

2.2. Spectral representation of the solution

Now we derive the expression (1.6). More precisely, we prove the following theorem.

Theorem 2.3. Suppose the equation (1.1) has a solution u(·). Suppose φ := u(τ) and f ∈ L1([0, τ ], H) satisfy 
the following conditions:
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(1) φ ∈ D(eτA),
(2) f(s) ∈ D(esA) for all s ∈ [0, τ ] and
(3) the function s �→ esAf(s), s ∈ [0, τ ] belongs to L1([0, τ ], H).

Then

u(t) =
∞∫
0

e(τ−t)λdEλφ−
τ∫

t

∞∫
0

e(s−t)λdEλf(s)ds.

Proof. Since f ∈ L1([0, τ ], H), by using results from semigroup theory, the solution u(t) of the initial value 
problem (1.1) is given by (cf. [11])

u(t) = S(t)u(0) +
t∫

0

S(t− s)f(s)ds. (2.1)

Using the notation e−tA for S(t), (2.1) takes the form

u(t) = e−tAu(0) +
t∫

0

e−(t−s)Af(s)ds. (2.2)

In particular,

φ := u(τ) = e−τAu(0) +
τ∫

0

e−(τ−s)Af(s)ds.

Since φ ∈ D(eτA), f(s) ∈ D(esA) for all s ∈ [0, τ ] and the function s �→ esAf(s) belongs to L1([0, τ ], H), we 
have

eτAφ = u(0) + eτA
[ τ∫

0

e−(τ−s)Af(s)ds
]

= u(0) +
τ∫

0

esAf(s)ds.

Therefore,

u(0) = eτAφ−
τ∫

0

esAf(s)ds.

Substituting the above representation of u(0) in (2.2), we get

u(t) = e−tA
[
eτAφ−

τ∫
0

esAf(s)ds
]

+
t∫

0

e−(t−s)Af(s)ds

= e(τ−t)Aφ−
τ∫
e(s−t)Af(s)ds +

t∫
e−(t−s)Af(s)ds
0 0
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= e(τ−t)Aφ−
τ∫

t

e(s−t)Af(s)ds.

Thus,

u(t) =
∞∫
0

e(τ−t)λdEλφ−
τ∫

t

∞∫
0

e(s−t)λdEλf(s)ds. �

Remark 2.4. We observe that a sufficient condition on f , in order to satisfy the condition (3) in Theorem 2.3, 
is

τ∫
0

∞∫
0

e2sλd‖Eλf(s)‖2ds < ∞, (2.3)

or equivalently, the function s �→ esAf(s) belongs to L2([0, τ ], H), since, by Cauchy–Schwarz inequality,

τ∫
0

∥∥∥
∞∫
0

esλdEλf(s)
∥∥∥ds ≤ √

τ

⎛
⎝

τ∫
0

∥∥∥
∞∫
0

esλdEλf(s)
∥∥∥2

ds

⎞
⎠

1/2

=
√
τ

⎛
⎝

τ∫
0

∞∫
0

e2sλd‖Eλ(f(s))‖2ds

⎞
⎠

1/2

.

The conditions in (2.3) and φ ∈ D(eτA) are exactly the assumptions of Tuan and Trong [14] for obtaining 
the estimate (1.9). ♦

In view of Theorem 2.3, we introduce the following definition.

Definition 2.5. If φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions (1)–(3) in Theorem 2.3, that is,

(1) φ ∈ D(eτA),
(2) f(s) ∈ D(esA) for all s ∈ [0, τ ] and
(3) the function s �→ esAf(s), s ∈ [0, τ ] belongs to L1([0, τ ], H),

then the function u : [0, τ ] → H defined by

u(t) =
∞∫
0

e(τ−t)λdEλφ−
τ∫

t

∞∫
0

e(s−t)λdEλf(s)ds, (2.4)

is called the mild solution of the FVP given by (1.1) and (1.2). ♦

Theorem 2.6. Suppose φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions (1)–(3) in Definition 2.5. Let u(·)
be the mild solution of the FVP given by (1.1) and (1.2). Then

(i) u(t) ∈ D(An) for all t ∈ (0, τ), n ∈ N and
(ii) u(·) is continuous on [0, τ ].
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Proof. We observe that the mild solution u(·) of the FVP given by (1.1) and (1.2) is

u(t) = e(τ−t)Aφ−
τ∫

t

e(s−t)Af(s)ds, (2.5)

which can be rewritten as

u(t) = e−tA
(
eτAφ−

τ∫
t

esAf(s)ds
)

so that

u(t) ∈ R(e−tA),∀t ∈ (0, τ).

