Header menu link for other important links
X
Transition metal complexes of a bis(carbene) ligand featuring 1,2,4-triazolin-5-ylidene donors: structural diversity and catalytic applications
, Singh V.K., Donthireddy S.N.R., Illam P.M.
Published in Royal Society Of Chemistry
2020
Volume: 49
   
Issue: 34
Pages: 11958 - 11970
Abstract
Dialkylation of the 1,3-bis(1,2,4-triazol-1-yl)benzene with ethyl bromide results in the formation of [L-H2]Br2which, upon salt metathesis with NH4PF6, readily yields the bis(triazolium) salt [L-H2](PF6)2with non-coordinating counterions. [L-H2](PF6)2and Ag2O react in a 1 : 1 ratio to yield a binuclear AgI-tetracarbene complex of the composition [(L)2Ag2](PF6)2which undergoes a facile transmetalation reaction with [Cu(SMe2)Br] to deliver the corresponding CuI-NHC complex [(L)2Cu2](PF6)2. In contrast, the [L-H2]Br2reacts with [Ir(Cp*)Cl2]2to generate a doubly C-H activated IrIII-NHC complex5. Similarly, the triazolinylidene donor supported diorthometalated RuII-complex6is also obtained. Complexes5and6represent the first examples of a stable diorthometalated binuclear IrIII/RuII-complex supported by 1,2,4-triazolin-5-ylidene donors. The synthesized IrIII-NHC complex5is found to be more effective than its RuII-analogue (6) for the reduction of a range of alkenes/alkynesviathe transfer hydrogenation strategy. Conversely, RuII-complex6is identified as an efficient catalyst (0.01 mol% loading) for the β-alkylation of a wide range of secondary alcohols using primary alcohols as alkylating partnersviaa borrowing hydrogen strategy. © The Royal Society of Chemistry 2020.
About the journal
JournalData powered by TypesetDalton Transactions
PublisherData powered by TypesetRoyal Society Of Chemistry
Open AccessNo