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Abstract We assess the performance of an entanglement indicator which can
be obtained directly from tomograms, avoiding state reconstruction proce-
dures. In earlier work, we have examined this tomographic entanglement in-
dicator, and a variant obtained from it, in the context of continuous variable
systems. It has been shown that, in multipartite systems of radiation fields,
these indicators fare as well as standard measures of entanglement. In this
paper we assess these indicators in the case of two generic hybrid quantum
systems, the double Jaynes-Cummings model and the double Tavis-Cummings
model using, for purposes of comparison, the quantum mutual information as
a standard reference for both quantum correlations and entanglement. The dy-
namics of entanglement is investigated in both models over a sufficiently long
time interval. We establish that the tomographic indicator provides a good
estimate of the extent of entanglement both in the atomic subsystems and in
the field subsystems. An indicator obtained from the tomographic indicator as
an approximation, however, does not capture the entanglement properties of
atomic subsystems, although it is useful for field subsystems. Our results are
inferred from numerical calculations based on the two models, simulations of
relevant equivalent circuits in both cases, and experiments performed on the
IBM computing platform.
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1 Introduction

Several interesting effects are observed through entanglement dynamics in
models of hybrid quantum systems where spins are coupled to continuous
dynamical variables. Among other possibilities, these models also describe
atoms interacting with radiation fields. Interesting phenomena such as sudden
death and birth of entanglement are seen in the double Jaynes-Cummings (JC)
model [1] and the double Tavis-Cummings (TC) model [2], both of which have
been examined extensively in theory and experiment [3,4,5]. Furthermore, a
collapse of the entanglement to a constant non-zero value over a significant
interval of time occurs in tripartite models of a Λ-atom interacting with two
radiation fields [6], or in an optomechanical set-up where the radiation field
interacts with an atom and a mechanical oscillator [7].

It is evident that, in these investigations of entanglement dynamics, it is
necessary to identify appropriate quantifiers of entanglement at every instant
of time. Quantifiers used extensively, such as the subsystem von Neumann
entropy ξsvne and the subsystem linear entropy ξsle, are obtained from the
reduced density matrix ρ corresponding to the subsystem of interest according
to ξsvne = −Tr (ρ log ρ) and ξsle = 1 − Tr (ρ2). Reconstructing the density
matrix from experimental data which are typically in the form of tomograms
(or, equivalently, quadrature histograms), however, is an elaborate and tedious
statistical procedure that is inherently error-prone. It is therefore desirable to
extract information about the state directly from the tomograms, avoiding
explicit state reconstruction. In bipartite qubit systems, the efficacy of such
a program has been assessed by estimating relevant nonlinear functions of
the density matrix directly from the tomogram (see, for instance, [8]). In the
context of continuous variable systems, a qualitative indicator of entanglement
using tomograms has been proposed in Ref. [9].

In earlier work [10], we identified a tomographic entanglement indicator
ξtei that quantifies the extent of entanglement directly from the relevant to-
mograms, and assessed its performance vis-à-vis ξsvne and ξsle in a double-well
BEC system with inherent nonlinearities. We also carried out a comparative
study between ξtei and an entanglement indicator ξipr obtained from the in-
verse participation ratio both in the BEC system and in a nonlinear model of
a multi-level atom interacting with a radiation field. This investigation brings
into focus the role of the initial state considered and the nature of the nonlin-
earity in the model system, in determining the performance of ξtei and ξipr [11]
as entanglement indicators. We note that both the systems considered for our
purposes are bipartite in nature, with the subsystems modelled as oscillators.
In this paper, we extend our investigations on the tomographic entanglement
indicator to multipartite hybrid quantum systems.