Hence, by Lemma 2.1, we obtain (i).
Now, we prove (ii). Since for x ∈ H, the function t �→ e−tAx is continuous on [0, ∞) (cf. Pazy [11]). 

Hence, the function t �→ e(τ−t)Aφ = e−tA(eτAφ) is continuous on [0, τ ]. Hence, it is enough to show that the 
function t �→ v(t) := − 

∫ τ

t
e(s−t)Af(s)ds is continuous on [0, τ ]. Let t0 ∈ [0, τ ] and t ∈ (0, τ), then

v(t) − v(t0) = −
τ∫

t

e(s−t)Af(s)ds +
τ∫

t0

e(s−t0)Af(s)ds

= −e−tA
( τ∫
t0

esAf(s)ds +
t0∫
t

esAf(s)ds
)

+ e−t0A
( τ∫
t0

esAf(s)ds
)

=
(
e−tA − e−t0A

)
y − e−tA

( t0∫
t

esAf(s)ds
)

where y = − 
∫ τ

t0
esAf(s)ds. By Cauchy–Schwarz inequality,

∥∥∥e−tA
( t0∫

t

esAf(s)ds
)∥∥∥ ≤

∥∥∥
t0∫
t

esAf(s)ds
∥∥∥

≤
( τ∫

0

‖esAf(s)‖2ds
) 1

2 (|t− t0|)
1
2 .

From the above, we have

lim
t→t0

e−tA
( t0∫

t

esAf(s)ds
)

= 0.

Also, by the continuity of t �→ e−tAy,

lim
t→t0

(
e−tA − e−t0A

)
y = 0.

Hence lim
t→t0

v(t) = v(t0). Thus, t �→ v(t) is continuous on [0, τ ], and (ii) is proved. �
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3. Regularization and error analysis

3.1. Error estimate with exact data

Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions (1)–(3) in Definition 2.5 and let u(·) be the mild 
solution of the FVP given by (1.1) and (1.2), that is,

u(t) =
∞∫
0

e(τ−t)λdEλφ−
τ∫

t

∞∫
0

e(s−t)λdEλf(s)ds. (3.1)

As we have already remarked in Section 1, the dependence of u(·) on φ and f is not continuous due to the 
terms e(τ−t)λ and e(s−t)λ in the first integral and last integral in (3.1). Therefore, following [14] for noisy 
data in φ, we consider the regularized solution for β > 0 as

uβ(φ, f, t) =
β∫

0

e(τ−t)λdEλφ−
τ∫

t

β∫
0

e(s−t)λdEλf(s)ds. (3.2)

The following theorem shows the continuous dependence of uβ(φ, f, t) on φ and f .

Theorem 3.1. Let φ1, φ2 ∈ H and f1, f2 ∈ L1([0, τ ], H). Then

‖uβ(φ1, f1, t) − uβ(φ2, f2, t)‖ ≤ e(τ−t)β
(
‖φ1 − φ2‖ + ‖f1 − f2‖

)
, 0 ≤ t ≤ τ.

Proof. For t ∈ [0, τ ],

uβ(φ1, f1, t) − uβ(φ2, f2, t) =
β∫

0

eλ(τ−t)dEλ(φ1 − φ2) −
τ∫

t

β∫
0

e(s−t)λdEλ(f1 − f2)(s)ds.

Therefore,

‖uβ(φ1, f1, t) − uβ(φ2, f2, t)‖ ≤
∥∥∥

β∫
0

eλ(τ−t)dEλ(φ1 − φ2)
∥∥∥ +

τ∫
t

∥∥∥
β∫

0

e(s−t)λdEλ(f1 − f2)(s)
∥∥∥ds. (3.3)

Now, using the fact that e2λ(τ−t) ≤ e2β(τ−t) for 0 ≤ λ ≤ β,

∥∥∥
β∫

0

eλ(τ−t)dEλ(φ1 − φ2)
∥∥∥2

=
β∫

0

e2λ(τ−t)d‖Eλ(φ1 − φ2)‖2

≤ e2β(τ−t)‖φ1 − φ2‖2.

