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Abstract We investigate the role of deep-ocean topography in scattering energy from the large spatial

scales of the low-mode internal tide to the smaller spatial scales of higher modes. The complete Green func-

tion method, which is not subject to the restrictions of the WKB approximation, is used for the first time to

study the two-dimensional scattering of a mode-1 internal tide incident on subcritical and supercritical

topography of any form in arbitrary stratifications. For an isolated Gaussian ridge in a uniform stratification,

large amplitude critical topography is the most efficient at mode-1 scattering and small amplitude topogra-

phy scatters with an efficiency on the order of 5–10%. In a nonuniform stratification with a pycnocline, the

results are qualitatively the same as for a constant stratification, albeit with the key features shifted to larger

height ratios. Having validated these results by direct comparison with the results of nonlinear numerical

simulations, and in the process demonstrated that WKB results are not appropriate for reasonable ocean

predictions, we proceed to use the Green function approach to quantify the role of topographic scattering

for the region of the Pacific Ocean surrounding the Hawaiian Islands chain. To the south, the Line Islands

ridge is found to scatter �40% of a mode-1 internal tide coming from the Hawaiian Ridge. To the north,

realistic, small-amplitude, rough topography scatters �5–10% of the energy out of mode 1 for transects of

length 1000–3000 km. A significant finding is that compared to large extents of small-amplitude, rough

topography a single large topographic feature along the path of a mode-1 internal tide plays the dominant

role in scattering the internal tide.

1. Introduction

Internal waves play key roles in a myriad of large-scale and small-scale processes in the ocean. For example,

it is now recognized that internal waves are an important consideration for the global-scale ocean energy

budget as they represent a significant source of dissipation for barotropic tides and winds, the two primary

sources of mechanical energy that drive ocean interior mixing [Munk and Wunsch, 1998]. An outstanding

issue in physical oceanography, however, is determining the fate of this internal wave energy as it propa-

gates through the ocean interior.

A global study of tidal energy dissipation, compiled using satellite altimetry data, revealed that approxi-

mately 1 TW of the total tidal dissipation occurs in the deep ocean, near areas of rough topography [Egbert

and Ray, 2000]. Following this observation, internal tide generation at topographic features in the deep

ocean has been actively investigated through field observations [e.g., Rudnick et al., 2003], analytical model-

ing [e.g., P�etr�elis et al., 2006; Echeverri and Peacock, 2010], numerical modeling [e.g., Carter et al., 2008], and

laboratory experiments [e.g., Echeverri et al., 2009]; a review is given by Garrett and Kunze [2007]. As such, it

is now reasonable to say that internal tide generation in the ocean, at least in the prevalent linear and nomi-

nally two-dimensional regimes, is well understood.

One of the key outcomes from internal tide generation studies is a widespread belief that internal tide

energy radiated in the form of short-wavelength vertical modes (i.e., n> 2, where n is the mode number) is

dissipated in the vicinity of generation sites [Garrett and Kunze, 2007]. The processes believed to be involved

in this dissipation are buoyancy-driven and shear-driven instabilities [St. Laurent and Garrett, 2002], which

may or may not be coupled to scattering of internal wave beams by a nonuniform background stratification

[Mathur and Peacock, 2009], energy conversion to solitary waves that propagate along the thermocline

[New and Pingree, 1992; New and Da Silva, 2002], and interaction with background shear and turbulence
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[Staquet and Sommeria, 2002]. The energy radiated in the long-wavelength vertical modes (i.e., n5 1 and 2),

which is a majority of the energy radiated by significant topographic features, however, appears to travel

far from the generation site. For example, Ray and Mitchum [1997] used satellite altimetry data to estimate

that 15 GW of low-mode internal tide energy propagates over a thousand kilometers away from the Hawai-

ian Ridge; recent multisatellite altimetry studies by Zhao et al. [2012] further support this and estimate the

semidiurnal internal wave fluxes to be even larger than those predicted by the analysis of data from a single

satellite altimeter [Ray and Mitchum, 1997; Ray and Cartwright, 2001]. Thus, a key question is: where, and by

what means, does this low-mode internal tide energy dissipate?

Possible dissipation mechanisms for the far-propagating low-mode internal tide include: wave-wave inter-

actions such as the parametric subharmonic instability [e.g., Staquet and Sommeria, 2002; MacKinnon and

Winters, 2005; Tsang et al., 2008], interactions with mean flows [e.g., St. Laurent and Garrett, 2002] and meso-

scale structures [e.g., Rainville and Pinkel, 2006], and scattering by deep-ocean topography [e.g., Johnston

and Merrifield, 2003] and continental shelves [e.g., Kunze and Llewellyn Smith, 2004]. At present, however, it

is not clear what the relative importance of each mechanism is. Taking a step toward resolving this issue,

we herein pursue some novel studies of deep-ocean topographic scattering.

The organization of the paper is as follows. In section 2, we review previous studies of internal tide scatter-

ing. The analytical Green function method is described in section 3, followed by a description of a support-

ing numerical model in section 4. In sections 5 and 6, we consider isolated Gaussian topographies in

uniform and nonuniform stratifications, respectively. Two scenarios of realistic topography in realistic strati-

fications, these case studies being scattering by the Line Islands ridge and small-scale rough topography

south and north of Hawaii, are then presented in section 7, followed by our conclusions in section 8.

2. Internal Tide Scattering in the Deep Ocean

Satellite observations, mainly from the waters surrounding Hawaii, suggest significant scattering of internal

wave energy occurs at tall topography, and only weak scattering over small-scale rough topography. For

example, at the Line Islands Ridge there is a rapid decay of the large, southwest propagating mode-1 baro-

clinic energy flux generated at French Frigate Shoals [Ray and Cartwright, 2001], coinciding with an abrupt

change in wave number and amplitude of the internal tide surface elevations [Ray and Mitchum, 1997; John-

ston et al., 2003]. Heading north from the Hawaiian ridge system, however, Zhao et al. [2012] show that low-

mode internal tides propagate over 3500 km across the generally small-scale, rough topography of the

North Pacific Ocean.

There have been several analytical studies of internal tide scattering by ocean floor topography, but debate

still remains about whether this process is efficient at transferring energy from low to high modes. Early

studies of low-mode internal-tide scattering by isolated topography in a finite-depth ocean were performed

by Larsen [1969], and Robinson [1969], who considered a two-dimensional, knife edge barrier. In both cases,

the governing wave equation was assumed to be linear and inviscid, and this was also the case for all subse-

quent theoretical studies of internal wave scattering by topography. As detailed in section 3, it is the Green

function approach used by Robinson [1969] that we revisit in this paper, albeit with the substantial improve-

ment of removing the restrictions of idealized two-dimensional topography and uniform stratification.

