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Many-body states that are invariant under particle relabelling, the permutation symmetric states,
occur naturally when the system dynamics is described by symmetric processes or collective spin
operators. We derive expressions for the reduced density matrix for arbitrary subsystem decompo-
sition for these states and study properties of permutation symmetric states and their subsystems
when the joint system is picked randomly and uniformly. Thus defining a new random matrix
ensemble, we find the average linear entropy and von Neumann entropy which implies that ran-
dom permutation symmetric states are marginally entangled and as a consequence the tripartite
mutual information (TMI) is typically positive, preventing information from being shared globally.
Applying these results to the quantum kicked top viewed as a multi-qubit system we find that
entanglement, mutual information and TMI all increase for large subsystems across the Ehrenfest
or log-time and saturate at the random state values if there is global chaos. During this time the
out-of-time order correlators (OTOC) evolve exponentially implying scrambling in phase space. We
discuss how positive TMI may coexist with such scrambling.

I. INTRODUCTION

Classical dynamical systems have a hierarchy of com-
plexity from ergodic to mixing andK− systems [1]. Clas-
sical Hamiltonian systems that are nonintegrable are ca-
pable of displaying the highest amount of deterministic
randomness dubbed chaos. Quantum chaos aims to ad-
dress and extend these questions to the quantum do-
main [2, 3]. Seminal works in this regard range from
semiclassical methods utilizing classical unstable peri-
odic orbits [4], energy level fluctuations and the use of
random matrix theory [5–7], characteristics of semiclas-
sical Wigner functions of chaotic eigenfunctions [8, 9].
Study of model systems from two-dimensional billiards
[10, 11] to quantum maps [12] was crucial in this devel-
opment and brought up phenomena including scarring
of eigenfunctions and dynamical localization. Most of
these works have a strong focus on the time-independent
Schrödinger’s equation and the properties of the station-
ary states of a single particle.
Few and many-particle quantum chaos has received at-

tention, largely from a spectral statistics point of view,
but also including dynamics and entanglement genera-
tion studies [13–26]. The connections with topics rang-
ing from thermalization in closed systems to informa-
tion scrambling are currently being vigorously explored
[27, 28]. Although nuclear physicists have long devel-
oped techniques such as the two-body-random matrix
and embedded ensembles [29, 30] to deal with the spec-
tral statistics of many-body systems. Ironically the nu-
clear many-body physics which motivated the canonical
random matrix ensembles [31] is most relevant for single
particle chaotic systems. With the advent of controlling
quantum systems, evolving and measuring them, dynam-
ical aspects of few and many-body physics and chaos have
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taken the center stage. Two recent experiments that pre-
serve the purity of complex time-evolving states illustrate
the richness of this domain [32, 33].

Quantum information science has added a new per-
spective and a new set of questions to the study of quan-
tum chaos. Here, one is naturally led to consider how
the dynamical generation of entanglement, quantum dis-
cord and other information theoretic quantities between
quantum subsystems is connected with the chaotic dy-
namics of coupled classical degrees of freedom [34–45].
In this regard, the tensor product structure of quantum
mechanics, essential for understanding systems with mul-
tiple degrees of freedom is crucial [34–36, 43]. Attempts
to address these questions has resulted in a better un-
derstanding of quantum phenomena like entanglement
and decoherence by connecting time evolved states under
quantum chaotic Hamiltonians to properties of random
states.

Such studies address fundamental issues of complex-
ity in quantum systems and are potentially applicable in
quantum information processing, where quantum corre-
lations like entanglement and quantum discord are con-
sidered to be a crucial resource. More recently, out-of-
time-order correlators (OTOCs), which are linked to how
large the commutator of observables can grow with time,
have been studied extensively for their connection with
chaos as well as “information scrambling”, and in partic-
ular, their growth till the Ehrenfest time has been inves-
tigated [46–52]. On similar lines, tripartite mutual infor-
mation (TMI) has been associated with delocalization of
information, or scrambling [53], and connections between
TMI and OTOC have been explored in this context [52].
It is conjectured that black holes are the fastest scram-
blers, and perhaps therefore, the most quantum chaotic
of systems. Some studies argue that a negative TMI im-
plies the scrambling of quantum information [52, 53].

Many-body systems have an intimate connection with
chaos, in as much as it arises due to non-integrability re-
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sulting from having fewer constants of motion than the
total number of degrees of freedom. In the quantum
domain, this coupling also results in quantum correla-
tions between the local subsystems. Many quantum sys-
tems that are nonintegrable and display chaos, such as
the currently intensely investigated Sachdev-Ye-Kitaev
(SYK) model do not have apparent classical limits. How-
ever there are many-body systems whose collective ob-
servables have a classical limit that has a conventional
integrability-chaos transition.

In our study, we employ one such model where a
multi-qubit system is collectively modeled as a kicked
top [3, 54–56] that transitions from regular to chaotic
behaviour with suitable choice of parameters. Such Flo-
quet, periodically forced systems which have natural real-
izations in quantum circuits [57], can give rise to a variety
of dynamical features allowing us to explore connections
between complexity of quantum chaos, properties of ran-
dom states and dynamical generation of tripartite mutual
information, OTOCs and entanglement. Like the SYK
model, the kicked-top, considered as a many-body sys-
tem, also involves all-to-all interaction of qubits, but the
crucial difference is that the kicked top is not disordered,
the source of the chaos in the system is from both an ex-
ternal uniform magnetic field and from periodic driving.

The lack of disorder is central for enabling collective
variables and for restricting dynamics to a subspace that
is permutation symmetric. Thus in this paper, we con-
sider in detail an ensemble of pure states that are uni-
formly selected from the permutation symmetric N + 1
dimensional subspace, that is random permutation sym-

metric states of N qubits. We point out how to formulate
the reduced density matrix for an arbitrary number of
qubits in such states. A Q qubit reduced density matrix
can be written as a (Q+1)× (Q+1) dimensional matrix
rather than a 2Q dimensional one, and therefore we can
scale up to large number of qubits easily. More crucially
it implies that Q qubit subsystems have an entropy, and
hence entanglement, that cannot be larger than ln(Q+1)
and in particular we show that typical states have an en-
tropy that differs from this by a small number. Thus
the states have an entanglement that is not a “volume
law” (proportional to Q), but more akin to critical spin
chains [58] which follow a so-called area law [59–63]. Thus
there is qualitatively much less entanglement in random
N qubit permutation symmetric states than in generic
states.

We study the eigenvalue distributions of the re-
duced density matrices of random permutation symmet-
ric states and compare with the Marchenko-Pastur dis-
tribution which is valid for generic states [64]. In par-
ticular, for arbitrary sized subsystems we give analyti-
cal results for the average linear entropy of entanglement
and provide estimates for the mutual informations based
on linear entropy, as well as for the von Neumann en-
tropy. While time-evolving states in a chaotic situation
tends to these random states, we also study dynamical
generation of quantum correlations as we evolve coher-

ent states through repeated applications of the kicked
top unitary. Dynamical behaviour of correlations like
entanglement as a function of chaos for the kicked top
viewed as a systems of qubits, have been undertaken in
the past [41, 42, 44, 65]. However, such studies have
largely focussed on single qubit and two qubit subsys-
tems of the joint permutationally invariant state under
evolution. In contrast, we consider subsystems contain-
ing arbitrary number of qubits and study their relevant
correlations under chaotic dynamics.
Interestingly, we find that the dynamical behaviour of