Thus,

∥∥∥
β∫
eλ(τ−t)dEλ(φ1 − φ2)

∥∥∥ ≤ eβ(τ−t)‖φ1 − φ2‖. (3.4)

0
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Again, using similar inequation as in (3.4) and the fact e(s−t)λ ≤ e(τ−t)β , for all s ∈ [t, τ ], we get

τ∫
t

∥∥∥
β∫

0

e(s−t)λdEλ(f1 − f2)(s)
∥∥∥ds ≤

τ∫
t

e(s−t)β‖(f1 − f2)(s)‖ds ≤ e(τ−t)β‖f1 − f2‖. (3.5)

From (3.3), using (3.4) and (3.5), we get

‖uβ(φ1, f1, t) − uβ(φ2, f2, t)‖ ≤ e(τ−t)β
(
‖φ1 − φ2‖ + ‖f1 − f2‖

)
. �

Recall that the conditions (1)–(3) in Definition 2.5 imply

∞∫
0

e2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

eλsdEλf(s)
∥∥∥ds ≤ η (3.6)

for some ρ > 0, η ≥ 0. Now, we prove one of the main theorems of this paper under the general conditions 
on φ and f , namely,

∞∫
0

[h(λ)]2e2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

[h(λ)]eλsdEλf(s)
∥∥∥ds ≤ η (3.7)

for some ρ > 0, η ≥ 0 (depending on the function h), where h : (0, ∞) → (0, ∞) is a monotonically increasing 
piecewise continuous function, which can lead to better error estimates than those possible under (3.6).

Theorem 3.2. Suppose φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7). Let u(t) and uβ(t) :=
uβ(φ, f, t) be as in (3.1) and (3.2), respectively. Then

‖u(t) − uβ(t)‖ ≤ (ρ + η)e−tβ

h(β) , 0 ≤ t ≤ τ.

In particular the following hold.

(i) For 0 < t ≤ τ ,

‖u(t) − uβ(t)‖ → 0 as β → ∞.

(ii) If lim
λ→∞

h(λ) = ∞, then for 0 ≤ t ≤ τ ,

‖u(t) − uβ(t)‖ → 0 as β → ∞.

Proof. Let t ∈ [0, τ ]. From (3.1) and (3.2), we obtain

u(t) − uβ(t) =
∞∫
β

e(τ−t)λdEλφ−
τ∫

t

∞∫
β

e(s−t)λdEλf(s)ds.

Therefore

‖u(t) − uβ(t)‖ ≤
∥∥∥

∞∫
e(τ−t)λdEλφ

∥∥∥ +
τ∫ ∥∥∥

∞∫
e(s−t)λdEλf(s)

∥∥∥ds. (3.8)

β t β
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Now, using the fact that e−2λt

[h(λ)]2 ≤ e−2βt

[h(β)]2 for λ ≥ β,

∥∥∥
∞∫
β

e(τ−t)λdEλφ
∥∥∥2

=
∞∫
β

e2(τ−t)λd‖Eλφ‖2

=
∞∫
β

e−2λt

[h(λ)]2 [h(λ)]2e2τλd‖Eλφ‖2

≤ e−2tβ

[h(β)]2

∞∫
0

[h(λ)]2e2τλd‖Eλφ‖2

≤ e−2tβ

[h(β)]2 ρ
2.

Thus,

∥∥∥
∞∫
β

e(τ−t)λdEλφ
∥∥∥ ≤ ρ

e−tβ

h(β) . (3.9)

Also,

∥∥∥
∞∫
β

e(s−t)λdEλf(s)
∥∥∥2

=
∞∫
β

e2(s−t)λd‖Eλf(s)‖2

=
∞∫
β

e−2tλ

[h(λ)]2 [h(λ)]2e2sλd‖Eλf(s)‖2

≤ e−2tβ

[h(β)]2

∞∫
0

[h(λ)]2e2sλd‖Eλf(s)‖2

= e−2βt

[h(β)]2
∥∥∥

∞∫
0

[h(λ)]eλsdEλf(s)
∥∥∥2

.

Thus,

τ∫
t

∥∥∥
∞∫
β

e(s−t)λdEλf(s)
∥∥∥ds ≤ η

e−tβ

h(β) . (3.10)

From (3.8), using (3.9) and (3.10), we get

‖u(t) − uβ(t)‖ ≤ (ρ + η) e
−tβ

h(β) .

Note that for any give β0 > 0,

e−tβ

≤ e−tβ0

∀β ≥ β0,

h(β) h(β0)
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so that for 0 < t ≤ τ ,

‖u(t) − uβ(t)‖ → 0 as β → ∞.

In case h(β) → ∞ as β → ∞, we obtain

‖u(t) − uβ(t)‖ → 0 as β → ∞

for every t ∈ [0, τ ]. �
Remark 3.3. We remark that if h : (0, ∞) → (0, ∞) in Theorem 3.2 is a bounded function then we cannot
infer convergence of uβ(0) to u(0) as β → ∞.