A number of theoretical studies have considered scattering by subcritical (i.e., topographic slope less than

internal ray slope), infinitesimal topography using perturbation methods [e.g., Cox and Sandstrom, 1962;

Rubenstein, 1988; M€uller and Xu, 1992]. An advantage of this approach is that the ocean floor boundary con-

dition (implemented on a flat bottom) can be Fourier decomposed and predictions made for three-

dimensional topography. For typical internal wave and bottom topography spectra in the ocean, some of

these studies estimated that 6–10% of the incident low-mode energy flux is redistributed by scattering;

Rubenstein [1988] actually predicted notably stronger scattering but via seemingly incorrect reasoning

[M€uller and Xu, 1992]. This modest estimate was supported by St. Laurent and Garrett [2002], who deter-

mined a �10% conversion rate using a so-called second generation scattering calculation for infinitesimal

topography; this approach took the characteristic velocity near the ocean floor due to a mode-1 internal

tide and estimated the generation of internal waves by rough topography as a proxy for scattering. M€uller

and Xu [1992] noted, however, that calculations based on infinitesimal topography are only marginally valid

for typical ocean conditions and that scattering becomes more efficient for larger and more rugged
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topography; estimates based on infinitesimal topography may therefore only represent a lower bound for

the ocean.

There have been few theoretical studies of scattering by finite-amplitude topography. Gilbert and Garrett

[1989] focused on the importance of critical points (i.e., where the topographic slope equals the internal ray

slope) and concluded that locally convex topography is more efficient at scattering than locally concave

topography; this model assumed an infinitely deep ocean. M€uller and Liu [2000a] used a mapping function

based on ray tracing to investigate scattering by several different forms of finite-amplitude topography.

They found that the efficiency of scattering by finite-amplitude topography is more substantial than for

infinitesimal topography and, broadly speaking, that subcritical and supercritical (i.e., topographic slope

greater than internal ray slope) ridges transmit and reflect internal wave energy, respectively. The authors

applied their approach to a random superposition of plane waves with a Garret-Munk spectrum [M€uller and

Liu, 2000b], and although no general quantitative results for scattering efficiency were stated it was con-

cluded that scattering at finite-amplitude topography causes significant distortion to the incident spectrum.

Most recently, B€uhler and Holmes-Cerfon [2011] advanced the approach of M€uller and Liu [2000a] to build a

numerical tool with which they studied the decay of a mode-1 internal tide due to interactions with finite-

amplitude, subcritical seafloor topography over a substantial length of propagation in a uniformly stratified

ocean. Their results suggest that scattering by finite-amplitude random topography can provide a rapid

decay mechanism for low-mode internal tides. Based on statistical calculations for many realizations of ran-

dom topography, the method predicts an exponential decay rate that scales quadratically and inversely

with the height and correlation length scale of the topography, respectively. Significantly, for realistic ocean

values, this suggests an e-folding decay scale for the low-mode internal tide in the range 250–500 km,

implying that deep-ocean scattering is indeed an important decay process.

While the studies of M€uller and Liu [2000a, 2000b] and B€uhler and Holmes-Cerfon [2011] provide signifi-

cant insight, these approaches are based on several idealizations. The first is two-dimensionality, which

is a reasonable first approximation for many slopes and ridges, although clearly not for seamounts

[M€uller and Liu, 2000b]; we are also beholdent to this two-dimensionality approximation for the Green

function analysis in this paper. Furthermore, M€uller and Liu [2000a, 2000b] and B€uhler and Holmes-Cerfon

[2011] considered an ocean with uniform stratification, with the latter authors also being restricted to

subcritical topography.

Detailed numerical studies of the scattering of a mode-1 internal tide by finite-amplitude Gaussian topogra-

phy were performed by Johnston and Merrifield [2003]. A conclusion of their study was that, in general, the

height of the topography affects the extent of energy transmission and reflection, while the slope and the

width of the topography determine how much energy gets scattered into higher modes, which is some-

what different from the conclusions of M€uller and Liu [2000a]. Subsequently, Johnston et al. [2003] studied

the scattering of a mode-1 internal tide, generated at the Hawaiian ridge, by the Line Islands ridge, where

the height ratio (i.e., the ratio of the topographic height relative to the total water depth) can exceed 0.5.

Around 19% of the incident energy was found to be scattered into modes 2–5, and a further 18% was lost

to a combination of dissipation by the numerical turbulence parameterization and nonlinear energy transfer

to higher harmonics. It was concluded that scattering by seafloor topography could be a significant process

in the Western Pacific. Legg [2014] recently performed a numerical study of finite-amplitude low-mode

internal waves incident on isolated topography and found that energy dissipation at subcritical slopes

increases as a function of the height of the topography and the incident wave amplitude. Performing a cou-

ple of simulations for 3-D axisymmetric topographies, Legg [2014] also made the important observation

that internal tide scattering by 3-D topographies is more suited for 2-D modeling than internal tide genera-

tion at 3-D topographies.

In support of the effort to clarify the importance of deep-ocean topographic scattering, in this paper, we

exploit recent advances in the Green function approach to investigate the efficiency of this process. Since

this method can handle arbitrary two-dimensional topography and stratifications it allows us to remove

many of the idealizations that were present in previous models and investigate scenarios that are increas-

ingly relevant to the ocean. In so doing, we identify a key aspect of topographic scattering that has been

overlooked: that the impact of a single tall ridge somewhere along the path traveled by a low-mode inter-

nal tide can far exceed the cumulative impact of small-scale topography.
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3. Theory

We define a stream function wðx; z; tÞ so that the associated internal tidal velocities are ðu;wÞ5ð2wz ;wxÞ; x

and z being the horizontal and vertical coordinates, respectively, and t being time. The stream function of

the total wavefield is wðx; z; tÞ5wbðx; z; tÞ1w0ðx; z; tÞ, where wb represents the background internal tide

and w0 is the perturbation to wb due to scattering by topography. It is assumed that the response is at the

same frequency, x, as the background internal tide, i.e., wbðx; z; tÞ5<½/bðx; zÞe
2ixt� and

w0ðx; z; tÞ5<½/0ðx; zÞe2ixt�, where /b and /0 are complex amplitudes, with < denoting the real part. The

velocity component along the second horizontal direction y is given by v5<½ðif=xÞð/b;z1/0
zÞe

2ixt�, where

the Coriolis frequency f52Xn52Xsin hlat is twice the background rotation Xn. X and hlat are the earth’s

background rotation and latitude of the region of interest, respectively.