TMI is very similar to the behaviour of bipartite mu-
tual information, which we refer to as mutual informa-
tion (MI), and entanglement between subsystems under
consideration. We also find that despite chaos in the sys-
tem, TMI is positive for most states in the permutation
symmetric subspace. Indeed, by applying Lévy’s lemma
to permutation symmetric systems, we show that most
states will have a positive TMI when there are a large
number of qubits in the system. This confirms the previ-
ous finding that TMI can be positive or negative for both
integrable as well as non-integrable systems [53], where
non-integrable spin chains have been shown to result in
positive TMI for a class of states that are prepared in the
all-up state, which incidentally is obviously permutation
symmetric. Thus it also appreciated that the sign of the
TMI is dependent on the type of states that are evolved.
The positive TMI in the present work is a reflection

of the permutation symmetry of the states and is con-
nected, as we will show below, to the area-law scaling
of the entanglement. Although the TMI is positive, the
OTOCs as defined with symmetric collective operators
can grow exponentially as we demonstrate. We compare
the behaviour of TMI with that of OTOCs to further
underline that TMI, sometimes defined as a metric of
“scrambling of quantum information”, captures different
aspects of quantum dynamics than the OTOCs. Another
salient feature that comes from the study of permutation
symmetric states is that for large enough subsystems the
value of many correlations, such as the MI, TMI, and en-
tanglement saturate to the permutation symmetric ran-
dom state value after the Ehrenfest time that scales as
ln(N). Thus while the sign of the TMI is not a quantum
signature of classical chaos, the time it takes to saturate
could be considered as one.
For completeness we define the TMI between 3 subsys-

tems A,B and C as

I3(A : B : C) = I2(A : B)+ I2(A : C)− I2(A : BC), (1)

where I2(X : Y ) = H(X) +H(Y ) −H(XY ) = H(X) −
H(X |Y ) is the MI between X and Y , and H(·) is the
Shannon entropy classically and von Neumann entropy
quantum mechanically. A negative TMI implies the joint
system BC contains more information about the “input”
system A than the subsystems B and C individually.
This is the classic case of when the whole is more than the
parts. A related interpretation is that a negative TMI im-
plies that the mutual information is monogamous, while
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a positive TMI implies that the same information is be-
ing shared by other parties. See [53, 66, 67] for further
elucidations and insights into this quantity.
In the case of kicked tops, since there is a mapping to

qubits, we can talk about the TMI between the qubits
and find I3(n1, n2, n3) where ni are the number of qubits
in three different non-overlapping subsystems. Due to
permutation symmetry it does not matter which qubits
belong to the partitions. For instance I3(1, 1, 1) is the
TMI between any 3 qubits. While the TMI is sensitive to
the nature of classical dynamics, chaos does not imply a
negative TMI due to permutation symmetry. In contrast,
in the absence of this symmetry it is easy to see that
typical states have a negative TMI [66].
The remainder of this paper is organized as follows. In

sections II and III we study the properties of permutation
symmetric states and their subsystems, and the proper-
ties of random permutation symmetric states including
the eigenvalue distributions of the reduced density ma-
trices. Reviewing the essential ideas, we derive analytic
expressions for the typical entanglement and information
theoretic quantities of a random state when we are re-
stricted to the permutationally invariant subspace of the
full tensor product space. This is of relevance here given
the symmetry of the system. In section IV, we discuss
the dynamical behaviour of tripartite mutual information
and OTOCs, and explore the behaviour of ensemble av-
erage of TMI. Our results are discussed and summarized
in Sec V.

II. PERMUTATION SYMMETRIC STATES

As has been noted in the introduction, previous stud-
ies on qubit entanglement in the kicked top has been
restricted to one or two qubits at the most. On the other
hand the most well-studied case of “block entanglement”
concerning entanglement of a large number of spins (typ-
ically one-half) with others, especially in the context of
random permutation symmetric states, is largely unex-
plored in this model. Recent works like [68] consider the
Schmidt decomposition of various bipartitions of Dicke
states but do not deal with typicality, randomness and
quantum chaos in this context. Also previous works such
as [69–74] have studied the reduced density matrices of
permutationally invariant systems and their entangle-
ment. Our approach here is to focus on generic pure
permutation symmetric states with a view of defining
an ensemble of them that would be useful in studies of
quantum chaos as for example in the kicked top which
we subsequently analyze in detail.
This presents an opportunity to study random states

restricted to permutation symmetric subspaces. While
random states on the whole Hilbert space is well-studied
essentially using methods of random matrix theory, en-
sembles within such restrictions remain by and large
open. Recently an experiment used three qubits (j =
3/2) to explore the kicked top Floquet unitary operator

and claimed evidence for thermalization in the chaotic
regime [32]. Thus a critical examination of the permu-
tation symmetric subspace may also be warranted from
such viewpoints. As the stationary and time evolved
states of the kicked top are permutation symmetric states
of 2j qubits, we consider in this section properties of such
states that will interest us.
Consider a system of N qubits. If this system has

permutation symmetry, then the effective dimension of
the system is N + 1 instead of 2N , an exponential dif-
ference. The “standard” basis vectors for such a per-
mutation symmetric N -qubit system is given by N + 1
orthonormal states known as Dicke states [75]. Say
{|i〉 = |binary expansion of i〉 | 0 ≤ i ≤ 2N − 1} is the
computational basis for the N -qubit system. The most
natural basis for the permutation symmetric case is then
obtained by taking appropriate linear combinations of
the computational basis vectors. The states involved
in any particular (permutation symmetric) basis vector
must have the same number of zeroes and ones, so that
the linear combination is invariant under an arbitrary
permutation of the qubits. These are given as follows.

|mN 〉 = 1

cN (m)

∑

0≤i≤2N−1
w(i)=m

|i〉 , 0 ≤ m ≤ N (2)

where, w(i) is the Hamming weight of i, which is the
number of 1 in the binary expansion of i. The normal-
ization constant is

cN (m) =

√

(

N

m

)

=

√

N !

m!(N −m)!
. (3)

It can be easily verified that the N + 1 Dicke states are
orthonormal and indeed permutation symmetric. An ar-
bitrary N -qubit permutation symmetric pure state can
be written as

|ψ〉 =
N
∑

m=0

am |mN 〉 ,
N
∑

m=0

|am|2 = 1. (4)

All states of the kicked top, eigenstates or time-evolving
ones, viewed as a multi-qubit one are of this form, with
N = 2j + 1.
In order to compute the Q-qubit (Q < N) reduced

density matrix we wish to write this state in terms of
tensor products of Dicke states corresponding to the Q-
qubit and the (N − Q)-qubit subsystems. That is, we
want a (Q + 1) × (N − Q + 1) dimensional “coefficient
matrix” A such that

|ψ〉 =
Q
∑

m=0

N−Q
∑

n=0

Amn |mQ〉 |nN−Q〉 (5)

Such an expansion is well defined as the state has to
be permutation symmetric in the first Q block of spins
as well in its complement. It is useful to note that, every
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state of the form of Eq. (4) can be written as in Eq. (5),
but not vice-versa. Thus the matrix elements Amn are
correlated in a specific way, which is also seen as they will
involve the ak which are only N+1 in number. However,
the advantage of writing |ψ〉 in this way is that the Q-
qubit reduced density matrix (in the standard Q-qubit
permutation symmetric basis) is simply ρQ = AA† as
the sub-block Dicke states are also orthonormal.
Now the only remaining task is to determine the ma-

trix elements of A. Observe that |mQ〉 |nN−Q〉 will con-
tribute a sum of N -qubit computational basis states cor-
responding to the Dicke state |(m+ n)N 〉. It is impor-
tant to note that these need not be equal; rather, the
computational basis vectors obtained from the former
Dicke states (tensor product) is contained in the lat-
ter Dicke state. Appropriately handling the normaliza-
tion factors involved with the Dicke states, we see that
Amn/(cQ(m)cN−Q(n)) = am+n/cN (m+ n) or

Amn =
cQ(m)cN−Q(n)

cN (m+ n)
am+n. (6)

As an example if N = 4, an arbitrary permutation
symmetric pure state is given in the Dicke basis as

|ψ〉 = a0|04〉+ a1|14〉+ a2|24〉+ a3|34〉+ a4|44〉. (7)

If

A′ =









a0 a1/2 a1/2 a2/
√
6

a1/2 a2/
√
6 a2/

√
6 a3/2

a1/2 a2/
√
6 a2/

√
6 a3/2

a2/
√
6 a3/2 a3/2 a4









. (8)

then

|ψ〉 =
3
∑

i,j=0

A′
ij |ij〉, (9)

where the binary representation of i, j represent the qubit
states. Thus in the standard basis the reduced density
matrix of two qubits ρ2 is A′A′†. However as is clear
the rank of A′ and consequently ρ2 is only 3, and this
therefore calls for a reduction of the matrix to a typi-
cally full-rank 3× 3 matrix. This is essentially the coeffi-
cient matrix in the permutation symmetric basis of {|00〉,
(|01〉+ |10〉)/

√
2, |11〉} and is given by

A =





a0
√
2a1/2 a2/

√
6√

2a1/2 2a2/
√
6

√
2a3/2

a2/
√
6

√
2a3/2 a4



 . (10)

In general a Q qubit reduced density matrix is derived
from a 2Q × 2N−Q dimensional coefficient matrix A′

ij =

aw(i)+w(j)/cN (w(i) + w(j)), with 0 ≤ i ≤ 2Q − 1 and

0 ≤ j ≤ 2N−Q − 1. However this is largely rank-deficient
and it suffices to consider the typically full rank (Q+1)×
(N −Q+ 1) dimensional array in Eq. (6).