A good measure of the entanglement between any two subsystems A and
B of a multipartite system is the quantum mutual information, defined as

ξ
(AB)
qmi = ξ

(A)
svne + ξ

(B)
svne − ξ

(AB)
svne . (1)
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The terms on the right-hand side are, respectively, the subsystem von Neu-
mann entropies of A, B and the bipartite subsystem AB. In this paper, we
compare the performance of ξtei as a measure of entanglement with that of
ξqmi during dynamical evolution in the double JC and the double TC mod-
els. In view of the extensive work being carried out currently in constructing
quantum circuits for various models of quantum optics [12], we have also con-
structed a quantum circuit to mimic the dynamics of the double JC model
using the IBM computing platform, and obtained the tomogram at a specific
instant of time. From this we have computed ξtei at that instant. We have also
substantiated our results by numerically simulating the dynamics of both the
model and the equivalent circuit. For the latter, we have used the IBM Open
quantum assembly language (QASM) simulator [13,14].

The plan of the rest of this paper is as follows. In Sec. 2, we outline the
procedures used to obtain the relevant entanglement measures. In Sec. 3, we
describe the two hybrid models mentioned above, and compare the perfor-
mance of the various measures during time evolution. We further construct
and examine the equivalent circuit for the double JC model, extract the in-
dicators, and compare them with those from numerical simulation. Similar
procedures have been carried out for the double TC model, and conclusions
have been drawn based on the experiment, simulation and numerical analysis.

2 Entanglement indicators from tomograms

We start with a brief review of the procedure for obtaining ξtei. Of immediate
relevance to us are the optical tomogram corresponding to the radiation field
and the spin tomogram of an atom, at any instant of time. A tomogram is a
histogram of experimental outcomes of the measurement of an appropriate set
of observables; the latter are judiciously selected to yield maximal information
about the quantum state. In the case of a single-mode radiation field, this is
the set of rotated quadrature operators [15,16]

Xθ = (a† eiθ + a e−iθ)/
√
2 (2)

where 0 ≤ θ < π, and a and a† are photon annihilation and creation operators
satisfying [a, a†] = 1. The eigenvalue equation for the operator Xθ is, in an
obvious notation, Xθ |Xθ, θ〉 = Xθ |Xθ, θ〉. The expectation value of the field
density matrix ρf can be computed in each complete basis set {|Xθ, θ〉} for a
given value of θ. The optical tomogram [15,17] is then given by

w(Xθ, θ) = 〈Xθ, θ| ρf |Xθ, θ〉 . (3)

For an atomic qubit with ground state |g〉 and excited state |e〉, the set of
observables is given by the operators

σx = 1
2 (|e〉 〈g|+ |g〉 〈e|), σy = 1

2 i(|g〉 〈e|− |e〉 〈g|), σz = 1
2 (|e〉 〈e|− |g〉 〈g|). (4)

These observables yield maximal information about the atomic states [18].
Let σz |m〉 = m |m〉. Then U(ϑ, ϕ) |m〉 = |ϑ, ϕ,m〉, where U(ϑ, ϕ) ≡ U(n) is a
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general SU(2) transformation parametrized by the polar and azimuthal angles
(ϑ, ϕ), or, equivalently, by the unit vector n. The spin tomogram is given by

w(n,m) = 〈n,m| ρs |n,m〉 (5)

where ρs is the spin density matrix. Different values of ϑ and ϕ give different
complete basis sets.

An extension of the foregoing to multipartite tomograms is straightfor-
ward [16]. The tomogram corresponding to a system comprising two radiation
fields A and B and two atoms C and D is the (diagonal) matrix element of
the density matrix ρabcd of the full system in the state

|Xθa , θa;Xθb , θb;nc,mc;nd,md〉 ≡ |Xθa , θa〉 ⊗ |Xθb , θb〉 ⊗ |nc,mc〉 ⊗ |nd,md〉
(6)

in an obvious notation. The reduced tomogram for a specific subsystem is
obtained by tracing over the basis states of the other subsystems. For instance,
the reduced tomogram corresponding to A is

wA(Xθa , θa) =
∑

md

∑

mc

∫ ∞

−∞

dXθbw(Xθa , θa;Xθb , θb;nc,mc;nd,md)

= 〈Xθa , θa| ρA |Xθa , θa〉 , (7)

where ρA is the reduced density matrix of the subsystem A.
The extent of entanglement between any two subsystems, say C and D in

the example above, can be estimated from the tomogram by computing the

tomographic entanglement indicator ξ
(CD)
tei , as follows. The two-mode tomo-

graphic entropy is given by

S(nc,nd) = −
∑

md

∑

mc

wCD(nc,mc;nd,md) log wCD(nc,mc;nd,md), (8)

while the single-mode subsystem tomographic entropy is

S(nj) = −
∑

mj

wj(nj ,mj) log wj(nj ,mj) (j = C,D). (9)