The Green function approach, a theoretical framework in the limit of linear, inviscid, and Boussinesq approx-

imations for modeling the interaction of internal waves with topography, expresses the perturbation wave-

field, /0 as an integral over contributions from a distribution of sources of strength c(x0) placed on the

topography ðx0; z0Þ5ðx0; hðx0ÞÞ [Robinson, 1969; P�etr�elis et al., 2006; Balmforth and Peacock, 2009; Echeverri

and Peacock, 2010], i.e.,

/0ðx; zÞ5

ðb

2a

cðx0ÞGðx; x0; z; hðx0ÞÞdx0; (1)

where ½2a; b� are the horizontal limits of the topography and Gðx; x0; z; z0Þ is the Green function. The contin-

uous function h(x) is assumed to be in the range 0 � hðxÞ < H for x 2 ½a; b�, going smoothly to zero at x5 –

a and x5 b. Outside the x 2 ½a; b� domain, h(x) is assumed to be uniformly zero.

The Green function can be expressed as a sum over the vertical modes of the stratification, Un, via the

relation:

Gðx; x0; z; z0Þ5
X

n51

n51

Unðz
0Þ

2kn

ðH

0

NðzÞ22x2

x22f 2
U

2
ndz

 !

21

eiknjx2x0j
UnðzÞ; (2)

where the nth mode satisfies

Un;zz1
NðzÞ22x2

x22f 2
k2nUn50; (3)

with homogeneous boundary conditions Unð0Þ5UnðHÞ50 at the ocean floor (z5 0) and free surface

(z5H), and the positive eigenvalue kn is the corresponding horizontal wave number [Robinson, 1969;

P�etr�elis et al., 2006; Echeverri and Peacock, 2010]. Equation (3), with the homogeneous boundary conditions,

constitutes a Sturm-Liouville system that must be solved numerically to obtain Un for an arbitrary stratifica-

tion N(z). For convenience, and without any loss of generality, we define Un such that jdUn=dzj has a maxi-

mum value of unity for z 2 ½0;H�.

In the limit of a uniform stratification (i.e., N(z)5N0), the vertical modes UnðzÞ5ðH=npÞsin ðnpz=HÞ and the

eigenvalues kn5np=ðHcot hÞ, where cot h5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN2
02x2Þ=ðx22f 2Þ

p

. This idealized scenario has been studied

in the contexts of scattering [Robinson, 1969] and generation [e.g., P�etr�elis et al., 2006]. Wentzel-Kramers-

Brillouin (WKB) versions of the vertical modes have been used to represent the Green function for studies of

generation [e.g., Llewellyn Smith and Young, 2002, 2003; Echeverri and Peacock, 2010]. Here we use the com-

plete Green function for an arbitrary background stratification N(z), in which case combining equation (1)

with the full Green function (2) gives the expression for the perturbation stream function:

/0ðx; zÞ5
X

n51

n51

ðH

0

NðzÞ22x2

x22f 2
U

2
ndz

 !

21
UnðzÞ

2kn

ðb

2a

cðx0ÞUnðhðx
0ÞÞeikn jx2x0 jdx0; (4)

with H being the far-field ocean depth.
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No normal-flow at the ocean-floor topography h(x) and the sea surface (approximated as a rigid lid) require:

/0ðx; hðxÞÞ52/bðx; hðxÞÞ1/bðx; 0Þ and /0ðx;HÞ50; (5)

where the functional form of /b, which is assumed to satisfy the no normal-flow boundary condition at

z5 0 and z5H, depends on the background internal tide. Throughout this paper, we focus on an incident

mode-1 internal tide propagating from left to right, in which case:

/bðx; zÞ52U1ðzÞe
ik1x: (6)

For comparison, studies of internal tide generation by barotropic forcing, a scenario for which the WKB

Green function approach been extensively applied [Echeverri and Peacock, 2010], use /bðx; zÞ52Uz in the

boundary condition, where U is the barotropic forcing velocity.

Substituting (6) into the lower boundary condition in (5) and using the Green function solution (4) results in

the integral equation:

U1ðhðxÞÞe
ik1x

5

X

n51

n51

ðH

0

NðzÞ22x2

x22f 2
U

2
ndz

 !

21
UnðhðxÞÞ

2kn

ðb

2a

cðx0ÞUnðhðx
0ÞÞeiknjx2x0jdx0; (7)

which is solved numerically for c(x) using the procedure detailed in Echeverri and Peacock [2010]. In solving

this numerically, one must use a sufficiently fine spatial resolution to represent the topography and a suffi-

ciently large number of modes in the summation so that the solution converges. We note here that replac-

ing the mode shapes Un(z) and the horizontal wave number kn by the WKB mode shapes and

corresponding horizontal wave numbers constitutes the Green function theory with the WKB approxima-

tion [Llewellyn Smith and Young, 2003; Echeverri and Peacock, 2010], referred to as the WKB theory in the

rest of this paper.

In the far field, where the ocean depth is constant, one can define

a6n 5
1

2kn

ðH

0

NðzÞ22x2

x22f 2
U

2
ndz

 !

21
ðb

2a

cðx0ÞUnðhðx
0ÞÞe7iknx

0

dx0; (8)

where a1n corresponds to x> b and a2n to x < 2a. The perturbation stream function can thus be written

explicitly and concisely as a sum over the vertical modes:

/0ðx; zÞ5
X

n51

n51

a6n UnðzÞe
6iknx: (9)

The total wavefield is /ðx; zÞ5/b1/0 with /b being given by the expression in (6). With the exception of

transmitted mode 1, the transmitted (T) and reflected (R) depth-averaged energy flux in mode-n normalized

by the incident energy flux in mode 1 is:

CT ;R
n 5ja6n j

2 k1

kn

Ð H

0
ðdUn=dzÞ

2
dz

Ð H

0
ðdU1=dzÞ

2
dz

: (10)

For the energy flux in the transmitted mode 1, one must include the contribution from /b, in which case:

CT
15j211a11 j

2: (11)

For future discussion, it is also convenient to define the cumulative transmitted and reflected energy fluxes

in mode-p through mode-q:
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CT1R
p2q5

X

n5q

n5p

ðCT
n1CR

nÞ: (12)

4. Methods

In this section, we summarize details of the parameters used for numerically solving the integral equation

(7) and present an overview of the numerical model used to validate and complement the predictions from

the Green function theory.