With this, theQ-qubit reduced density matrix, as men-
tioned before, is ρQ = AA†. Note that this matrix is
(Q+ 1)× (Q+ 1) dimensional as we are expanding it in
terms of the Q-qubit permutation symmetric standard
basis. The problem of entanglement of Q qubits is re-
duced to a linear problem in the number of qubits rather
than the usual exponential one, a consequence of the per-
mutation symmetry. Thus a two qubit reduced density
matrix is a 3× 3 one and hence at most rank-3, and the
maximum entropy of such a state is log2 3, rather than
2 ebits of a general state of 2 qubits. In general a re-
duced density matrix of Q qubits can have at most the
entropy of log2(Q + 1) ebits as opposed to Q + 1 ebits.
Permutation symmetric states are far less entangled than
generic ones. Note that not all permutation symmetric
random mixed states are of the form considered above.
For example the two qubit state

a |00〉〈00|+ b (|01〉〈01|+ |10〉〈10|) + c |11〉〈11| (11)

is manifestly permutation symmetric but is not a mix-
ture of Dicke states. Thus the reduced density matrices
we study are a subset of permutation symmetric states,
specifically those that can be derived as reduced states
of larger permutation symmetric pure states. For a more
formal treatment of the reduced density matrix of a per-
mutation symmetric state see Appendix A.

III. RANDOM PERMUTATION SYMMETRIC

STATES AND A NEW ENSEMBLE OF RANDOM

MATRICES

In order to the study the evolution of permutation sym-
metric states under chaotic but permutation symmetric
evolutions such as in the kicked top, we have to study
the properties of random permutation symmetric states.
For our purposes it suffices to define an ensemble of per-
mutation symmetric pure states as random permutation
symmetric states if the coefficients am in Eq. (4) are
drawn from the uniform (Haar) measure on the N + 1
dimensional space. In other words their joint probability
distribution is given by

P ({am}) = N !

πN+1
δ

(

1−
N
∑

m=0

|am|2
)

. (12)

While properties of random states including participa-
tion ratio, Shannon entropy [3] and extreme value statis-
tics [76] have been studied previously, we are interested
in the properties of subsystems and hence in reduced den-
sity matrices as in Eq. (6). More precisely, we are inter-

ested in the properties of AQA
†
Q, where AQ is constructed

from the N + 1 complex random numbers am as

(AQ)mn =

√

√

√

√

(

Q
m

)(

N−Q
n

)

(

N
m+n

) am+n, ρPS
Q = AQA

†
Q, (13)
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with 0 ≤ m ≤ Q, 0 ≤ n ≤ N − Q. The normaliza-

tion of am guarantees that Tr(AQA
†
Q) = 1, as required

for density matrices. The generally rectangular matrix
AQ has strongly correlated elements as there are only N
independent (complex) random numbers while there are
(Q+1)(N−Q+1) entries. Thus ρPS

Q represents a new en-
semble of positive random matrices that is of relevance to
the study of random or typical permutation symmetric
states, modeling their reduced density matrices of sub-
systems having Q of the total N qubits.
This ensemble has very different properties than the

well-studied normalized Wishart or trace-constrained en-
semble. If G is a N1 ×N2 dimensional matrix with com-
plex entries whose real and imaginary parts are indepen-
dently normally (zero centered) distributed, the ensemble

ρWN1
=

GG†

Tr(GG†)
(14)

is a normalizedWishart ensemble [77]. Its eigenvalues are
distributed according to the Marchenko-Pastur law [64].
This is the ensemble of reduced density matrices of N1

dimensional subsystems of pure states that are uniformly
sampled from the Hilbert space of dimension N1N2.
It is useful to compare ρPS

Q with twoWishart ensembles
that naturally present themselves, one that is relevant to
a Q qubit subsystem of random N qubit states, so that
N1 = 2Q and N2 = 2N−Q, which we will denote asW, 2Q

as the subsystem dimensionality is 2Q. The other is that
of a subsystem of dimension Q+1 in a randomly chosen
bipartite pure state of dimension (Q+1)× (N −Q+1),
that is N1 = Q + 1 and N2 = N −Q + 1, which we will
denote as W,Q + 1.
For Q = N/2, without the combinatorial factors in

Eq. (13) the matrix AQ is a square Hankel matrix, and
random Hankel matrices have been considered before in
the literature [78], and the existence of the limiting spec-
tral distribution has been established, although its ex-
plicit form remains unknown. It seems natural in this
context to study the ensemble with the combinatorial
factors that also ensure normalization of the correspond-
ing density matrix. As we are interested in the spectrum

{λi, 1 ≤ i ≤ Q + 1} of ρPS
Q = AQA

†
Q, we will be inter-

ested in the square of the singular values of AQ.
Figure 1 shows the distribution of the {λi} of the 12-

qubit random permutation symmetric ensemble. Shown
are the eigenvalues for Q = 1, 2, 5, and 6, scaled by a
factor Q+ 1, and one sees Q+ 1 peaks that are merging
into a smooth distribution. Except for the case Q = N/2,
the density vanishes at the origin. When Q = N/2 the
density looks very close to the Marchenko-Pastur law,
which after scaling by the factor Q+1 (i.e. x = λ(Q+1))
is

PMP (x) =
1

2π

√

4− x

x
. (15)

This is seen in Fig. 2 which has three different values
of N = 50, 100 and 200 qubits. The eigenvalues have

been obtained from N/2-qubit subsystems of 2500 ran-
domly generated N -qubit permutation symmetric states,
and have been scaled by a factor of N/2 + 1. It can be
seen that the scaling causes all the distributions to col-
lapse onto each other, indicating the existence of a lim-
iting distribution. This limiting distribution, although
similar to Marchenko-Pastur, does differ from it slightly
in the bulk. In addition, numerical results indicate that
the distribution does not diverge at the origin and has an
exponentially decaying tail unlike the Marchenko-Pastur
distribution that diverges at the origin and has a finite
support in [0, 4].
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FIG. 1. (Color online) The histogram of eigenvalues of the
Q-qubit reduced density matrix of an N-qubit permutation
symmetric system. The eigenvalues have been obtained from
subsystems of 10000 randomly generated N-qubit permuta-
tion symmetric states. The histogram has been scaled such
that the area under the curve is one, so that the y-axis is
representative of eigenvalue density.
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FIG. 2. (Color online) The histogram of eigenvalues of the
block subsystem for a permutation symmetric system contain-
ing (a) N = 50, (b) N = 100 and (c) N = 200 qubits. The
eigenvalues have been obtained from N/2-qubit subsystems
of 2500 randomly generated N-qubit permutation symmetric
states, and have been scaled by a factor of N/2+ 1. The his-
togram has been scaled such that the area under the curve is
one, so that the y-axis is representative of eigenvalue density.
The Marchenko-Pastur distribution (black line) has been plot-
ted for comparison. The rightmost inset shows the logarithm
of the density in the tail region, indicating an exponentially
decaying tail.

A. Average purity and linear entropy

The superscript label in ρPS
Q is now dropped for

brevity. The easiest nontrivial quantity that maybe
found for the ensemble is its average purity 〈Trρ2Q〉PS and

hence the average linear entropy 〈Sl
Q〉PS = 1−〈Trρ2Q〉PS .

Here ρQ = AQA
†
Q, where AQ is from the random ensem-

ble as described in Eq. (13) and Eq. (12), while 〈 · 〉PS in-
dicates averaging with respect to this “permutation sym-
metric” ensemble.

〈Trρ2Q〉PS =

〈

Q+1
∑

i=1

λ2i

〉

PS

=

Q
∑

k,j=0

(

Q

k

)(

Q

j

) N−Q
∑

m,n=0

(

N −Q

m

)(

N −Q

n

) 〈ak+maj+na
∗
k+na

∗
j+m〉

√

(

N
k+m

)(

N
j+n

)(

N
k+n

)(

N
j+m

)

. (16)

If the ai are drawn from the distribution Eq. (12) it is
easy to see that 〈|ai|2|aj |2〉 = 1/[(N +1)(N +2)] if i 6= j
and is 2/[(N + 1)(N + 2)] if i = j. These are the only
non-zero average terms that are needed to show that

〈ak+maj+na
∗
k+na

∗
j+m〉 = 1

(N + 1)(N + 2)
(δmn + δkj) .

(17)
Using this, the average purity becomes,

〈Trρ2Q〉PS =
1

(N + 1)(N + 2)





∑

k,j,m

(

Q
k

)(

Q
j

)(

N−Q
m

)2

(

N
k+m

)(

N
j+m

)

+
∑

k,m,n

(

Q
k

)2(N−Q
m

)(

N−Q
n

)

(

N
k+m

)(

N
k+n

)



 .