The tomograms wCD and wj in Eqs. (8) and (9) are defined in a manner analo-
gous to Eq. (7). The mutual information corresponding to the two subsystems
C and D is given by

S(nc;nd) ≡ S(nc,nd)− S(nc)− S(nd). (10)

The tomographic entanglement indicator is then given by

ξ
(CD)
tei = 〈S(nc;nd)〉, (11)

where the average is taken over the range of values of nc and nd. Numerical
evidence shows that a set of three orthogonal nj ’s (for each j = C,D) suffices

to obtain a ξ
(CD)
tei which agrees reasonably well with standard entanglement
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measures (such as the SVNE). For instance, choosing nj to be (1, 0, 0), (0, 1, 0)
and (0, 0, 1) in turn would correspond, respectively, to the eigenbasis of σjx,
σjy and σjz (j = C,D). It may be noted that choosing three orthogonal nj ’s
is equivalent to choosing three mutually unbiased basis sets for the subsystem
concerned.

Likewise, the measure ξ
(AB)
tei of the entanglement between the fields A and

B is obtained [10] by averaging the corresponding mutual information over a
sufficient number of basis sets in the ranges 0 6 θa < π and 0 6 θb < π.

3 Entanglement indicators in hybrid multipartite models

We now examine the indicator ξtei in the case of two hybrid multipartite
models, namely, the double JC model [1] and the double TC model [2].

3.1 The double Jaynes-Cummings model

The model comprises two 2-level atoms C and D which are initially in an
entangled state, with each atom interacting with strength g with radiation
fields A and B respectively. The effective Hamiltonian (setting ~ = 1) is [1]

HDJC =
∑

j=A,B

ωa†jaj +
1
2

∑

k=C,D

ω0σkz + g (a†aσc− + aaσc+)

+ g (a†bσd− + abσd+). (12)

aj , a
†
j (j = A,B) are photon annihilation and creation operators, ω is the

frequency of the fields, and ω0 is the energy difference between the two atomic
levels. In terms of the Pauli matrices, the atomic ladder operators are σk± =
(σkx±iσky) (k = C,D). The initial atomic states considered both in the double
JC model and the double TC model are of the form

|ψ0〉 =
(

|g〉1 ⊗ |g〉2 + |e〉1 ⊗ |e〉2
)

/
√
2 (13)

and

|φ0〉 =
(

|g〉1 ⊗ |e〉2 + |e〉1 ⊗ |g〉2
)

/
√
2. (14)

Here |g〉k and |e〉k (k = 1, 2) denote the respective ground and excited states
of atom k. In the double JC model, 1 and 2 are to be replaced by C and D
respectively. A and B are initially in the zero-photon states |0〉

a
and |0〉

b
. The

two initial states of the full system that we consider are |0〉
a
⊗ |0〉

b
⊗ |ψ0〉cd ≡

|0; 0;ψ0〉 and |0〉
a
⊗ |0〉

b
⊗ |φ0〉cd ≡ |0; 0;φ0〉.

For these initial states, we have numerically generated tomograms at ap-
proximately 300 instants of time, separated by a time step equal to 0.02 (in
units of π/g). From these, we have obtained ξtei at different instants as the
system evolves. For radiation fields, fairly good agreement had been demon-
strated [11] between ξtei calculated using the procedure outlined earlier, and
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an approximate entanglement indicator ξ′tei obtained by averaging only over
the dominant values of S(θa : θb) (i.e., over a subset of values that exceed the
mean value by more than one standard deviation). We now proceed to inves-
tigate if the latter approximation suffices even in the case of hybrid quantum
systems.