4.1. Analysis

In principle, equations (7) and (9) require n51 to completely represent the solution, but in practice

the sum is truncated at a finite value of n above which the solution changes negligibly. Furthermore, in

solving (7) both the x and z spatial coordinates must be discretized, again seeking to achieve numerical

convergence of the solution. To achieve convergence, we increased the spatial and then modal resolu-

tions until the energy conservation equation CT1R
12n51 was satisfied with an error of <1%, unless speci-

fied otherwise. Typically, n5 500 and n5 200 were used for uniform and nonuniform stratifications,

respectively, and the topography was discretized by 2500 points, though these values varied somewhat

depending on the specific case being solved. The number of modes used to calculate the wavefields

and energy transmission/reflection coefficients was usually smaller than the value of n used to compute

the distribution c(x). Finally, since nondimensionalizations such as those employed in Echeverri and Pea-

cock [2010] become quite cumbersome when considering a fully nonuniform stratification, we instead

used reasonable dimensional parameters that are representative of the ocean. Unless stated otherwise,

H5 3800 m, x51:405331024 rad =s (M2), and N2
5331025 rad =s were used as the basis for our ideal-

ized studies; for simplicity we set f5 0 for the idealized studies and utilized physical values of f for our

ocean case studies. We also note here that the case of a uniform stratification satisfies the relation

kn5 nk1, resulting in a spatially coherent wave beam pattern of the scattered wavefield; the nonuniform

stratification does not admit the relation kn5 nk1, thus resulting in a spatially less coherent scattered

wavefield.

4.2. Numerics

To rigorously test the complete Green function approach, which has never been used to study scatter-

ing for arbitrary topography in uniform and nonuniform stratifications, we ran a number of correspond-

ing numerical simulations using a modified version of the nonlinear, hydrostatic, terrain following (sigma

coordinate) Princeton Ocean Model [Blumberg and Mellor, 1987]. A mode-1 internal tide was propagated

down a narrow channel, which consisted of the topography of interest extended in both directions

using a constant depth. To best match the analytical results, the simulations used a rigid lid at the sur-

face (i.e., the baroclinic modes have no surface expression), and zero dissipation was applied to momen-

tum and buoyancy. At the far end of the channel the relaxation boundary condition of Carter and

Merrifield [2007] prevented energy in all modes from being reflected. Modal decomposition of the model

output was performed over the flat bottom sections upstream and downstream of the topographic fea-

ture. The number of grid points in the vertical direction used by the numerical simulations were 54,

150, 200, and 224 for the cases in sections 5, 6, 7.1, and 7.2, respectively; assuming at least five points

per wavelength, the highest mode that the numerical simulations resolved was 25, 18, 17, and 18,

respectively. For the nonuniform stratifications considered in sections 6 and 7, the zero crossings of the

modes are crowded near the ocean surface, requiring a larger number of points to accurately resolve a

given mode number than for a uniform stratification.

5. Uniform Stratification

We first consider the scattering of a mode-1 tide by an isolated Gaussian ridge in an ocean with uniform

stratification. This allows several fundamental investigations of internal tide scattering, as well as initial con-

firmation of the accuracy and reliability of the Green function method.
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For the isolated Gaussian ridge

hGðxÞ5h0e
2x2=2r2 ; (13)

we define the criticality to be �5max(dhG=dxÞ=tan h, this being the ratio of the maximum topographic

slope to the internal ray slope, and the height ratio to be h�5h0=H; for a uniform stratification, these two

dimensionless parameters completely characterize the system. Figures 1a and 1b show the horizontal veloc-

ity u(x,z,t) at an arbitrary phase in the subcritical (�5 0.5) and supercritical (�5 2) regimes, respectively, for

h*5 0.5. The results presented in this figure, and indeed in all uniform stratification results, use only the first

100 modes to represent the solution (although more modes, up to 500, were available from the calculation

of the quantity c that underlies the solution). For the subcritical scenario, the mode-1 internal tide that is

incident from the left passes relatively unscathed, while scattering is apparent for the supercritical scenario,

giving rise to transmitted and reflected wavefields with beam-like features due to the presence of high

modes.

Figures 2a and 2b present the variation of the transmitted ðCT
12100Þ and reflected ðCR

12100Þ energy fluxes,

respectively, with criticality and height ratio. The results for �< 0.9 reveal essentially complete transmission

of energy and, accordingly, no significant reflection of energy in the subcritical regime for all depth ratios.

The system exhibits a sharp decrease in CT
12100, and thus increase in CR

12100, near criticality (�5 1), the rapid-

ity of the change being more pronounced for larger height ratios. For supercritical regimes with �> 3, the

variation of transmission and reflection with depth ratio becomes essentially independent of criticality, and

the supercritical ridge effectively behaves as a knife edge; we verified this by confirming that in the limit �

! 1 our results agree with the knife-edge results for h*5 0.75 presented in Figure 3 of M€uller and Liu

[2000a]. For small height ratios (h*< 0.2), the transmission and reflection coefficients are essentially inde-

pendent of criticality, with the vast majority of the energy being transmitted and little reflected.

Figure 1. The horizontal velocity field u(x,z,t) at an arbitrary instant in time for mode-1 (incident from the left) scattering by a (a) subcritical

(�5 0.5) and (b) supercritical (�5 2) Gaussian ridge of height ratio h*5 0.5 in a uniform stratification (calculated using the Green function

model).

Figure 2. The fraction of the incident energy flux scattered into the (a) transmitted and (b) reflected wavefields as a function of � and h*

for isolated Gaussian topography in a uniform stratification (calculated using the Green function model). The black and white horizontal

lines in Figures 2a and 2b, respectively, correspond to h*5 0.34.
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Having established the functional dependence of transmitted and reflected energy flux, the next step is to

consider the transfer of energy flux from lower to higher modes. To investigate this aspect of the scattering

process, for h*5 0.34 (indicated by the horizontal black and white lines in Figures 2a and 2b, respectively)

the variations with criticality of CT
1 ; C

T
122, and CT

12100, these being the cumulative transmitted energy fluxes

up to modes 1, 2, and 100, and correspondingly CR
1 ; C

R
122, and CR

12100, are presented in Figures 3a and 3b,

respectively. These results show that scattering from mode 1 to higher modes in the transmitted and

reflected wavefields increases as criticality (�5 1) is transcended from below. To validate our analytical

results, the results of seven complementary numerical simulations are also included in Figures 3a and 3b,

and these show excellent agreement with the theoretical results. It was not possible to calculate CT
12100 and

CR
12100 from the numerical data owing to strong numerical/viscous dissipation for the higher modes and a

lack of vertical grid resolution to resolve the very high modes. For the cases studied by numerical simula-

tions, our theory predicts that the maximum energy in the unresolved modes (>25) is 2.8% of the incident

mode-1 energy.

While the results in Figures 2 and 3 set the scene, it is perhaps most important to quantify how much

energy is scattered into higher modes in both the transmitted and reflected wavefields combined, as this

represents the total energy transfer from larger to smaller spatial scales that are more prone to instability

and dissipation. This motivated the calculation of the scattering efficiency CT1R
221512CT

12CR
1 (i.e., the total

energy scattered into modes 2 through 1 in both the transmitted and reflected wavefields) as a function

of the criticality � and the height ratio h*. Figure 4 presents the variation of CT1R
221 with criticality and height

ratio. The key result is that the maximum efficiency of scattering to higher modes occurs around criticality,

where there is a complex dependence

of CT1R
221 with both depth ratio and

criticality for h*> 0.4 and 0.8<�< 1.2.