Let us consider a few special cases of the function h in Theorem 3.2:
(i) Suppose h(λ) = λp, λ > 0 for some p > 0. Then the conditions on φ and f in (3.7) take the forms

∞∫
0

λ2pe2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

λpeλsdEλf(s)
∥∥∥ds ≤ η

and we obtain

‖u(t) − uβ(t)‖ ≤ (ρ + η)β−pe−tβ for all t ∈ [0, τ ].

In particular,

‖u(0) − uβ(0)‖ ≤ (ρ + η)β−p.

(ii) Suppose h(λ) = eqλ, λ > 0 for some q > 0. Then the conditions on φ and f in (3.7) take the forms

∞∫
0

e2λ(τ+q)d‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

eλ(s+q)dEλf(s)
∥∥∥ds ≤ η

and we obtain

‖u(t) − uβ(t)‖ ≤ (ρ + η)e−β(t+q) for all t ∈ [0, τ ].

In particular,

‖u(0) − uβ(0)‖ ≤ (ρ + η)e−qβ .

(iii) Suppose h(λ) = 1, λ > 0. Then the conditions on φ and f in (3.7) take the forms

∞∫
0

e2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

eλsdEλf(s)
∥∥∥ds ≤ η

and we obtain

‖u(t) − uβ(t)‖ ≤ (ρ + η)e−βt for all t ∈ (0, τ ].

In this case, we cannot infer uβ(0) → u(0) as β → ∞. ♦
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Corollary 3.4. Suppose

τ∫
0

∞∫
0

[h(λ)]2e2λsd‖Eλf(s)‖2ds ≤ η2

holds in place of the the second integral in (3.7). Then

‖u(t) − uβ(t)‖ ≤ (ρ + η
√
τ)e−tβ

h(β) , 0 ≤ t ≤ τ.

Proof. By Cauchy–Schwarz inequality, we have

( τ∫
0

∥∥∥
∞∫
0

[h(λ)]eλsdEλf(s)
∥∥∥ds)2

≤ τ

τ∫
0

∥∥∥
∞∫
0

[h(λ)]eλsdEλf(s)
∥∥∥2

ds

≤ τ

τ∫
0

∞∫
0

[h(λ)]2e2λsd‖Eλf(s)‖2ds

≤ τη2.

Hence, the result follows immediately from Theorem 3.2. �
Remark 3.5. Suppose that h(A)esAf(s) is well defined for all s ∈ [0, τ ]. Then the assumptions on f in 
Theorem 3.2 and Corollary 3.4 correspond to the assumptions that the function s �→ h(A)esAf(s) belongs 
to L1([0, τ ], H) and L2([0, τ ], H), respectively. Therefore, the assumption on f in Theorem 3.2 is weaker 
than that in Corollary 3.4. ♦

3.2. Error estimate under noisy data

Now, let us assume that the data φ and f are noisy, that is, if we have φε and fδ in place of φ and f
respectively with

‖φε − φ‖ ≤ ε and ‖f − fδ‖ ≤ δ.

Let u(t) be as in (3.1) and let uβ,ε,δ(t) := uβ(φε, fδ, t) be defined as in (3.2), that is,

uβ,ε,δ(t) =
β∫

0

e(τ−t)λdEλφε −
τ∫

t

β∫
0

e(s−t)λdEλfδ(s)ds

for each β > 0.

Theorem 3.6. Suppose φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7). Then

‖u(t) − uβ,ε,δ(t)‖ ≤ e−tβ

(
(ε + δ)eτβ + (ρ + η)

h(β)

)
, 0 ≤ t ≤ τ.

Proof. Let 0 ≤ t ≤ τ and let uβ(t) := uβ(φ, f, t) be defined as in (3.2). Using Theorem 3.1, we have

‖uβ(t) − uβ,ε,δ(t)‖ ≤ e(τ−t)β
(
‖φ− φε‖ + ‖f − fδ‖

)
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so that

‖u(t) − uβ,ε,δ(t)‖ ≤ e(τ−t)β
(
‖φ− φε‖ + ‖f − fδ‖

)
+ ‖u(t) − uβ(t)‖.

Since ‖φ − φε‖ ≤ ε and ‖f − fδ‖ ≤ δ,

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + ‖u(t) − uβ(t)‖. (3.11)

Now (3.11), using Theorem 3.2, implies

‖u(t) − uβ,ε,δ(t)‖ ≤ e−tβ

(
(ε + δ)eτβ + (ρ + η)

h(β)

)
, 0 ≤ t ≤ τ. �

Corollary 3.7. The following results hold.

