Header menu link for other important links
Transbilayer movement of dipalmitoylphosphatidylcholine in proteoliposomes reconstituted from detergent extracts of endoplasmic reticulum: Kinetics of transbilayer transport mediated by a single flippase and identification of protein fractions enriched in flippase activity
Published in
Volume: 277
Issue: 28
Pages: 25337 - 25343
Phospholipid translocation (flip-flop) across membrane bilayers is typically assessed via assays utilizing partially water-soluble phospholipid analogs as transport reporters. These assays have been used in previous work to show that phospholipid translocation in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum is facilitated by specific membrane proteins (flippases). To extend these studies to natural phospholipids while providing a framework to guide the purification of a flippase, we now describe an assay to measure the transbilayer translocation of dipalmitoylphosphatidylcholine, a membrane-embedded phospholipid, in proteoliposomes generated from detergent-solubilized rat liver endoplasmic reticulum. Translocation was assayed using phospholipase A2 under conditions where the vesicles were determined to be intact. Phospholipase A2 rapidly hydrolyzed phospholipids in the outer leaflet of liposomes and proteoliposomes with a half-time of ∼0.1 min. However, for flippase-containing proteoliposomes, the initial rapid hydrolysis phase was followed by a slower phase reflecting flippase-mediated translocation of phospholipids from the inner to the outer leaflet. The amplitude of the slow phase was decreased in trypsin-treated proteoliposomes. The kinetic characteristics of the slow phase were used to assess the rate of transbilayer equilibration of phospholipids. For 250-nm diameter vesicles containing a single flippase, the half-time was 3.3 min. Proportionate reductions in equilibration half-time were observed for preparations with a higher average number of flippases/vesicle. Preliminary purification steps indicated that flippase activity could be enriched ∼15-fold by sequential adsorption of the detergent extract onto anion and cation exchange resins.
About the journal
JournalJournal of Biological Chemistry
Open AccessNo