(18)

Apparently intimidating, the combinatorial sums are in
fact benign, the first is

∑

k,j,m

(

Q
k

)(

Q
j

)(

N−Q
m

)2

(

N
k+m

)(

N
j+m

) =
(N + 1)2

(N −Q+ 1)
, (19)

and the second follows on replacing Q with N−Q. Hence

finally

〈Trρ2Q〉PS =
N + 1

(Q + 1)(N −Q+ 1)
,

〈Sl
Q〉PS =

Q(N −Q)

(Q + 1)(N −Q+ 1)
.

(20)

To reiterate, the above is the average Q qubit purity and
linear entropy of random N qubit permutation symmet-
ric pure states. As expected, it is symmetric under the
replacement Q→ N −Q .
Comparing with the Wishart ensembles, it is known

[79] that the average purity of a M dimensional system
in aMN dimensional random pure state is (M+N)/(1+
MN). Using this we get

〈Sl
Q〉W,2Q =

(2Q − 1)(2N−Q − 1)

2N + 1
,

〈Sl
Q〉W,Q+1 =

Q(N −Q)

1 + (Q+ 1)(N −Q+ 1)
.

(21)

It is understandable that the second ensembleW,Q+1 is
close in entropy to that of permutation symmetric states.
That it is slightly smaller than that of permutation sym-
metric states is consistent with the behaviour of the den-
sity of eigenvalues. While the one for the W,Q + 1 en-
semble is the Marchenko-Pastur one that diverges at the
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origin and is sharply cut-off at x = λ(Q+1) = 4, the PS
ensemble seems to not diverge at the origin and extends
to infinity with an exponential tail.
One quantity frequently used in previous studies is Sl

1,
that is the linear entropy of a single qubit [42, 44]. In
this case:

〈Sl
1〉PS =

1

2

(

1− 1

N

)

,

〈Sl
1〉W,2Q =

1

2

(

1− 3

2N + 1

)

,

〈Sl
1〉W,Q+1 =

1

2

(

1− 3

2N + 1

)

.

(22)

Thus while both for permutation symmetric as well as
asymmetric random states the average of the linear en-
tropy single qubit density matrix approaches the ther-
malized value of a most mixed state (= 1/2), the ap-
proach is algebraic in the number of qubits for the per-
mutation symmetric states while it is exponential for the
asymmetric states if it is assumed to be a Q qubit sub-
system.
For the case of N = 2Q we have for large N :

〈Sl
N/2〉PS ≈ 1− 4

N
, 〈Sl

N/2〉W,2Q ≈ 1− 2

2N/2
, (23)

again illustrating the algebraic rate of scaling to maxi-
mum entropy as compared to an exponential one for Q
qubits. The case of a Q + 1 dimensional subsystems of
a random state (W,Q + 1) has the same leading order
deviation from 1 as the PS states. At this level for large
N and N = 2Q the linear entropies are indistinguishable.
The differences however can be seen in quantities like the
von Neumann entropy to which we turn to now.

B. Average von Neumann entropy

While the linear entropy is easy to calculate and find
the average of, it is not additive, and in fact the von
Neumann entropy has the special place as the measure
of entanglement. In the absence of a j.p.d.f of the eigen-
values of the reduced density matrix or other features of
the ensemble, we resort to numerical methods for this
quantity. One thing that can be definitely said is that
SvN
Q ≤ log(Q + 1), as the rank of the reduced density

matrix is at most Q + 1 (The logarithms used in the
paper are in base 2.) In sharp contrast, for random non-
symmetric states, the von Neumann entropy is bounded
by Q and the average differs from this by utmost an order
1 number.
Extensive numerical calculations support the following

simple formula

〈SvN
Q 〉PS = −

〈

Q+1
∑

i=1

λi log λi

〉

PS

≈ log(Q+ 1)− α
Q+ 1

N −Q+ 1

(24)

where 1 ≤ Q ≤ N/2, 1 ≪ N and α ≈ 2/3 is a constant.
The leading order correction to this seems to be 1/(N+1)
for the case of Q = N/2, and Fig. 3 gives the numerical
evidence supporting this claim. Numerically computed
average von Neumann entropy and the approximate for-
mula given in Eq. (24) for a Q-qubit subsystem of an N -
qubit permutation symmetric system match quite well.
It is of interest to see how close is the entropy for per-

mutation symmetric states to that of random states in
a (Q + 1)× (N −Q + 1) dimensional space, namely the
W,Q + 1 ensemble. Using the large N approximation
again with N = 2Q yields, using a formula first conjec-
tured by Page [80] and proved thereafter [81–83]

〈SvN
Q 〉W,Q+1 ≈ log(Q+ 1)− 1

2 ln 2
≈ log(Q + 1)− 0.721.

(25)
Comparing with Eq. (24) implies that 〈SvN

Q 〉W,Q+1 is
marginally smaller than that the random permutation
symmetric case, whose average is ≈ 0.66 smaller that the
maximum entanglement. This is seen in Fig. 3 as the
systematic lower entropy for the W,Q+ 1 case, which is
consistent with the lower linear entropy.
In contrast for random states of N qubits without any

symmetry, the W, 2Q case,

〈SvN
Q 〉W,2Q ≈ Q− 1

ln 2

2Q

2N−Q+1
. (26)

Thus permutation symmetric states have marginal en-
tanglement that scales with system size in a logarithmic
manner. This has been known for some time using dif-
ferent approaches and in Dicke states [61], but in the
context of random states this has not been studied be-
fore. It is interesting to note that the asymmetric random
states follow a “volume” law while permutation symmet-
ric states are marginal and increase logarithmically with
the subsystem size, similar to critical spin chains and in-
tegrable CFTs [58–63], and subsequently this affects the
behaviour of mutual information [84]. This has implica-
tions for the sign of the tripartite mutual information as
we now discuss.

C. Tripartite mutual information

With the above, it is possible to estimate the behaviour
of TMI in random permutation symmetric states as well
as the Wishart ensemble of 2N qubits. Using the defini-
tion of the TMI in Eq. (1) it follows that

〈I3(Q,Q,Q)〉PS ≈ 3 log(Q + 1)− 3 log(2Q+ 1)

+ log(3Q+ 1) = log

[

(3Q+ 1)(Q+ 1)3

(2Q+ 1)3

]

> 0,
(27)

where we have simply used SA ≈ log(Q+1) and ignored
corrections. This is sufficient to show that the TMI av-
erage value for random permutation symmetric states is
positive. The above will be a good approximation only
for large Q and N .
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(Q,N)
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〉
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〉
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S vN
Q+1

〉
W approximate

FIG. 3. (Color online) A comparison between numerically
computed average von Neumann entropy and the approximate
formula given in Eq. (24) (along with 1/(N+1) correction) for
a Q-qubit subsystem of an N-qubit permutation symmetric
system. It can be seen that the approximate formula (green
line) matches reasonably well with the numerically computed
average (blue line), in contrast with the approximation (Eq.
25) obtained from Page formula (red line). The numerical
values have been obtained by averaging over 10000 random
permutation symmetric states.

For the case of the ensemble of all random states on the
full 2N dimensional space, using the leading order term
in Eq. (26) gives for the TMI 3Q−6Q+3Q = 0 and there-
fore it is necessary to use the deviation from maximally
entangled states in that formula and this yields

〈I3(Q,Q,Q)〉W,2Q ≈ −22Q−N−1

ln 2

(

24Q − 3 22Q + 3
)

.

(28)
This is negative as x2 − 3x+3 ≥ 3/4. This is again valid
for large Q and N . Therefore typical states are not only
entangled but they also have a negative TMI implying
that information is distributed in multipartite ways. In
contrast for permutation symmetric states, the entangle-
ment is small, being only logarithmic in the number of
qubits and hence the TMI is typically positive and the in-
formation is stored more in bipartite partitions and is not
spread out. We can observe this numerically in Fig. 4,
where we compute TMI for subsystems of random states
with and without permutation symmetry.
Often it is easier for calculations to use the linear en-

tropy and hence we define, even if a little dubious, a linear
entropic TMI by using for H(·) in Eq. (1) the linear en-
tropies. Hence using Eq. (20) we can get exact average
linear entropic TMI, for example

〈

I l3(1, 1, 1)
〉

PS
=

(N − 3)(N2 −N + 4)

4(N − 2)N(N − 1)
≈ 1

4
− 1

4N
,

(29)
and

〈

I l3(m,m,m)
〉

PS
≈ 6m3

(m+ 1)(2m+ 1)(3m+ 1)
. (30)

These demonstrate again that the TMI of permutation
symmetric states, now with the linear entropy, is also

positive on the average. However this is not quite useful
as it is easy to check that it is also positive for random
states that are not symmetric, that is when the reduced
density matrix is from the Wishart ensemble. Additiv-
ity of the entropy is an important property and as the
linear entropy is not additive, it does not distinguish the
ensembles. We have verified for example that the Rényi
entropy, which is additive at any order, does in fact have
the capability.