(i) Suppose φ ∈ H, f ∈ L1([0, τ ], H) satisfy the conditions

∞∫
0

e2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

eλsdEλf(s)
∥∥∥ds ≤ η

for some ρ > 0 and η ≥ 0. Then

‖u(t) − uβ,ε,δ(t)‖ ≤ e−tβ
(
(ε + δ)eτβ + ρ + η

)
, 0 ≤ t ≤ τ.

(ii) Suppose φ ∈ H, f ∈ L1([0, τ ], H) satisfy the conditions

∞∫
0

λ2pe2λτd‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

λpeλsdEλf(s)
∥∥∥ds ≤ η

for some ρ, p > 0 and η ≥ 0. Then

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + (ρ + η)e−tββ−p, 0 ≤ t ≤ τ.

(iii) Suppose φ ∈ H, f ∈ L1([0, τ ], H) satisfy the conditions

∞∫
0

e2λ(τ+q)d‖Eλφ‖2 ≤ ρ2 and
τ∫

0

∥∥∥
∞∫
0

eλ(s+q)dEλf(s)
∥∥∥ds ≤ η

for some ρ, q > 0 and η ≥ 0. Then

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + (ρ + η)e−(t+q)β , 0 ≤ t ≤ τ.

Proof. The results in (i), (ii) and (iii) follow from Theorem 3.6 by taking h(λ) = 1, h(λ) = λp and h(λ) = eqλ, 
respectively. �
Remark 3.8. Suppose h(β) → ∞ as β → ∞. Then, there exists β0 > 0 such that 1

h(β) ≤ 1, ∀β > β0. 
Therefore,

e−tβ

(
(ε + δ)eτβ + ρ + η

)
≤ e−tβ

(
(ε + δ)eτβ + ρ + η

)
∀β > β0.
h(β)
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Thus, in this case, the estimate in Theorem 3.6 leads to the estimate in Corollary 3.7(i). However, the 
estimate in Corollary 3.7(i) is not useful for t = 0. ♦

Remark 3.9. Let us consider the homogeneous FVP, that is, f = 0. In this case we have η = 0 and

u(t) =
∞∫
0

e(τ−t)λdEλφ, t ∈ [0, τ ]

so that

‖u(0)‖2 =
∞∫
0

e2λτd‖Eλφ‖2.

In this case, we have negated δ for the following expressions.
(i) Suppose h ≡ 1. Then the condition on φ in Corollary 3.7(i) can be replaced by ‖u(0)‖ ≤ ρ and the 

error estimate in Theorem 3.6 becomes

‖u(t) − uβ,ε(t)‖ ≤ e−tβ
(
εeτβ + ρ

)
.

This is the estimate obtained by Tuan ([13], Theorem 2.3) for homogeneous final value parabolic problem.
(ii) Suppose h(λ) = λp for some p > 0. Then the condition on φ in Theorem 3.6, which is same as the 

condition in Corollary 3.7(ii), is

∞∫
0

λ2pe2λτd‖Eλφ‖2 ≤ ρ2, (3.12)

and the error estimate in Theorem 3.6 becomes

‖u(t) − uβ,ε(t)‖ ≤ εe(τ−t)β + ρβ−pe−tβ .

If we choose β = a
τ ln(1

ε ), (0 < a < 1), then

‖u(t) − uβ,ε(t)‖ ≤ ε
at
τ +1−a +

(τ
a

)p

ρ
(
ln(1

ε
)
)−p

, ∀t ∈ [0, τ ].

This is the estimate obtained by Tuan ([13], Theorem 2.4(a)) for homogeneous final value parabolic problem 
under the assumption that

∞∫
0

λ2pd‖Eλu(t)‖2 < ∞ ∀ t ∈ [0, τ ]. (3.13)

We show below that (3.12) and (3.13) are equivalent, so that result of ([13], Theorem 2.4(a)) is a particular 
case of our Theorem 3.6.

Using spectral theorem for the operator A, we have

u(t) =
∞∫
e(τ−t)λdEλφ = e(τ−t)Aφ
0
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so that

Eμu(t) = χ[0, μ](A)u(t) = χ[0, μ](A)e(τ−t)Aφ =
μ∫

0

e(τ−t)λdEλφ

and

‖Eμu(t)‖2 =
μ∫

0

e2(τ−t)λd‖Eλφ‖2.

Therefore (cf. Yosida [15]),

∞∫
0

μ2pd‖Eμu(t)‖2 =
∞∫
0

μ2pe2(τ−t)μd‖Eμφ‖2.