The existence of a series of local max-

ima in parameter space is a phenom-

enon reminiscent of resonant

transmission of internal waves in non-

uniform stratifications [Sutherland and

Yewchuk, 2004; Mathur and Peacock,

2010]. For supercritical topography

there is a relatively straightforward

functional dependence of the scatter-

ing efficiency on depth ratio, having a

maximum in the vicinity of h*5 0.4

(for strongly supercritical, knife-edge

topography the maximum value is

Figure 3. The fraction of the incident energy flux scattered into the (a) transmitted and (b) reflected wavefields as a function of � for

h*5 0.34 in a uniform stratification. The three solid curves in each plot correspond to the cumulative energy flux up to modes 1, 2, and

100, calculated using the Green function model. Numerical results for �5 0.43, 0.59, 0.81, 1.13, 1.72, 2.56, and 3.48 are shown by the circles

(�). The horizontal dashed lines indicate the corresponding values for a knife-edge topography of the same height ratio (h*5 0.34), calcu-

lated using the Green function model with �5 20.

Figure 4. The fraction of the incident energy flux scattered into transmitted and

reflected modes 2 through 1; CT1R
221512CT

12CR
1 , as a function of � and h* for an

isolated Gaussian ridge in a uniform stratification (calculated using the Green func-

tion model).
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0.51 for h*5 0.37). For small depth ratios (h*< 0.4), the scattering efficiency increases monotonically, but

weakly, with criticality.

There are two key conclusions to be drawn from these initial studies. The first conclusion is that for small

height ratios (0< h*< 0.2), the scattering efficiency increases monotonically with h* and �. Thus, for small-

scale topography on the ocean floor, the taller and steeper the ridge, the more significant its ability to scat-

ter the mode-1 internal tide. The second conclusion is that for larger height ratios (0.2< h*< 1.0) scattering

is most efficient near criticality. Additionally, the results show that criticality plays the primary role in deter-

mining whether the internal tide is transmitted or reflected. These results are consistent with the observa-

tions of M€uller and Liu [2000a] that subcritical and supercritical topographies transmit and reflect the low-

mode internal tide, respectively, and scattering to higher modes is significant for near-critical topography.

This is somewhat different from the conclusion of Johnston and Merrifield [2003] that it is the height ratio

that primarily affects energy transmission and reflection, while the slope and the width of the topography

determine the conversion to higher modes. We note, however, that for a Gaussian ridge the slope and the

width together specify the topographic shape completely, and hence the conclusion of Johnston and Merri-

field [2003] does not isolate the effects of � and h*.

6. Nonuniform Stratification

We now proceed to study the scattering of a mode-1 tide by isolated topography in a nonuniform stratifica-

tion that is characteristic of the ocean. This course of action is chosen because the primary interest is in

assessing the importance of scattering for a typical ocean scenario and not to get embroiled in studies of

an extensive, multidimensional parameter space due to the introduction of several more parameters (e.g.,

pycnocline strength, pycnocline location, and pycnocline length scale). Indeed, the uniform stratification

results suggest that for small amplitude topography (h*< 0.1) the exact location and width of the pycno-

cline in the upper ocean will have little impact on the scattering, whereas for large amplitude topography

(h*> 0.5) the system will be sensitive to the specifics of the upper ocean stratification and should be dealt

with on a case-by-case basis.

The model stratification, presented in Figure 5a, comprises a uniform stratification with N05631024 rad/s

at large depths (z � 0) and a Gaussian pycnocline of characteristic width 500 m and maximum stratification

5:4831023 rad=s centered around z5 3400 m in an ocean of depth 3800 m. For simplicity, we refrain from

including background rotation at this point (i.e., f5 0), saving it for our case studies in section 7. The shapes

of modes 1 and 2 for the stratification in Figure 5a are presented in Figures 5b and 5c, respectively. It is evi-

dent that for this stratification the true (complete) modes 1 and 2 differ noticeably from their WKB counter-

parts, and thus it would seem prudent to use the complete Green function approach to study scattering in

this stratification.

In a nonuniform stratification, the definition of criticality is complicated by the varying topographic slope

and stratification. We define the criticality of the Gaussian ridge (13) to be �5max((dhG=dx)=tanh), i.e., the

maximum ratio of the topographic slope to the local internal wave ray slope. Figures 6a and 6b present the

horizontal velocity u(x,z,t) at an arbitrary instant in time for a mode-1 internal tide incident on a subcritical

Figure 5. (a) A nonuniform stratification N(z) representative of the ocean. The horizontal velocity uðzÞ5dUðzÞ=dz for (b) mode-1 and (c)

mode-2 for the stratification in Figure 5a, as determined by numerically solving (3) (thick solid line) and using the WKB approximation

(thin solid line). The stream functions are normalized so that max(jdU1=dzjÞ5max ðjdU2=dzjÞ51m=s .
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(�5 0.5) and supercritical (�5 2) ridge, respectively, for h*5 0.5. The presentation of these wavefields, and

all other nonuniform stratification results, was achieved using the first 50 of the 200 vertical modes used for

the determination of c(x). For both scenarios, the incident mode-1 internal tide is transmitted with very little

scattering to higher modes. This result is qualitatively different from that presented for ridges of the same

height ratio in a uniform stratification in Figure 1, and is due to the dominant activity of the wavefield exist-

ing well above the ridge, in the pycnocline.

Setting h*5 0.85, so that the Gaussian ridge penetrates the pycnocline, produces significant scattering to

higher modes for both subcritical (�5 0.5) and supercritical (�5 2) scenarios, as is evident by the wavefields

presented in Figures 7a and 7b. To investigate further, Figures 8a and 8b present the variation of the trans-

mitted ðCT
1250Þ and reflected ðCR

1250Þ energy fluxes, respectively, with criticality and height ratio. The qualita-

tive features closely resemble those for the uniform stratification scenario in Figure 2, albeit with the key

features occurring for larger values of h*.

Figures 9a and 9b present the variation with criticality of the transmitted and reflected energy fluxes for

h*5 0.85, alongside comparisons with numerical and WKB results. The nature of the results is reminiscent of

those for uniform stratification and h*5 0.34 in Figures 3a and 3b. There is substantial reflection as the crit-

icality increases through unity, significant scattering out of mode 1 occurs for �> 0.5, and for �> 2 the ridge

effectively behaves like a knife edge. The excellent agreement with numerical results (for the cases studied

by numerical simulations, our theory predicts that the maximum energy in the unresolved modes (>18) is

2.6% of the incident mode-1 energy) confirms the accuracy of the complete Green function approach for

nonuniform stratifications. In contrast, the WKB results differ significantly, revealing that the WKB approxi-

mation can provide misleading results. For example, at criticality the WKB method under predicts the trans-

mitted mode-1 energy flux (0.34 instead of 0.47) while simultaneously over predicting the total transmitted

energy flux (0.96 instead of 0.79).