0 20 40 60 80 100
Random s a es

−0.15

0.00

0.15

0.30

0.45

I 3 W (mean: -0.119)
Page average (value: -0.119)
PS (mean: 0.408)
Approximate PS (value: 0.362)

FIG. 4. (Color online) TMI (vN) between 1 qubit, 2 qubit,
2 qubit subsystem of a 12 qubit system. The blue points
show the TMI for different realizations of asymmetric random
states, and it can be seen that the average obtained from Page
formula (blue line) matches with the numerical average. The
green triangles, on the other hand, show TMI for different re-
alizations of random PS states, and the average TMI obtained
from Eq. (24) is moderately close to the numerical average.

In the preceding discussion, we noted that a positive
value for average TMI is observed for the PS ensemble.
This statement can in fact be extended to cover indi-
vidual (random) states by the use of Lévy’s lemma. In
Appendix B, we show how to apply Lévy’s lemma to per-
mutation symmetric systems so that the average of the
quantities we are interested in is taken only over random
PS states and not asymmetric states. Using this, we can
easily see that for a large number of qubits in the total
system, the TMI (based on either von Neumann or linear
entropy) for most random PS states is nearly equal to the
average TMI. Thus if the average TMI is positive, we can
expect most states to have a positive TMI as well, given
that we are working in large enough dimensions.
Now, from Eq. (1), we can see that a positive TMI

implies that I2(A : B) + I2(A : C) > I2(A : BC), which
would mean that the (bipartite) mutual information is
not monogamous. Monogamy of an information measure
refers to the ability of a party to share correlations, as
defined by this measure, with other parties. Our results,
therefore, suggest connections between mutual informa-
tion in permutation symmetric systems and monogamy.
More precisely, if we start with a pure permutation sym-
metric state |ψABCD〉 corresponding to some partition
ABCD, the mutual information that A shares individu-
ally with the subsystems B and C is greater than what it
shares with the joint system BC. Thus, the subsystems
can share correlations with other parties. Since the mu-
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tual information is a measure of total correlations, the
correlations that can be shared may either be classical or
quantum.

IV. MUTUAL INFORMATIONS AND

ENTANGLEMENT IN THE KICKED TOP

We now turn to the details of the kicked top propa-
gator, evolve states using this and explore how in the
chaotic regime the random state values of the previous
section holds. In the process we study the short time
evolution and growth of several interesting measures, the
mutual information, the tripartite mutual information,
the entanglement and the out-of-time-ordered correlator.

A. The kicked top as a many-body spin model

The kicked top consists of a single large rotor whose
quantum evolution over one time period τ of the kicking
is given by the propagator [3]

U = exp

(

−i k
2j
J2
z

)

exp (−ipJy) (31)

Since [J2, Ji] = 0, we are restricted to a (2j + 1)-
dimensional Hilbert space, and we can use the standard
angular momentum basis {|j,m〉 | − j ≤ m ≤ j}, which
are the simultaneous eigenstates of J2 and Jz. Here k
and p are parameters. The classical map [3, 54–56] is
from the surface of the sphere (J2

x +J
2
y +J

2
z )/j

2 = 1 into
itself. It can have regular as well as chaotic dynamics,
and this behaviour is controlled by k. We use p = π/2
below, for which k = 0 is integrable, being simply a ro-
tation about the y - axis, while around k = 3 the phase
space is a mixed one, with a measure of chaotic and reg-
ular trajectories, while for k = 6 is almost fully chaotic.
The mapping between the kicked top model and the

dynamics of qubits allows us to study the kicked top as a
many-body system [32, 42, 65, 85]. Since J2 is conserved,
the state of the system can by mapped to a 2j-qubit (or
equivalently, spin-half) system, with the additional con-
straint that the qubits are always permutation symmet-
ric. The existence of such a mapping can be understood
from the fact that permutation symmetry effectively re-
duces the dimension of the 2j-qubit system from 22j to
2j + 1, and thus a linear isomorphism exists from the
angular momentum j system to the permutation sym-
metric 2j-qubit system. The “natural” basis states for
the permutation symmetric 2j-qubit system are there-
fore the Dicke states. To be explicit, replacing Jx,y,z

with
∑2j

l=1 σ
x,y,z/2, the unitary or Floquet operator of

the resultant 2j spin system is

U = exp



−i k
8j

2j
∑

l 6=l′=1

σz
l σ

z
l′



 exp

(

−iπ
4

2j
∑

l=1

σy
l

)

, (32)

where the σx,y,z
l are the standard Pauli matrices, and an

overall phase is neglected.

Thus the spin model can be regarded as a kicked long-
range transverse field Ising model which has identical in-
teractions between all pairs of spins. While the nearest
neighbor transverse field Ising model, kicked or other-
wise, is integrable, (for example see [86]) the long-range
model can be non-integrable in the thermodynamic limit,
which is also the classical limit j → ∞. Floquet models
of many-body spin systems are being actively explored in
the literature from many perspectives including many-
body localization. Thus the kicked top in this many-
body avatar presents an opportunity to study entangle-
ment sharing and other typical questions that have been
addressed thus far using many other spin models [87],
besides giving us a simple, if potentially chaotic, thermo-
dynamic limit.

If the state vector of the system after n kicks is |ψn〉,
the state after (n+1)th kick is given by |ψn+1〉 = U |ψn〉.
In order to study the quantum-classical correspondence,
one typically takes spin coherent states [88, 89] as ini-
tial states. These states are parameterized by θ and
φ, and are minimum uncertainty states and therefore
closest analogs to points on the classical phase space,
aiding a quantum-classical comparison. Noting that
|j, j〉 has minimum J

2 uncertainty (the variance of J2

goes as j), the rest of the minimum uncertainty states
are generated by rotating this state using R(θ, φ) =
exp (iθ(Jx sin(φ)− Jy cos(φ))), i.e., |θ, φ〉 = R(θ, φ) |j, j〉.
As a state of qubits this is simply the tensor product
of qubit states whose Bloch sphere position is uniformly
(θ, φ): |θ, φ〉 = ⊗2j(cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉).

Starting from such an initial spin coherent state, the
time evolved state Un|θ, φ〉 resides in the permutation-
ally invariant subspace of the complete Hilbert space
of the 2j qubits. If the classical kicked top is in a
completely chaotic regime, the quantum one generates
pseudo-random states for sufficiently large time n [3].
Viewed as a multi-qubit state, it is in the permutation
symmetric subspace and therefore we can expect in this
case that the results of the previous section on random
permutation symmetric states hold good.

There are two aspects of studying the behaviour of
TMI and bipartite correlations like the mutual informa-
tion and entanglement in permutation symmetric states
like the ones generated when the dynamics is governed
by the kicked top Hamiltonian. One is the investigation
of their temporal behaviour that governs their growth
and the other is exploring long-time averages or satura-
tion values that would correspond to ensemble averages
such as those calculated from the random permutation
symmetric states.
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B. Growth of information measures and

entanglement

It is of particular interest to probe the dynamical be-
haviour of these correlations as a function of the initial
coherent state localized in the regular or chaotic regions
of the kicked top phase space. Unlike initial states lo-
calized in regular regions, the long-time evolution of the
state under global chaos can be expected to thermalize or
equilibrate, and this leads us to the study of ensemble av-
erages. To the best of our knowledge, a study of dynam-
ics of these quantum correlations across arbitrary sub-
system decompositions is unexplored and earlier works
have largely focused on subsystems consisting of a sin-
gle or at most two qubits of a multi-qubit kicked top
[42, 44]. Moreover, the dynamical behaviour of quanti-
ties like entanglement and discord were compared rather
qualitatively in the chaotic and regular regimes. We find
that the Ehrenfest time plays a crucial role for saturation
of many of the measures.
In accordance with this idea, we plot the behaviour of