These two entanglement indicators and the standard indicator ξqmi are
plotted against the scaled time gt in Figs. 1 (a)-(c) in the case of the field
subsystems in the double JC model. The detuning parameter ∆ = (ω − ω0)
has been set equal to zero in Figs. 1 (a) and (b), and to unity in Fig. 1 (c).
The initial states considered are |0; 0;φ0〉 in Fig. 1 (a) and |0; 0;ψ0〉 in Figs. 1
(b),(c). For ease of comparison, ξqmi has been scaled down by a factor of 10. It
is evident from the figures that in this case, too, ξ′tei is a good approximation
to ξtei. Both the indicators mimic ξqmi closely in all the three cases considered.
Sensitivity to the precise initial atomic state considered and to the extent of
detuning is revealed by examining the qualitative features of the indicators in
the neighbourhood of their maximum values.
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Fig. 1 ξtei (black dashed curve), ξ′tei (blue solid curve) and 0.1 ξqmi (red dot-dashed curve)
versus scaled time gt for the field subsystem in the double JC model. (a) ∆ = 0, initial state
|0; 0;φ0〉 (b) ∆ = 0, initial state |0; 0;ψ0〉 (c) ∆ = 1, initial state |0; 0;ψ0〉.

Figs. 2 (a)-(c) depict plots of ξtei, ξ
′
tei and ξqmi corresponding to the atomic

subsystem for the same set of parameters and initial states as in Figs. 1. In
this case, although ξtei is in good agreement with ξqmi over the time interval
considered, ξ′tei is not, in sharp contrast to the situation for the field subsys-
tems. We note that when ∆ = 0, ξqmi returns to its initial value of 2 at the
instant gt = π. We will use this feature in the sequel, when we construct an
equivalent circuit for the double JC model.
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Fig. 2 ξtei (black dashed curve), ξ′tei (blue solid curve) and 0.1 ξqmi (red dot-dashed curve)
versus gt for the atomic subsystem in the double JC model. (a) ∆ = 0, initial state |0; 0;φ0〉
(b) ∆ = 0, initial state |0; 0;ψ0〉 (c) ∆ = 1, initial state |0; 0;ψ0〉.
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The equivalent circuit from which bipartite qubit tomograms are obtained
(analogous to the tomograms corresponding to the atomic subsystem of the
double JC model) is shown in Fig. 3. We use the standard notation of the
IBM platform [13], as the circuit has been implemented experimentally and
simulated numerically using IBM Q. In the circuit, q[0] and q[4] are the qubits
that follow the dynamics of the atomic subsystem while q[2] and q[3] act as
auxiliary qubits to aid the dynamics. Since transitions between the two energy
levels of either atom in the double JC model involve absorption or emission of
a single photon, each auxiliary qubit in the equivalent circuit toggles between
the qubit states |0〉 and |1〉 respectively. Here

U3(θ, ϕ, χ) =

[

cos (θ/2) −eiχ sin (θ/2)

eiϕ sin (θ/2) ei(χ+ϕ) cos (θ/2)

]

, (15)

where 0 6 θ < π, 0 6 ϕ < 2π and 0 6 χ < 2π. Each of the four qubits is
initially in the qubit state |0〉. The initial entangled state between q[0] and
q[4] (analogous to the initial state |ψ0〉 of the atomic subsystem) is prepared
in the circuit using an Hadamard and a controlled-NOT gate between q[4] and
q[2] and a SWAP gate between q[2] and q[0]. Here, θ is analogous to gt in the
double JC model. We choose θ = π, ϕ = 0 and χ = π/2. As noted earlier,
the extent of entanglement is equal to its initial value (= 2) if θ = π, and
the values of ϕ and χ are set for implementation of the circuit. The matrix
U3(π, π/2, π) which appears in the equivalent circuit is equal to U †

3 (π, 0, π/2).
Measurements are carried out in the x, y and z bases. A measurement in

�✁✂✄

�✁☎✄

�✁✆✄

�✁✝✄

�✁✞✄

✟
✠

✡ ☛

☞✌

✍✎✏✑ ✒✑ ✎✏✓✔✕

☞✌

✍✎✏✑ ✎✏✓✔✑ ✎✏✕

☞✌

✍✎✏✑ ✒✑ ✎✏✓✔✕

☞✌

✍✎✏✑ ✎✏✓✔✑ ✎✏✕

Fig. 3 Equivalent circuit diagram for the double JC model (created using IBM Q).