Hence,

∞∫
0

μ2pd‖Eμu(t)‖2 < ∞ ∀ t ∈ [0, τ ] if and only if
∞∫
0

λ2pe2τλd‖Eλφ‖2 < ∞,

that is, (3.12) and (3.13) are equivalent.
(iii) Suppose h(λ) = eqλ for some q > 0, corresponding to Theorem 3.6. Then, it is seen that

∞∫
0

e2λ(q+τ)d‖Eλφ‖2 ≤ ρ2, (3.14)

and the error estimate in Theorem 3.6 becomes

‖u(t) − uβ,ε(t)‖ ≤ εe(τ−t)β + ρe−β(t+q).

If we choose β = 1
τ+q ln(1

ε ), then

‖u(t) − uβ,ε(t)‖ ≤ ε
q

τ+q

(
ε

t
τ+ρ + ρ

)
.

This is the estimate obtained by Tuan ([13], Theorem 2.4(b)) for homogeneous FVP proved under the 
assumption that

∞∫
0

e2qμd‖Eμu(t)‖2 < ∞ ∀ t ∈ [0, τ ]. (3.15)

As in (ii) above, it can be shown that (3.14) and (3.15) are equivalent, so that Theorem 2.4(b)) of Tuan 
[13] is a particular case of our Theorem 3.6. ♦

3.3. Error estimates under parameter choice strategies

The following three theorems follow from Theorem 3.6 by direct substitution.
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Theorem 3.10. Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7) with h ≡ 1 and let ch,ρ,η =
ρ + η. Then taking

β := 1
τ

ln
[ tch,ρ,η
(ε + δ)(τ − t)

]
,

we have

‖u(t) − uβ,ε,δ(t)‖ ≤
[τ
t

] t
τ
[ τ

τ − t

]1− t
τ

c
1− t

τ

h,ρ,η(ε + δ)t/τ for 0 < t < τ. (3.16)

Further,

max
0<t<τ

[τ
t

] t
τ
[ τ

τ − t

]1− t
τ = 2

and taking

β := 1
τ

ln
(ch,ρ,η
ε + δ

)
,

‖u(t) − uβ,ε,δ(t)‖ ≤ 2c1−
t
τ

h,ρ,η(ε + δ) t
τ for 0 ≤ t ≤ τ. (3.17)

Theorem 3.11. Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7) with h(λ) = λp, λ > 0 for 
some p > 0, and let ch,ρ,η := ρ + η. Then taking

β := γ

τ − t
ln

( 1
ε + δ

)

for some γ with 0 < γ < 1,

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)1−γ + ch,ρ,η(ε + δ)
γt

τ−t

(τ − t

γ

)p[
ln

( 1
ε + δ

)]−p

, 0 ≤ t < τ. (3.18)

Further, if we choose

β := 1
τ

ln
( 1
ε + δ

)
,

then

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)t/τ
(

1 + ch,ρ,ητ
p
[
ln

( 1
ε + δ

)]−p
)
, 0 ≤ t ≤ τ. (3.19)

Theorem 3.12. Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7) with h(λ) = eqλ, t > 0 for 
some q > 0, and let ch,ρ,η := ρ + η. Then taking

β = 1
τ + q

ln
[ (t + q)ch,ρ,η
(ε + δ)(τ − t)

]
,

we have

‖u(t) − uβ,ε,δ(t)‖ ≤
(τ + q)(τ − t) τ+q

t+q

c
1− t+q

τ+q

h,ρ,η (ε + δ)
t+q
τ+q , 0 ≤ t < τ. (3.20)
τ − t t + q
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Further,

max
0≤t<τ

(τ + q

τ − t

)(τ − t

t + q

) τ+q
t+q = 2

and taking β = 1
τ+q ln( ch,ρ,η

ε+δ ),

‖u(t) − uβ,ε,δ(t)‖ ≤ 2c1−
t+q
τ+q

h,ρ,η (ε + δ)
t+q
τ+q , 0 ≤ t ≤ τ. (3.21)

Remark 3.13. Let us explain the motivation for the choice of β in Theorems 3.10, 3.11, 3.12.
(i) Recall that, in Theorem 3.6, for h ≡ 1, that is, in Corollary 3.7(i), we obtained the estimate

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + ch,ρ,ηe
−tβ , 0 ≤ t ≤ τ

where ch,ρ,η := ρ + η. Note that for fixed ε, δ > 0 and 0 < t < τ ,

e−tβ → 0 and (ε + δ)e(τ−t)β → ∞ as β → ∞.