TMI with time in the kicked top in regular, mixed and
chaotic regimes (see figure 5). One would notice right
away that the extent of regularity of the classical dy-
namics bears its signatures on the TMI. Regular dynam-
ics leads to oscillatory TMI with large time variations
and large values. In particular I3(1, 1, 1) is shown for an
initial coherent state in a 20 qubit system. When k = 1
the dynamics is regular and we see large positive values
of the TMI indicating that information is shared more in
a bipartite manner than collectively. When k = 3 the dy-
namics is that of a mixed phase space and starting from a
regular region leads to large oscillations of the TMI that
seems to be damping over very long time scales. At the
same value of k, starting from an initial state localized
in a region in which the classical limit is chaotic, leads
to a rapid growth and saturation of the TMI with small
oscillations around 0.234. Comparing this to the cor-
responding average TMI (vN) for random permutation
symmetric states, which is ≈ 0.245, corroborates our ex-
pectation that chaos in the kicked top thermalizes the
initially coherent state, making it similar to a random
PS state.
A similar situation arises when k = 6 when the clas-

sical map is essentially globally chaotic, only the rise is
even faster and the fluctuations smaller. It is this growth
rate in a regime of global chaos that is examined further.
Figure 6 compares the growth of TMI with that of mu-
tual information and entanglement computed using von
Neumann entropy as well as linear entropy for j = 750
(i.e, 1500 qubit system), with each of the subsystems con-
taining 100 qubits each. To put the growth of TMI seen
in this figure in perspective, we estimate the Ehrenfest
time which is given as

tEhrf ∼ ln
(

h−1
eff

)

/λcl = ln(2j + 1)/λcl, (33)

where the effective Planck’s constant heff goes as inverse
dimension and λcl is the classical Lyapunov exponent of
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FIG. 5. (Color online) TMI, MI and entanglement (computed
using von Neumann entropy) between three 1 qubit subsys-
tems for j = 10 (i.e., a 20 qubit system) in the kicked top.
The TMI has been obtained in (a) the regular region with
k = 1, φ = 0.63, (b) a point in the regular island of the mixed
phase space for k = 3, φ = 0.63, (c) a point in the chaotic
sea of the mixed phase space for k = 3, φ = 2, and (d) the
globally chaotic region with k = 6, φ = 0.63 (in each case,
p = π/2 and θ = 2.25). It can be seen that the TMI reflects
the regular nature of the underlying classical dynamics.

the underlying system.
The Lyapunov exponent for the classical kicked top

map for k = 6 is approximately 0.97, and for j = 750, we
get an Ehrenfest time of approximately 7.54 time steps.
It is evident from figure 6 that the mutual information
and TMI grow over the Ehrenfest time. We also see that
behaviour of the bipartite mutual informations I2(A : B)
and I2(A : BC), entanglement and the TMI are quali-
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FIG. 6. (Color online) TMI, MI and entanglement between
three 100 qubit subsystems for j = 750 (i.e., a 1500 qubit
system) in the kicked top using (a) von Neumann entropy and
(b) linear entropy. It can be seen that the bipartite mutual
information and entanglement qualitatively behave like the
TMI.

tatively alike. While we have shown this for subsystems
containing equal number of qubits, this seems to be true
even otherwise.

This implies, therefore, that the information between
the subsystems A and B (or between A and the joint sub-
system BC) is similar to the information shared jointly
by A, B and C. Also, the entanglement grows in the same
way. One possible reason for such a behaviour could be
that the total state of the kicked top grows during the
Ehrenfest time due to the effect of underlying classical
dynamics, and this total state is what is mapped to a PS
system of qubits. This growth, therefore, is reflected in
the reduced density matrices obtained from this PS state
and the measures computed from these. For such time
varying scenarios in PS systems, one therefore needs to
re-evaluate the significance of the TMI, as the informa-
tion provided by TMI is also given by mutual information
or even entanglement.

The TMI is defined with the entropies being the ad-
ditive von Neumann entropy. It appears that the TMI
(or mutual information) approaches the saturation value
with an exponential rate. We note this by plotting the
log behaviour of the TMI with the saturation value sub-
tracted (not shown here). However, a more careful anal-
ysis is required for ascertaining the behaviour of TMI
during the growth, and for quantifying the correspond-
ing growth rates.

C. Out-of-time-ordered correlators

The scrambling of localized information in many-body
systems is being studied and out-of-time-ordered corre-
lators are used to characterize these [48, 51, 52, 90]. It
is convenient to define these via growth of commutators.
As we wish to remain in the permutation symmetric sub-
space, the operators we choose are also permutation in-
variant and not local. However, it is interesting to study
this as it is a simple model of quantum chaos with a well-
understood classical limit. For example this was studied
in the kicked rotor in [91], and there also has been a pro-
posal to investigate scrambling experimentally using the
kicked top [92].

While postponing a detailed discussion to another
work, we wish to contrast and compare this growth with
that of the measures discussed above. Define,

F (n) = −Tr[Jx(0), Jx(n)]
2 = 2 (C2(n)− C4(n)) ,

C2(n) = Tr(J2
x(n)J

2
x(0)),

C4(n) = Tr(Jx(n)Jx(0)Jx(n)Jx(0)),

(34)

where Jx(n) = U−nJx(0)U
n and C2(n) is a two-point

correlator while C4(n) is the 4-point OTOC and its de-
crease with time essentially contributes to the growth of
the commutator. The C2(n) behaviour is one of fast re-
laxation within a “diffusion time” [51]. In figure 7 we
plot these three quantities (usual plot and semi-log plot)
for j = 750, k = 6, p = π/2 and see exponential growth
in F (t). It is interesting that there are oscillations in
C2(n) and C4(n) initially that compensate and lead to
an exponential increase in the commutator.

The rate of growth of F (t) seems to be slightly higher
(≈ 2.5) than the estimate from simply replacing the
commutator by classical Poisson brackets and estimat-
ing their growth rate at twice the Lyapunov exponent
(≈ 1.94). On comparing with the other measures such as
entanglement of a block of qubits, or TMI in Fig. 6 we see
that the Ehrenfest time is the log-time during which the
commutator increases exponentially, and then saturates
rather quickly.

Thus while there is an exponential growth of the com-
mutators and hence “scrambling”, it seems to be at vari-
ance with the positive TMI observed above. Of course
there is chaos, and mixing in the classical limit of the
kicked top. The resolution maybe in the fact that there
is scrambling in phase-space but not in qubit-space. Ini-
tial coherent state, localized in phase-space, spreads out
exponentially and scrambles in the sense of becoming
nonlocal in phase- space, however when viewed as scram-
bling within the qubits that comprise the effective spin
model there is none. This dichotomy is also a reflec-
tion of the strong statistical properties, such as spectral
fluctuations and eigenvector statistics, of the kicked-top
when viewed as a map on the sphere and a single large
spin, compared to the marginal entanglement present in
subsystems when viewed as collections of qubits.
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There is however an effect or reflection of the scram-
bling in the qubit space. Not in the sign of the TMI but
in terms of equilibration of the measures such as entan-
glement and tripartite mutual information to values that
are given by random symmetric ensembles. More impor-
tantly, for sufficiently large subsystems, these grow over
a log-time ∼ log(N). If there is no chaos we see a much
slower growth of these quantities and while more detailed
studies are needed, the time-scale seems to be as large as
the Heisenberg time ∼ N , see Fig. (5).
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FIG. 7. (Color online) (a) F (n), C2(n) and C4(n) for j = 750,
k = 6, p = π/2. The OTOC value has been divided by j4 to
normalize (or equivalently, the operators are being normalized
by j). (b) Semi-log plot of OTOC for j = 750, 1000, 1500, 2000
and k = 6.

D. Saturation and long-time averages

In addition to the dynamical behaviour, we also study
the time-averaged TMI in the kicked top. We have al-
ready noted that the signature of classical dynamics is
present in the time-varying TMI. Figure 8 shows that
such a behaviour is also present when we take time av-
erages of TMI. In particular, comparing this figure with
figure 9, we can see that classical structures leave their
mark on the quantum system, with regular islands being
visible for integrable regimes, and low-period periodic or-
bits being present for the chaotic regimes. The latter is
also a result of eigenfunction scarring [11].
One can note, in particular, that the average TMI for

a large number of points in the phase space is positive.
This is true not only in the globally chaotic region, but
also in the mixed and regular regimes. In the globally
chaotic case, we can see that the average TMI varies ap-
proximately from 0.22 to 0.27, while the average TMI
obtained from random PS states for the corresponding
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FIG. 8. (Color online) Time-averaged TMI between three
one qubit subsystems for j = 6 (12 qubits) and p = π/2,
with the initial state corresponding to a coherent stated as-
sociated with a 50 × 100 grid discretizing θ ∈ [0, π) and
φ ∈ [0, 2π). The time-averaged TMI is obtained for (a) k = 1
corresponding to a classically regular region, (b) k = 3, a
mixed regime and (c) k = 6, a globally chaotic region, and is
computed by averaging over 1000 iterations starting from the
initial coherent state. It can be that the classical structures
are reproduced to a certain extent.

case is ≈ 0.24. As before, this indicates that chaotic evo-
lution nearly transforms the initially coherent states to
random PS states.