Figure 6. The horizontal velocity field u(x,z,t) at an arbitrary instant in time for mode-1 (incident from the left) scattering in a nonuniform

stratification by a (a) subcritical (�5 0.5) and (b) supercritical (�5 2) Gaussian ridge with h*50.5 (calculated using the Green function

model).

Figure 7. The horizontal velocity field u(x,z,t) at an arbitrary instant in time for mode-1 (incident from the left) scattering in a nonuniform

stratification by a (a) subcritical (�5 0.5) and (b) supercritical (�5 2) Gaussian ridge with h*50.85 (calculated using the Green function

model).
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Plotting the scattering efficiency CT1R
221 as a function of � and h*, in Figure 10a, reproduces results qualita-

tively similar to those presented in Figure 4 for a uniform stratification, with the key features shifted to

larger values of h*. For h� < 0:5;CT1R
221 is small for all criticalities. Scattering to higher modes becomes most

efficient at criticality and there is a sequence of maxima and minima with increasing height ratio for near-

critical topography, as h* impinges upon and penetrates the pycnocline. In the strongly supercritical regime,

i.e., for a knife-edge topography, the scattering efficiency attains a maximum of CT1R
22150:5 at h*5 0.85; we

recall that the maximum scattering efficiency for a knife-edge topography in a uniform stratification was

found to be CT1R
22150:51 occurring at h*5 0.37.

Figure 10b presents the difference in CT1R
221 between the Green function models with and without the WKB

approximation. Expressions for energy fluxes as a function of mode strengths within the WKB approxima-

tion have previously been discussed by Echeverri and Peacock [2010]; we note, however, that the expression

for C6 in equation (2.16) in Echeverri and Peacock [2010] has to be corrected by a multiplicative factor of

x2=ðx2
2f 2Þ. Even for relatively small height ratios ðh� � 0:320:5Þ, for which the topography peak is well

below the pycnocline, the WKB approximation results in a significant error (�0.25) in the scattering effi-

ciency. This result is somewhat in contrast to a previous assertion that the WKB approach is not misleading

even for mode 1 and modest amplitude topography [Llewellyn Smith and Young, 2002]. The discrepancy

becomes particularly striking near criticality when the topography peak is in the vicinity of the pycnocline.

Overall, we conclude that the dependence of scattering on the height ratio and criticality in a nonuniform

stratification typical of the ocean is qualitatively similar to scattering in a uniform stratification, with the

exception that, as one might expect, the parameter space boundaries that delineate noticeable changes in

behavior are shifted to greater height ratios due to the presence of a pycnocline. Thus, while large

Figure 8. The fraction of the incident energy flux scattered into the (a) transmitted and (b) reflected wavefields as a function of � and h*

for an isolated gaussian topography in the nonuniform stratification presented in Figure 5a (calculated using the Green function model).

The black and white horizontal lines in Figures 8a and 8b, respectively, correspond to h*5 0.85.

Figure 9. The fraction of the incident energy flux scattered into the (a) transmitted and (b) reflected wavefields as a function of � for

h*5 0.85, for the nonuniform stratification shown in Figure 5a. The three solid curves in each plot correspond to the cumulative energy

flux up to modes 1, 2, and 50, calculated using the Green function model. The dashed curves represent the WKB results for CT
1 ; C

T
1250 and

CR
1 ; C

R
1250 . Numerical results for CT

1 ; C
T
122 and CR

1 ; C
R
122 are plotted as circles.
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amplitude topography can produce some nontrivial results, small amplitude isolated topography is respon-

sible only for weak scattering with an efficiency on the order of 5–10% that increases monotonically with

depth ratio and criticality.

7. Realistic Topography

An important capability of the Green function method compared to previous analytic techniques used to

study internal tide scattering is that it provides a relatively straightforward means for investigating realistic

oceanic scenarios; this has been demonstrated for internal tide generation by Echeverri and Peacock [2010],

albeit in the limit of the WKB approximation that has now been shown to potentially give misleading

results. In this section, we use the complete Green function method to consider the role of the Line Islands

Ridge in the scattering of the mode-1 internal tide radiated south-west from the Hawaiian Ridge, and we

also study scattering of the mode-1 internal tide radiated north-east from the Hawaiian Ridge by small-

scale, rough topography. These case studies use Smith-Sandwell topography data (http://www.nodc.noaa.

gov/OC5/WOA05/pr_woa05.html) and representative stratification data obtained from the World Ocean

Atlas (http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html). The investigations assume 2-D internal tide

dynamics along transects, which is of course an idealization of the real 3-D physical system. In support of

the 2-D approach, Johnston et al. [2003] comment that the section of the Line Islands Ridge we consider,

known as the Sculpin Ridge, is long and narrow and it would therefore seem conducive to a 2-D approxima-

tion. Overall, we would expect 2-D scattering to be more efficient than 3-D scattering, so the results

obtained can be considered as providing an upper bound for the scattering efficiency. In several cases,

direct comparisons are made with the results of 2-D numerical simulations to demonstrate the accuracy of

the theoretical approach.

7.1. South of Hawaii

The Line Islands Ridge is a substantial topographic feature on the ocean floor located approximately 1000

km south-west of the Hawaiian Islands chain. A contour plot of a roughly 5� longitude by 5.5� latitude sec-

tion of this ridge system, centered near 167.5�W and 15�N, is presented in Figure 11a. Satellite altimetry

data reveal that a strong, semidiurnal mode-1 internal tide, generated at French Frigate Shoals in the Hawai-

ian Ridge, is incident from the north-east upon this section of the Line Islands Ridge [Ray and Cartwright,

2001]. Analysis of this altimetry data, supported by numerical simulation, suggests that in the vicinity of this

location there is significant conversion from mode 1 to higher modes, accompanied by a rapid decay of

mode-1 baroclinic energy flux [Ray and Mitchum, 1997; Ray and Cartwright, 2001; Johnston et al., 2003]. The

opinion of Johnston et al. [2003] is that this is most likely a consequence of linear scattering by seafloor

topography.

Figure 11b presents a typical stratification for the vicinity of the Line Islands Ridge, comprising a strong pyc-

nocline in the upper few hundred meters and an exponential tail in the deep ocean. For this stratification,

and using x51:405331024 rad=s (M2) and f53:7631025 rad=s (corresponding to a latitude of 15�N), the

mode-1 horizontal wavelength and phase speed are 1.45 3 105 m and 3.25 m/s, respectively, and the

mode-2 horizontal wavelength and phase speed are 8.1 3 104 m and 1.81 m/s, respectively (assuming

Figure 10. (a) The fraction of the incident energy flux scattered into transmitted and reflected modes 2 through 1; CT1R
221512CT

12CR
1 , as a

function of � and h* for an isolated Gaussian topography in the nonuniform stratification shown in Figure 5a (calculated using the Green

function model). (b) The absolute difference in CT1R
221 between the Green function models with and without the WKB approximation.
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H5 5300 m). Plots of the vertical structure of the horizontal velocity for mode 1 and mode 2 are presented

in Figure 11c.