the x-basis is achieved by applying an Hadamard gate followed by a z-basis
measurement. (The measurement in the z-basis is automatically provided by
the IBM platform). Defining the operator

S† =

[

1 0
0 −i

]

, (16)

measurement in the y-basis is achieved by applying S†, then an Hadamard
gate, and finally a measurement in the z-basis. Measurements in the x, y
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Fig. 4 Tomograms obtained by (a) experimental realization (b) simulation of the equivalent
circuit (c) simulation of the double JC model.

and z bases are needed for obtaining the spin tomogram, Fig. 4 (a). (This is
equivalent to the bipartite atomic tomogram in the double JC model, in the
basis sets of σx, σy and σz).

These spin tomograms have been obtained experimentally using the IBM
superconducting circuit with appropriate Josephson junctions (Fig. 4 (a)), and
the QASM simulator provided by IBM which does not take into account losses
at various stages of the circuit (Fig. 4 (b)). These tomograms are compared
with the atomic tomograms (Fig. 4 (c)) of the double JC model with deco-
herence effects neglected. The qualitative features are very similar in Figs. 4
(b) and (c) as the circuit follows the dynamics of the atomic subsystem of the
double JC model. As expected, Fig. 4 (a) is distinctly different.

From these tomograms, we have calculated the corresponding tomographic
entanglement indicator ξtei. The values obtained from the experiment, simu-
lation and numerical analysis are 0.0410± 0.0016, 0.2311 and 0.2310, respec-
tively. In the first case, tomograms were obtained from six executions of the
experiment (each execution is 8192 runs over each of the 9 basis sets), and the
error bar was calculated from the standard deviation of ξtei. Owing to losses
at various stages of the experiment, ξtei is significantly smaller than the value
expected from simulation of the circuit and from the JC model.

It is instructive to estimate the extent of loss in state preparation alone.
For this purpose, an entangled state of two qubits was prepared using an
Hadamard and a controlled-NOT gate, to effectively mimic |ψ0〉. Tomograms
were obtained experimentally in six trials as before, and ξtei computed from
these. They were compared with corresponding values from numerical simula-
tion of the entangled state and from the atomic tomogram corresponding to
|ψ0〉. These values are 0.0973±0.0240, 0.2310 and 0.2310 from the experiment,
simulation and numerical analysis respectively. This demonstrates that sub-
stantial losses arise even in state preparation. In order to examine the extent
to which an increase in the number of atoms in the system increases these
losses, we turn to the double Tavis-Cummings (TC) model.

3.2 The double Tavis-Cummings model

The model comprises four two-level atoms, C1, C2, D1 and D2, with C1 and
C2 (respectively, D1 and D2) coupled with strength g to a radiation field A
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(respectively, B) of frequency ω. The effective Hamiltonian (setting ~ = 1) is
[2]

HDTC =
∑

j=A,B

ω a†jaj +
2

∑

k=1

{

1
2ω0 σckz +

1
2ω0 σdkz

+ g(a†aσck− + aaσck+) + g(a†bσdk− + abσdk+)
}

, (17)

where the notation is self-explanatory. Initially, C1 and D1 (respectively, C2

and D2) are considered to be in a bipartite entangled state. This state could
either be |ψ0〉 (Eq. 13) or |φ0〉 (Eq. 14). Each field is initially in |0〉. We consider
three initial states of the full system, namely, |0; 0;ψ0;ψ0〉, |0; 0;φ0;φ0〉 and
|0; 0;ψ0;φ0〉. The notation |0; 0;ψ0;φ0〉 indicates, for instance, that A and B
are in the state |0〉, the bipartite subsystem (C1, D1) is in the state |ψ0〉, and
the bipartite subsystem (C2, D2) is in the state |φ0〉. For brevity, we refer to
the bipartite atomic subsystems (C1, C2) and (D1, D2) as subsystems C and
D, respectively.