V. SUMMARY AND DISCUSSION

In this paper, multi-qubit permutation symmetric
states have been studied in general. An algorithm for
getting the reduced density matrix of any number of
qubits is given. This lead to the definition of a new ran-
dom matrix ensemble that is of relevance in such cases,
the random permutation symmetric states. It has been
shown that the distribution of the eigenvalues of the re-
duced density matrices of this ensemble, while similar to
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FIG. 9. Phase portrait of the classical kicked top map, show-
ing (a) globally regular dynamics for k = 1, (b) a mixed dy-
namics with coexisting regions of chaoticity and regularity for
k = 3 and (c) (almost) globally chaotic dynamics for k = 6.
p = π/2 is used in all the cases.

the Marchenko-Pastur is also different in crucial features
and defines a new universality class.
For such a random ensemble we have derived analyti-

cal expressions for the average purity and linear entropy
of arbitrary subsystems and approximate expressions for
the average von Neumann entropy. In particular random

permutation symmetric states have an “area-law” kind of
entanglement scaling only as log(number of qubits in the
subsystem). This small multipartite entanglement effec-
tively results in positive tripartite mutual information,
for which we derive analytical estimates. In comparison
we point out that random states with no symmetry would
have a typical TMI value that is negative.

We applied these general statements to a qubit model
of the kicked top which can show a range of dynamical be-
haviour from the regular to the fully chaotic. An interest-
ing aspect that has been recently investigated in certain
quantum chaotic systems is the notion of scrambling of
information, which refers to the delocalization with time
of initially localized information across the system. Both
OTOC and TMI have been proposed as a measure to de-
tect scrambling of information, wherein a growth/decay
of the OTOC or a negative value of TMI are considered
as signatures of scrambling. In our analysis of the kicked
top, we observe that OTOCs defined with observables on
phase space grow exponentially fast with time (within
the Ehrenfest time), while as noted above, permutation
symmetry in the system is responsible for most states
having a positive value of TMI. Thus the quantum chaos
in this case results in scrambling in phase-space while
remaining unscrambled in qubit-space.

While Iyoda and Sagawa have also pointed out that
TMI for certain initial states are positive [53], they ar-
gue that the effective dimension of the set of such states
is small. If we consider the qubit model of the kicked
top, the permutation symmetric subspace that we are
restricted to is only N + 1 of the total 2N dimensional
one, and is therefore consistent with their observations.
It will be interesting to explore the model in the non-
permutation symmetric subspace when it may not have
an interpretation as a kicked top. Nevertheless it is
likely that the same parameter regimes lead to strongly
chaotic behaviour, negative TMI and exponentially grow-
ing OTOC. We are also hopeful that our observations
about permutation symmetric states will be of broad ap-
plicability.

Note added : Along with the present study, another
work appeared [93] which investigates scrambling in long-
range spin chains, including the case of kicked top.
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Appendix A: Subsystems of Permutation Symmetric

Systems

In section II, we saw that the structure of Dicke states
can be used to write permutation symmetric vectors of
N qubits in terms of tensor product of permutation sym-
metric vectors containing Q and N −Q qubits (Q < N).
Equation 5 holds, however, only when the vectors are
viewed as elements of the full 2N dimensional space.
We can nevertheless use the idea presented in Eq. (5)
to work with permutation symmetric systems without
viewing them as subspace of a larger space. An apparent
tradeoff of working exclusively with permutation sym-
metric spaces is that the tensor product structure would
be lost, as an N +1 dimensional space in general cannot
be written as a tensor product of Q + 1 and N − Q + 1
dimensional spaces. Fortunately though, it is still possi-
ble to work conveniently with subsystems. We show in
the following that we can embed a permutation symmet-
ric vector of N qubits into the tensor product of Q qubit
andN−Q qubit permutation symmetric spaces such that
inner products are preserved.

Proposition 1. For dX , dY , dZ ∈ N, let {|iX〉 | 0 ≤ i ≤
dX} be some fixed orthonormal basis of X, {|jY 〉 | 0 ≤

j ≤ dY } be a fixed orthonormal basis of Y and {|kZ〉 | 0 ≤
k ≤ dZ} be a fixed orthonormal basis of Z, such that

dX = dY + dZ . Then the map

ι : X → Y ⊗ Z

ι

(

dX
∑

i=0

ai |iX〉
)

=

dY
∑

j=0

dZ
∑

k=0

Ajk |jY 〉 |kZ〉

with Ajk = Cjkaj+k =

√

√

√

√

(

dY

j

)(

dZ

k

)

(

dX

j+k

) aj+k

is linear and injective. Further, the map is isometric

(i.e., preserves inner products).

Proof. That the map is linear is clear. To see that it is
injective, note that if ι(|aX〉) = 0 for some |aX〉 ∈ X ,
then each of the coefficients Ajk are zero. Thus ai = 0
implying |aX〉 = 0 (i.e., the kernel of ι is trivial), estab-
lishing the injectivity of ι. Showing isometry of ι involves
a simple computation using Vandermonde Convolution
identity.
Towards this end, say |aX〉 =

∑

i ai |iX〉 and |bX〉 =
∑

i bi |iX〉, so that 〈|aX〉 , |bX〉〉 =
∑

i a
∗
i bi. On the

other hand, 〈ι(|aX〉), ι(|bX〉)〉 =
∑

j

∑

k A
∗
jkBjk =

∑

j

∑

k C
2
jka

∗
j+kbj+k. Now the sum over 0 ≤ j ≤ dY and

0 ≤ k ≤ dZ is done along the “cross-diagonals” j+k = r.
That is fix an r (0 ≤ r ≤ dX = dY + dZ) and sum over
max(0, r − dZ) ≤ j ≤ min(r, dY ), and do this for all
0 ≤ r ≤ dX .

〈ι(|aX〉), ι(|bX〉)〉 =
dX
∑

r=0

a∗rbr
(

dX

r

)

min(r,dY )
∑

j=max(0,r−dZ)

(

dY
j

)(

dZ
r − j

)

=

dZ
∑

r=0

a∗rbr
(

dX

r

)

min(r,dY )
∑

j=0

(

dY
j

)(

dZ
r − j

)

+

dX
∑

r=dZ+1

a∗rbr
(

dX

r

)

dX−r
∑

j=0

(

dY
j

)(

dZ
dX − r − j

)

=

dZ
∑

r=0

a∗rbr
(

dX

r

)

(

dX
r

)

+

dX
∑

r=dZ+1

a∗rbr
(

dX

r

)

(

dX
r

)

(using Vandermonde Convolution)

=

dX
∑

r=0

a∗rbr

= 〈|aX〉 , |bX〉〉

The above assumes that dY ≤ dZ , if not, sum over k
instead, following the same steps. Thus, ι is an isometry.

Hence, given an N qubit permutation symmetric state,
we can work as if it has a tensor product decomposition
in terms of permutation symmetric states of Q andN−Q
qubits.
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Furthermore, if we were to embed these vectors in the
full 2N dimensional space (by mapping each basis vector
to the appropriate Dicke state), then these are actually
the same vector. To elaborate on this point, say given a
vector space V of dimension dV + 1, we define the linear
map EV as one that takes some fixed basis vectors of
the space V to the corresponding Dicke states in the 2dX

dimensional space (dV ≤ dX).

EV (|iV 〉) =
1

√

(

dV

i

)

∑

0≤l≤2dX−1
w(l)=i

|l〉 , 0 ≤ i ≤ dV (A1)

The action on the fixed basis vectors |iV 〉 can be extended
linearly to define EV on every vector of V (and such an
extension is unique). With such a linear map, we can see
that the vectors related by the embedding ι are actually
equal in the full 2dX dimensional space. In other words,
we have EX = (EY ⊗ EZ) ◦ ι, which is essentially the
content of Eq. (5) mentioned in section II.
Now, since we always work in dimensions linear in the

number of qubits, one can study permutation symmet-
ric systems with very large number of qubits. In such
a scenario, it may be helpful to obtain the combinato-
rial coefficients appearing in the expression for reduced
density matrix recursively. So if Ckl are the combinato-
rial coefficients as defined in proposition 1, we have the
following recursion relations for the same.

Ck+1,l =

√

(

Q− k

N − k − l

)

√

(

k + l + 1

k + 1

)

Ckl (A2)

Ck,l+1 =

√

(

N −Q− l

N − k − l

)

√

(

k + l+ 1

l + 1

)

Ckl (A3)

Ck+1,l+1 =

√

(

Q− k

N − k − l − 1

)

√

(

k + l + 2

k + 1

)

(A4)

√

(

N −Q− l

N − k − l

)

√

(

k + l + 1

l + 1

)

Ckl (A5)

Here, in place of dX we have used N and Q in place of
dY , which denote the number of qubits in the system and
the subsystem respectively. These relations can be used
to compute Ckl when working with a large number of
qubits.