We consider 100 different two-dimensional topographic cross sections within the domain shown in Figure

11a; this domain and the incident direction of the mode-1 internal tide match the scenario studied by John-

ston et al. [2003]. Topography reaches within 1000–1500 m of the ocean surface in some locations, and out-

side this domain topography is assumed to smoothly descend to a constant ocean depth of 5300 m below

the ocean surface over a distance of 26 km, as assumed by Johnston et al. [2003]. Exceptions to this are the

black cross-sectional lines that protrude outside the box in Figure 11a for which the topography was instead

interpolated from real data till the height reached 5300 m below the ocean surface. Within the domain, any

topography that lies >5300 m below the ocean surface is set to z5 0, as the analysis requires z	 0 every-

where in the domain.

Figure 12 presents a snapshot of theoretical and numerical results for the incident-plus-scattered wavefields

resulting from a mode-1 internal tide propagating along the dashed-line transect in Figure 11a. This tran-

sect contains a strongly supercritical (� � 4.4) feature near x5223105 m, where the height ratio reaches

values around h*5 0.69. There is remarkably good qualitative agreement in the structure of the wavefields

calculated by theory and numerics, both displaying the same sharp wave beams that suggest significant

alteration of the incident mode-1 wavefield. The quantitative agreement for this transect and other sample

transects is very good too, as summarized in Table 1.

Figure 11. (a) A contour plot of the topography of the Line Islands Ridge, centered around 167.5�W and 15�N. The scattering of a mode-1

internal tide (incident in the direction of the black arrows) is investigated for 100 transects equispaced between the thick black lines. The

scattered wavefield along the dashed line is presented in Figure 12. (b) A typical stratification for the vicinity of the Line Islands Ridge. (c)

The vertical structure of horizontal velocity for modes 1 and 2 for the stratification presented in Figure 11b, with x51:405331024 rad=s

(M2) and f53:7631025 rad=s ð15
�

NÞ.

Figure 12. The horizontal velocity field u(x,z,t) at an arbitrary instant in time for mode-1 (incident from the left) scattering along the

dashed-line transect shown in Figure 11a. (a) Theoretical results and (b) numerical results.
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A summary of the results for the different transects is presented in Figure 13, in which the scattering effi-

ciency CT1R
221 for every cross section is plotted as a colormap. Theory predicts that across all 100 transects,

on average 76.5% of the incident mode-1 energy is transmitted and the remaining 23.5% is reflected. The

topography along some of the transects is very efficient at scattering, with CT1R
221 exceeding 80% in some

cases, and on average CT1R
221 is 40%, suggesting that scattering by the topography in this region is substan-

tial. We recall that, of course, this is a 2-D analysis of a 3-D system and that isolated transects with localized,

sharp peaks that lead to high scattering rates are likely to scatter less substantially in 3-D. The scattering effi-

ciency varies quite smoothly across transects, however, suggesting a reasonably 2-D scenario, and even

ignoring the most substantial peaks in the scattering efficiency the average value over all 100 cross sections

is still 39%. These results compare favorably with the 3-D numerical results of Johnston et al. [2003]. In the

same subdomain of the Line Islands Ridge region, they reported that 37% of the incident mode-1 energy

flux is lost by scattering into modes 2–5 (19%), dissipation by turbulence (15%) and nonlinear transfer to

the M4 internal tide; we find around 40% of the incident energy is scattered into higher modes, with 24–

28% of the energy going into modes 2–5.

7.2. North of Hawaii

We now proceed to consider a semidiurnal, mode-1 internal tide propagating north from Hawaii over realis-

tic small-scale rough topography. Although the latitude is varying the model requires constant background

rotation, which we choose to be f58:3431025 rad=s (corresponding to a latitude of 35�N). Figure 14a

presents a colormap of the topography in the region, with several of the transects along which we perform

our study marked. Figure 14b presents a representative stratification from the region shown in Figure 14a,

and the corresponding mode-1 and mode-2 shapes for this stratification are presented in Figure 14c.

For our case studies, sections of dif-

fering length from every transect in

Figure 14a are considered such that

the ocean depth is at least 5250 m at

the start and end points of every sec-

tion, ensuring negligible scattering

by the features at each end of every

section. The total water depth for

every section H is chosen to be 6000

m, and the topographic heights at

the two ends of every section are

smoothly extrapolated to z5 0. All

topography that extends below

z5 0 in any transect (i.e., deeper

than 6000 m) is reset to have zero

topographic height. Statistical analy-

sis of the topography in the region

reveals that the height ratio follows a

Gaussian-like distribution about a

mean value of h*5 0.053. On aver-

age, topography is far from the pyc-

nocline and is in the strongly

Table 1. Comparison of Results From Analysis and Numerical Simulations for Four Different Transects Across the Line Islands Ridge

Shown in Figure 11aa

Index

20 43 69 82

Theory Numerics Theory Numerics Theory Numerics Theory Numerics

CT
1 0.30 0.28 0.17 0.17 0.54 0.55 0.77 0.77

CT
2 0.19 0.18 0.02 0.01 0.10 0.09 0.03 0.03

CR
1 0.15 0.17 0.002 0.00025 0.01 0.007 0.005 0.006

CR
2 0.06 0.06 0.32 0.31 0.12 0.10 0.02 0.02

aIndex 20 is the dashed-line transect in Figure 11a.

Figure 13. Summary of the scattering efficiency, calculated using the Green function

model, for the 100 transects considered in the region of the Line Islands Ridge. The

colormap represents the value of CT1R
221 for each transect. The background contours

are the isobaths 5000 m (dashed line), 4000 m (thin line), and 2000 m (thick line)

below the ocean surface.
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subcritical regime, although many transects contain at least one not-insignificant topographic feature with

h*> 0.2.

To quantify the scattering to higher modes for the region north of Hawaii, in Figure 15a, we plot C221
T1R for a

mode-1 M2 internal tide for 1500 km long sections of each of the 191 transects; the results from 2-D numer-

ical simulations for 19 of these transects are also presented to provide further validation of the theoretical

method. The average scattering efficiency is found to be a modest 8.8%. The length of sections of the trans-

ects used was then increased from 1000 to 3000 km in steps of 250 km, and the variation of average scatter-

ing efficiency, �C
221
T1R with transect length is plotted in Figure 15b. Performing a linear fit of �C

221
T1R as a

function of the transect length, Lt, we obtain the relation �C
221
T1R 58:7131028 Lt20:046, the error bar for

every value of Lt being computed using the standard deviation of C221
T1R over all the transects considered.