So, a natural choice of β would be in such a way that the function

g(β) = (ε + δ)e(τ−t)β + ch,ρ,ηe
−tβ , 0 < t < τ

attains its minimum. It can be seen that for β = 1
τ ln

[
tch,ρ,η

(ε+δ)(τ−t)

]
= βε,δ (say), the function g attains its 

minimum value and it is given by

g(βε,δ) =
[τ
t

] t
τ
[ τ

τ − t

]1− t
τ

c
1− t

τ

h,ρ,η(ε + δ)t/τ .

Thus, we obtain (3.16).
Also, if we choose β such that

(ε + δ)e(τ−t)β = ch,ρ,ηe
−tβ ,

then we have g(β) = 2ch,ρ,ηe−tβ . Note that

(ε + δ)e(τ−t)β = ch,ρ,ηe
−tβ iff β = 1

τ
ln

(ch,ρ,η
ε + δ

)
.

Thus, we obtain the estimate in (3.17).
Since lim

α→0+
αα = 1, we may also observe that

lim
t→0

[τ
t

] t
τ
[ τ

τ − t

]1− t
τ = 1 = lim

t→τ

[τ
t

] t
τ
[ τ

τ − t

]1− t
τ

and

max
0<t<τ

[τ
t

] t
τ
[ τ

τ − t

]1− t
τ = 2.

(ii) In Theorem 3.6, for h(λ) = λp for some p > 0, i.e., in Corollary 3.7(ii), we obtained the estimate

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + ch,ρ,ηe
−tββ−p, 0 ≤ t ≤ τ
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with ch,ρ,η := ρ + η. We have to find β := β(ε, δ) in such a way that β(ε, δ) → ∞ as ε → 0 and δ → 0. So, 
we may consider β in the form

β = ξ(t) ln( 1
ε + δ

)

for some suitable positive function ξ(t). Substituting this choice of β in the expression (ε + δ)e(τ−t)β , we 
obtain

(ε + δ)e(τ−t)β = (ε + δ)1−(τ−t)ξ(t).

Thus, it is necessary that 0 < ξ(t) < 1/(τ − t). So, we may consider ξ(t) = γ/(τ − t) for some γ with 
0 < γ < 1, which leads to the choice

β = γ

τ − t
ln

( 1
ε + δ

)
.

Thus, we obtain (3.18).
In (3.18), if we choose γ in such a way that

1 − γ = γt

τ − t
,

then (3.18) takes the form

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)1−γ
{

1 + ch,ρ,η

(τ − t

γ

)p[
ln

( 1
ε + δ

)]−p}
.

Note that

1 − γ = γt

τ − t
iff γ = τ − t

τ
.

Thus, the choice γ = τ−t
τ leads to

β = γ

τ − t
ln

( 1
ε + δ

)
= 1

τ
ln

( 1
ε + δ

)

and this choice of β leads to (3.19).
(iii) In Theorem 3.6, for h(λ) = eqλ, ∀λ ∈ (0, ∞) for some q > 0 i.e., in Corollary 3.7(iii), we obtained 

the estimate

‖u(t) − uβ,ε,δ(t)‖ ≤ (ε + δ)e(τ−t)β + ch,ρ,ηe
−(t+q)β , 0 ≤ t ≤ τ,

where ch,ρ,η := ρ + η.
So, we may choose the regularization parameter β := β(ε, δ) such that the function

g(β) = e−tβ
(
(ε + δ)eτβ + ch,ρ,ηe

−qβ
)
, 0 ≤ t < τ

attains its minimum. It can be seen that such a β is

β = 1 ln
[ (t + q)ch,ρ,η ]

= βε,δ (say)

τ + q (ε + δ)(τ − t)
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and the minimum value of g is

g(βε,δ) =
(τ + q

τ − t

)(τ − t

t + q

) τ+q
t+q

c
1− t+q

τ+q

h,ρ,η (ε + δ)
t+q
τ+q , 0 ≤ t < τ.

Thus, we obtain the estimate (3.20).
Also, if we choose β such that (ε + δ)e(τ−t)β = ch,ρ,ηe

−(q+t)β, that is, if

β = 1
τ + q

ln
(
ch,ρ,η
ε + δ

)
,

then we obtain the estimate (3.21). We may observe that

max
0≤t<τ

(τ + q

τ − t

)(τ − t

t + q

) τ+q
t+q = 2. ♦

General case: Let h : (0, ∞) → (0, ∞) be a continuous monotonically increasing function satisfying (3.7). 
Then

h(β)eτβ → ∞ as β → ∞.

