Header menu link for other important links
X
Triplet pairing in pure neutron matter
Published in American Physical Society
2016
Volume: 94
   
Issue: 6
Abstract
We study the zero-temperature BCS gaps for the triplet channel in pure neutron matter using similarity renormalization group (SRG) evolved interactions. We use the dependence of the results on the SRG resolution scale as a tool to analyze medium and many-body corrections. In particular, we study the effects of including the three-body interactions at leading order, which appear at next-to-next-to leading order (N2LO) in the chiral effective field theory (EFT), as well as that of the first-order self-energy corrections on the zero-temperature gap. In addition we also extract the transition temperature as a function of densities and verify the BCS scaling of the zero-temperature gaps to the transition temperature. We observe that the self-energy effects are very crucial in order to reduce the SRG resolution scale dependence of the results, while the three-body effects at the leading order do not change the two-body resolution scale dependence. On the other hand, the results depend strongly on the three-body cutoff, emphasizing the importance of the missing higher-order three-body effects. We also observe that self-energy effects reduce the overall gap as well as shift the gap closure to lower densities. © 2016 American Physical Society.
About the journal
JournalData powered by TypesetPhysical Review C
PublisherData powered by TypesetAmerican Physical Society
ISSN24699985
Open AccessNo