When only those sections with h�max < 0:4 and h�max < 0:2 are considered, the slopes of the linear fit for
�C
221
T1R as a function of Lt decrease to 3:431028 m21 and 1:8531028 m21, respectively, suggesting that sec-

tions with larger values of h�max contribute significantly to the mean scattering efficiency. The slopes of the

three straight lines can be interpreted as an increase in the scattering efficiency by 8.71%, 3.4%, and 1.85%

for every 1000 km of topography.

The aforementioned results reveal that for transects of length 1000–3000 km with only small amplitude

topography the efficiency of internal tide scattering is indeed an order 5–10% process. There is, however,

an interesting caveat to these results that is suggested by data presented in Figure 15b and clarified by the

results presented in Figure 16, in which C221
T1R is plotted as a function of the maximum height ratio, h�max ,

along each transect of length Lt51:53106 m (circles) and Lt52:53106 m (asterisks). There is a strong

Figure 14. (a) A contour plot of the topography at the Hawaiian Ridge and northward regions over which we consider the propagation of

the mode-1 internal tide (the heights are measured from a reference location that is 6000 m below the sea surface). Investigations are per-

formed for 191 transects equispaced between the thick black lines (every 10th transect is shown), with the black arrows indicating the

direction of propagation. (b) A typical stratification for the region shown in Figure 14a. (c) Horizontal velocity structure of modes 1 and 2

for the stratification presented in Figure 14b, with x51:405331024 rad=s (M2) and f58:3431025 rad=s ð35
�

NÞ.

Figure 15. (a) The scattering efficiency CT1R
221 for the 191 cross sections considered in Figure 14a for Lt51:53106m; the solid line presents

results calculated using the Green function model and the black dots correspond to results from numerical simulations. The index it (1–

191) denotes the transect number. (b) Average scattering efficiency, �C
T1R

221 as a function of Lt for sections with h�max < 1 (circles), h�max

< 0:4 (squares), and h�max < 0:2 (triangles).
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correlation between the scattering effi-

ciency along a transect and h�max . Indeed,

for h�max > 0:5 the scattering efficiency

readily exceeds 20% and for h�max > 0:65

the scattering efficiency approaches 40%,

which corresponds to the case of the Line

Islands ridge. For comparison, superim-

posed on the data is the scattering effi-

ciency of an isolated knife-edge

topography as a function of height ratio

for the same stratification. From the close

fit of the theoretical curve to the predic-

tions based on real ocean topography, it

is evident that the scattering efficiency for

a transect is dominated by the scattering

due to the tallest topographic feature

along that transect. Again, we remind our-

selves that this is a 2-D study and intro-

ducing three-dimensionality will likely

reduce these values, but if internal tide

generation results are anything to go by then these findings are not unreasonable provided the length of

the topographic feature obstructing the internal tide is at least three times the width of the ridge in the

direction of propagation of the internal tide [Holloway and Merrifield, 1999].

8. Conclusions

In this paper, the recently advanced Green function method that accounts for fully nonuniform stratifica-

tions without the WKB approximation has been used to investigate scattering of the mode-1 internal tide

by ocean-floor topography. This robust semianalytical technique, which works for any arbitrarily shaped

two-dimensional topographies (with both the end points at the ocean bottom z5 0) in arbitrary stratifica-

tions, enabled systematic investigation of a wide range of idealized and realistic scenarios. In all cases, the

results of the analysis were validated by direct comparisons with the results of numerical simulations. Fur-

thermore, it was shown that the results from the WKB approach can be misleading even for modest sized

ridges.

For isolated Gaussian topography in both uniform and nonuniform stratifications, the transmission and

reflection of energy flux, and the efficiency of scattering out of mode 1 both depend on the criticality and

the depth ratio. The results for a nonuniform stratification typical of the ocean are qualitatively the same as

those for a constant stratification, albeit with the key features shifted to larger height ratios, but there are

significant discrepancies between the predictions of the complete Green function theory and approximate

WKB results, revealing that the latter are not appropriate for reliable ocean predictions. Two key results are

that large amplitude critical topography is the most efficient at mode-1 scattering and small amplitude

topography scatters with an efficiency on the order of 5–10% for transects of length 1000–3000 km.

The methods developed in this paper were directly applied to the geophysical setting of the Hawaiian

Ridge, representing the first attempt to quantify scattering by realistic ocean topography in a realistic strati-

fication. To the south, the Line Islands ridge has been shown to be efficient at converting a significant frac-

tion of the incident mode-1 energy flux to higher modes. To the north, we find that any realistic, small-

amplitude, rough topography scatters around 5–10% of the energy out of mode 1 for distances in the range

1000–3000 km, this value increasing systematically but fairly modestly with the propagation distance. Sig-

nificantly, however, there is a very strong correlation between the scattering efficiency along a transect and

the maximum topographic height along a transect, revealing that one large topographic feature along the

path of the internal tide can be primarily responsible for scattering. Therefore, a reasonable approach for

making an estimate of scattering along a transect is to find the tallest supercritical topographic feature in

the transect, replace it with a knife edge of the same height and calculate the scattering efficiency of this

Figure 16. CT1R
221 (calculated using the Green function model) as a function of

the maximum height ratio h�max for transects with Lt51:53106 m (circles) and

Lt52:53106 m (asterisks). The solid curve corresponds to CT1R
221 for an isolated

knife-edge topography of height ratio h�max in the stratification shown in Fig-

ure 14b.
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equivalent isolated knife-edge topography. If there is no standout large topographic feature the full analysis

must be performed for that particular transect.

Given that any internal tide is likely to encounter at least one tall feature along its path, we conclude that

scattering by ocean floor topography can be a significant mechanism to transfer energy from large to small

spatial scales. At such locations, due to the scattering of the low-mode internal tide to higher modes, one

might expect to find a mixing hot spot. These results are based on the assumption of two-dimensional

topography, however, and should be considered an upper bound for the scattering efficiency. While recent

studies [Legg 2014] suggest that scattering of low-mode internal tides normally incident on a 3-D, convex

slope is similar to the 2-D infinite ridge scenario, further studies are needed to properly assess the efficiency

of scattering by large-scale, three-dimensional topography. Furthermore, it would be a useful exercise to

determine how typical it is for a low-mode internal tide originating from a deep-ocean generation site to

encounter a large seamount or ridge before reaching the continental shelf. Finally, laboratory experiments

to investigate the nonlinear regimes of scattering that the complete Green function approach cannot model

could provide key insights, as seen in the preliminary experiments of Peacock et al. [2009].
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