In view of the estimate in Theorem 3.6, using the arguments as in Nair [10], we would like to find β = βε,δ

such that

ch,ρ,η
h(β) = (ε + δ)eτβ

i.e.,

1
h(β)eτβ = ε + δ

ch,ρ,η
,

where ch,ρ,η := ρ + η.
We shall make use of the following lemma whose proof is obvious from the properties of continuous 

functions.

Lemma 3.14. Let h : (0, ∞) → (0, ∞) be a continuous monotonically increasing function satisfying (3.7)
and let

ψ(λ) = 1
h(λ)eτλ , λ > 0.

Then, ψ : (0, ∞) → (0, ∞) is continuous strictly monotonically decreasing function and for 0 < ε +δ < �ch,ρ,η
with ch,ρ,η := ρ + η and � := lim

λ→0
(1/h(λ)), there exists a unique βε,δ > 0 such that

ψ(βε,δ) = ε + δ

ch,ρ,η

and βε,δ → ∞ as (ε + δ) → 0. i.e., βε,δ → ∞ as ε → 0 and δ → 0.
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Theorem 3.15. Let h : (0, ∞) → (0, ∞) be a continuous monotonically increasing function and let φ ∈ H

and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7). For 0 < ε + δ < �ch,ρ,η with ch,ρ,η := ρ + η and 
� := lim

λ→0
(1/h(λ)), let βε,δ > 0 be as in Lemma 3.14. Then

‖uβε,δ,ε,δ(t) − u(t)‖ ≤ 2ch,ρ,η
e−tβε,δ

h(βε,δ)
, 0 ≤ t ≤ τ. (3.22)

In particular,

‖uβε,δ,ε,δ(t) − u(t)‖ → 0 as ε → 0 and δ → 0, ∀t ∈ (0, τ ].

Further, if h is unbounded function, then

‖uβε,δ,ε,δ(t) − u(t)‖ → 0 as ε → 0 and δ → 0, ∀t ∈ [0, τ ].

Proof. The estimate in (3.22) for the error ‖uβε,δ,ε,δ(t) − u(t)‖ follows from Theorem 3.6. The remaining 
part of the theorem is a consequence of (3.22). �
Remark 3.16. Suppose h : (0, ∞) → (0, ∞) is monotonically increasing, but not continuous. Since ψ is a 
monotonically decreasing function on (0, ∞) and ψ(λ) → 0 as λ → ∞, 0 is a limit point of R(ψ), the range 
of ψ. Therefore, there exists a strictly monotonically decreasing sequence {ζn} in R(ψ) such that ζn → 0 as 
n → ∞. For each n ∈ N, let βn > 0 be such that

ψ(βn) = ζn.

As ψ is strictly monotonically decreasing function, the sequence (βn) is strictly increasing, and βn → ∞ as 
n → ∞. Then, taking εn + δn = ch,ρ,ηζn, we obtain

‖uβn,εn,δn(t) − u(t)‖ ≤ 2ch,ρ,η
e−tβn

h(βn) , 0 ≤ t ≤ τ.

In particular, for each t ∈ (0, τ ],

‖uβn,εn,δn(t) − u(t)‖ → 0 as n → ∞.

Further, if h is unbounded function, then for each t ∈ [0, τ ],

‖uβn,εn,δn(t) − u(t)‖ → 0 as n → ∞. ♦

Corollary 3.17. Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7). Then, with β = βε,δ =
1
τ

ln
(ch,ρ,η
ε + δ

)
,

‖u(t) − uβ,ε,δ(t)‖ ≤ 2c1−
t
τ

h,ρ,η(ε + δ) t
τ , 0 ≤ t ≤ τ.

Proof. Follows from Theorem 3.15 by taking h(λ) ≡ 1. �
Corollary 3.18. Let φ ∈ H and f ∈ L1([0, τ ], H) satisfy the conditions in (3.7) and let β = βε = 1

q+τ ln( ch,ρ,η

ε+δ )
for some q > 0. Then

‖u(t) − uβ,ε,δ(t)‖ ≤ 2c
τ−t
τ+q

h,ρ,η(ε + δ)
t+q
τ+q , 0 ≤ t ≤ τ.
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Proof. Follows from Theorem 3.15 by taking h(λ) = eqλ, λ > 0. �
Conclusion: We have defined mild solution for FVP for non-homogeneous parabolic problem equation, 
considered regularized approximation for the mild solution and derived error estimates under inexact data 
with appropriate a priori parameter choice strategies when the noise is not only in the final value, but also 
in the source term. The main theorems of this paper unify many of the results available in the literature, 
and they are presented in a simple and straight forward manner.
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