Appendix B: Lévy’s Lemma for Permutation

Symmetric Systems

Lévy’s lemma is a statement describing the relation
between the values taken by a Lipschitz continuous func-
tion defined on a sphere and its average with respect to
the uniform measure on the sphere. The normalization
requirement of quantum states allows us to consider the
state as a point on a unit sphere. The work in [94] de-
scribes the use of Lévy’s lemma in the context of quantum

systems. In particular, their study covers the cases of von
Neumann and linear entropy for a system of qubits. But
if we directly apply their results to a PS system of qubits,
the average would correspond to the Wishart ensemble,
while we are interested in averages over the PS ensemble.
Thus we need to appropriately adapt the relevant proofs
presented in Hayden et al. [94] to cover the case of PS
system of qubits, so that the averages indeed correspond
to those over the PS ensemble.
Our starting point is the property noted in Appendix

A, that given anyN qubit permutation symmetric vector,
it has a tensor product decomposition in terms of Q qubit
and N − Q qubit permutation symmetric vectors. So,
given any permutation symmetric vector |aX〉 ∈ X of
dimension dX+1 and subsystems Y and Z of dimensions
dY +1 and dZ+1 respectively (so that dX = dY +dZ), let
the map G : X → L(Y ) take this vector to the reduced
density matrix of subsystem Y . That is,

G(|aX〉) = TrZ |ι(aX)〉 〈ι(aX)| (B1)

where ι is the embedding defined in Appendix A. We will
combine this with the proof of Lipschitz continuity of von
Neumann entropy and purity [94] to adapt them to the
permutation symmetric case. In the following discussion,
the Lipschitz continuity of functions is considered with
respect to the Euclidean norm.

Proposition 2. i. The von Neumann entropy is a

Lipschitz continuous function for permutation sym-

metric states. That is, the function f : X → R de-

fined as

f(|aX〉) = SvN (G(|aX〉))

is Lipschitz continuous with respect to the Euclidean

norm for dY ≥ 2.

ii. The linear entropy is a Lipschitz continuous function

for permutation symmetric states.

iii. The tripartite mutual information between any three

subsystems of a permutation symmetric system is

Lipschitz continuous, where the TMI is calculated ei-

ther using von Neumann or linear entropy. For the

case of von Neumann entropy, each of the subsystems

must have at least two qubits, and so the total system

should have at least six qubits.

Proof. (i) In Ref. [94] it has been shown that given any
|φY ⊗Z〉 ∈ Y ⊗ Z, the function f ′ : Y ⊗ Z → R defined
as f ′(|φY ⊗Z〉) = SvN (ρY ) (where ρY is the reduced den-
sity matrix of subsystem Y ) is Lipschitz continuous for
dY ≥ 2, with the Lipschitz constant bounded above by√
8 log(dY + 1). In other words,

|f ′(|φY⊗Z〉)− f ′(|ψY⊗Z〉)| ≤√
8 log(dY + 1)) ‖|φY ⊗Z〉 − |ψY⊗Z〉‖2

for dY ≥ 2, where ‖·‖2 is the Euclidean norm. As this is
valid for any vector in Y ⊗ Z, it is, in particular, valid
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for ι(|aX〉), ι(|bX〉) ∈ Y ⊗ Z given any |aX〉 , |bX〉 ∈ X .
Noting that f(|aX〉) = f ′(ι(|aX〉), we get

|f(|aX〉 − f(|bX〉)| ≤
√
8 log(dY + 1) ‖ι(|aX〉)− ι(|bX〉)‖2

≤
√
8 log(dY + 1) ‖|aX〉 − |bX〉‖2
(using linearity and isometry of ι)

for dY ≥ 2. Thus, f(|aX〉) = SvN (G(|aX〉)) is Lipschitz
continuous with the Lipschitz constant bounded above
by

√
8 log(dY + 1).

(ii) We start by showing that for any |aX〉 ∈ X , the

function f(|aX〉) =
√

Tr(G(|aX〉)2) is Lipschitz continu-
ous. Again, we resort to the corresponding result for the
case |φY ⊗Z〉 ∈ Y ⊗ Z in [94]. In particular, for the func-

tion f ′ : Y ⊗ Z → R defined as f ′(|φY ⊗Z〉) =
√

Tr(ρ2Y ),
they showed that

|f ′(|φY ⊗Z〉)− f ′(|ψY ⊗Z〉)| ≤ 2 ‖|φY ⊗Z〉 − |ψY ⊗Z〉‖2
As before, taking any |aX〉 , |bX〉 ∈ X , we apply the
above for ι(|aX〉), ι(|bX〉) ∈ Y ⊗ Z while noting that
f(|aX〉) = f ′(ι(|aX〉)) to get

|f(|aX〉)− f(|bX〉)| ≤ 2 ‖|aX〉 − |bX〉‖2
where we have utilized the linearity and isometry
of ι. Now observe that f is bounded above by 1
since Tr(ρ2) ≤ 1 for any density matrix ρ. Thus,
|f2(|aX〉) − f2(|bX〉)| = |f(|ax〉) − f(|bX〉)||f(|aX〉) +
f(|bX〉)| ≤ 4 ‖|aX〉 − |bX〉‖2, where the triangle inequal-
ity, upper bound of f and the above inequality has
been used. Therefore, f2 is Lipschitz continuous with
the Lipschitz constant bounded above by 4. As the
linear entropy corresponding to the state |aX〉 is given
by 1 − f2(|aX〉), it is Lipschitz continuous with the
Lipschitz constant bounded above by 4.

(iii) Let A, B, C with dimensions dA + 1, dB + 1 and
dC + 1 respectively be subspaces of the space X with
dimension dX + 1. We abbreviate the space of the joint
permutation symmetric systems as follows: AB having
dimension dA + dB +1, BC having dimension dB + dC +
1, AC having dimension dA + dC + 1 and ABC having
dimension dA + dB + dC + 1. Further, these spaces are
such that dA + dB + dC ≤ dX . Now, say fY : X → R

is either the von Neumann entropy or the linear entropy
(corresponding to a given subsystem Y ). We know that
fY is Lipschitz continuous with the Lipschitz constant
bounded above by ηY , which is equal to

√
8 log(dY + 1)

for the case of von Neumann entropy and equal to 4 for
the case of linear entropy.
Let fTMI : X → R be defined as

fTMI(|aX〉) = fA(|aX〉) + fB(|aX〉) + fC(|aX〉)
− fAB(|aX〉)− fBC(|aX〉)− fAC(|aX〉) + fABC(|aX〉)

Then for any vectors |aX〉 , |bX〉 ∈ X , using triangle in-
equality and the Lipschitz continuity of fY , we get

|fTMI(|aX〉)− fTMI(|bX〉)| ≤
(ηA + ηB + ηC + ηAB + ηBC + ηAC + ηABC) ‖|aX〉 − |bX〉‖2

Therefore fTMI is Lipschitz continuous with the Lips-
chitz constant bounded above by η = (ηA + ηB + ηC +
ηAB + ηBC + ηAC + ηABC). In other words, the TMI de-
fined on permutation symmetric spaces is Lipschitz con-
tinuous for either von Neumann entropy or linear entropy.
Note that for Lipschitz continuity of von Neumann en-
tropy, we require dY ≥ 2 for each of the subsystems.

Now that we have the von Neumann entropy, linear
entropy and TMI as Lipschitz continuous functions on
permutation symmetric systems, we can resort to Lévy’s
lemma. To recall, Lévy’s lemma is stated as follows [94].

Lemma 1 (Lévy). Let f : Sn−1 → R be a Lipschitz con-

tinuous function (with respect to the Euclidean norm in

R
n) with a Lipschitz constant η, where Sn−1 is a unit

sphere in R
n. If x ∈ Sn−1 is picked randomly (with re-

spect to the uniform measure on the sphere), then for

ǫ ≥ 0 we have

P{|f(x)− E[f ]| ≥ ǫ} ≤ 2 exp

(

− nǫ2

9π3 ln(2)η2

)

where E[f ] is the expectation value of f with respect to

the uniform measure on the sphere.

Thus, for large enough dimensions, we can say that
almost all random permutation symmetric states have
von Neumann entropy, linear entropy and TMI close to
the respective averages. In particular, a positive average
TMI implies that most states also have positive TMI.