An equivalent circuit for the double TC model will require 4 qubits to
mimic the four two-level atoms together with a minimum of 4 auxiliary qubits
to aid the dynamics. In order to assess the extent of losses in state prepara-
tion alone, 4 qubits were prepared in a pairwise entangled state (analogous to
the initial state |ψ0;ψ0〉 of the atomic subsystem (C,D)) using 2 Hadamard
and 2 controlled-NOT gates (Fig. 5). Here qubits q[2] and q[3] are entan-
gled with qubits q[0] and q[4] respectively. As in the earlier case, tomograms
have been obtained (a) experimentally using the IBM quantum computer, (b)
from the QASM simulator, and (c) from the corresponding atomic tomogram
for |ψ0;ψ0〉. Note that the pair (q[2],q[3]) is analogous to subsystem C, and
(q[0],q[4]) is analogous to D. We have calculated the extent of entanglement
ξtei between the two 2-qubit subsystems. The numerical values obtained from
(a), (b) and (c) are 0.2528, 0.4761 and 0.4621, respectively. As 4 qubits are
involved in this circuit, the number of possible outcomes is 16. (Recall that
the number of outcomes in the earlier case was 4.) The maximum number of
experimental runs possible in both cases is 8192[13]. Hence, the experimental
losses, as well as the difference between the simulated and the numerically
obtained values, are higher than those obtained for the double JC model. We
therefore proceed to investigate the entanglement dynamics of the double TC
model numerically in the absence of losses.

We have investigated the entanglement between the field subsystems A
and B, and between the atomic subsystems C and D, as the system evolves
in time. For this purpose, we have numerically generated the states of the full
system and the corresponding tomograms during temporal evolution, at 300
instants separated by a time step 0.02 in units of π/g. From these, we have
obtained the two entanglement indicators ξtei and ξ′tei as functions of time.
These indicators and the corresponding ξqmi between A and B are plotted
in Figs. 6 (a)-(c). (Here, the detuning parameter may be set equal to zero,
without loss of generality.) ξtei, ξ

′
tei and ξqmi corresponding to entanglement

between C and D are plotted in Figs. 7 (a)-(c).



10 B. Sharmila1 et al.

�✁✂✄

�✁☎✄

�✁✆✄

�✁✝✄

�✁✞✄

✟
✠

✡☛☞ ✌

Fig. 5 Circuit for preparing an entangled state analogous to |ψ0;ψ0〉 (created using IBM
Q).
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Fig. 6 ξtei (black dashed curve), ξ′tei (blue solid curve) and ξqmi/10 (red dot-dashed curve)
between the two radiation fields A and B versus time gt with ∆ = 0. The fields are in the
initial state in |0; 0〉, while the atoms are in (a) |ψ0;ψ0〉 (b) |φ0;φ0〉 (c) |ψ0;φ0〉.
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Fig. 7 ξtei (black dashed curve), ξ′tei (blue solid curve) and ξqmi/10 (red dot-dashed curve)
between the two atomic subsystems C and D versus gt with ∆ = 0. The initial states of the
fields and atoms are the same as in Figs. 6 (a)-(c).

The inferences drawn from the double JC model are seen to hold good in
this case too: namely, that both the indicators effectively mimic ξqmi for the
field subsystem, while ξ′tei does not reflect ξqmi for the atomic subsystem.

4 Concluding remarks

We have compared an entanglement indicator ξtei obtained directly from to-
mograms, and an approximation to it (ξ′tei), with the quantum mutual infor-
mation ξqmi, in the case of the double JC and the double TC models. In both
models, the approximation is satisfactory for the field subsystem, but not for
the atomic subsystem. ξtei, however, is found to be a good estimate in both
models and for both subsystems. This would imply that a good entanglement
indicator could be obtained directly from tomograms, circumventing error-
prone and lengthy procedures of state reconstruction in multipartite hybrid
systems involving field-atom interactions. An equivalent circuit for the double
JC model was both experimentally run and numerically simulated to obtain
entanglement indicators. This facilitates the estimation of experimental losses
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and establishes that the results from the IBM simulator agree well with nu-
merical simulation of the double JC model. By constructing equivalent circuits
for state preparation in both models, we have shown that the difference in the
values of the entanglement indicator obtained experimentally and numerically
increases significantly with an increase in the number of atoms.
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