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Abstract. In this article, we study the Poisson process of order k (PPoK) time-changed with
an independent Lévy subordinator and its inverse, which we call respectively, as TCPPoK-I and
TCPPoK-II, through various distributional properties, long-range dependence and limit theo-
rems for the PPoK and the TCPPoK-I. Further, we study the governing difference-differential
equations of the TCPPoK-I for the case inverse Gaussian subordinator. Similarly, we study the
distributional properties, asymptotic moments and the governing difference-differential equa-
tion of TCPPoK-II. As an application to ruin theory, we give a governing differential equation
of ruin probability in insurance ruin using these processes. Finally, we present some simulated
sample paths of both the processes.

1. Introduction

Poisson process can be considered as a core object of applied probability, due to its simplicity
and applicability in modelling count data, which led to evolution and generalization of Poisson
processes in several directions. For example, non-homogeneous Poisson processes, Cox point
processes, higher dimensional Poisson processes, and for last two decades, the fractional (time-
changed) variants of Poisson processes (see [22, 28, 7, 31] and references therein) have caught
the attention of the researchers and a vast literature is available on this topic. In particular,
insurance models generally use Poisson process to model the arrival of claims with a limitation
of not having more than one claim in a certain small time interval. However, the claim arrival
in group insurance schemes may contain more than one claims. To overcome this difficulty,
Kostadinova and Minkova (2012) [19] introduced a variant known as Poisson process of order
k, which models the claim arrival in groups of size k, where the number of arrivals in a group
is uniformly distributed over k points. Further, in case of calamities, the time period between
two claims may not have exponential distribution, as these are extreme events and can not be
modelled by Poisson process of order k (as defined in [19]). Hence there is a need to generate a
new stochastic process which is a generalization of Poisson process of order k.

Among various techniques to create a new process, the technique of subordination (or time-
change) introduced by Bohner [9] has gained significant attention in recent years. The theory
of subordinated processes is explored in detail in [35]. A subordinated stochatic process can be
generated by replacing time of the original process with a stochastic process preferably having
non-decreasing sample paths. In literature, various examples of subordinated processes are
discussed, and shown to have interesting probabilistic properties and elegant connections to
fractional calculus, see e.g. [1, 2, 4, 7, 18, 36]. In paricular, recently, subordinated Poisson
processes are studied by several authors (see [20, 31, 42, 23, 24, 32]). Also, these processes are
extensively used in several areas, such as physics [29, 16, 39, 15, 5, 6], ecology [37], biology
[17], hydrology [27] and finance [12, 26, 14, 11, 25]. However, to the best of our knowledge,
subordinated Poisson processes of order k have not been explored.

In this article, the main goal is to explore time-changed Poisson process of order k with Lévy
subordinator (increasing Lévy process) and its right-continuous inverse, as the transition prob-
abilities of the new process with Lévy subordinator allow us to have more than one arrivals in
a small interval of time which is useful in modelling the count data occurring in lumps.
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1

ar
X

iv
:1

81
1.

04
56

7v
1 

 [
m

at
h.

PR
] 

 1
2 

N
ov

 2
01

8



2 AYUSHI S. SENGAR, A. MAHESHWARI, AND N. S. UPADHYE

The article is organized as follows. Section 2 deals with some preliminary definitions and results.
In Sections 3 and 4, Poisson process of order k with a Lévy subordinator and its right-continuous
inverse are studied, respectively. The governing equations for the time-changed Poisson process
of order k are given in Section 5. Section 6 discusses an application in ruin theory. Finally,
some simulation algorithms to generate the sample paths of these processes are presented in
Section 7.

2. Preliminaries

In this section, we state some relevant definitions and results related to Poisson process of order
k and Lévy subordinator.

2.1. Poisson distribution of order k. The early work on the distributions of order k started
with defining the notion geometric distribution of order k (see [34]) which denotes the number of
trials until the first occurrence of k consecutive successes in a sequence of independent Bernoulli
trials. The probability distribution of the sum of independent and identically distributed (IID)
random variables having geometric distribution of order k is called negative binomial distribu-
tion of order k (NBoK). Let Yn denote NBoK, then the limiting distribution of {Yn − kn} as
n→∞ is termed as Poisson distribution of order k (PoK) (see [34, Theorem 3.2]).

Definition 1. Let x1, x2, . . . , xk be non-negative integers and ζk = x1 + x2 + . . . + xk, Πk! =
x1!x2! . . . xk! and

(1) Ω(k, n) :=
{
x = (x1, x2, . . . , xk)

∣∣x1 + 2x2 + . . .+ kxk = n
}
.

Also, let N (k) follow PoK with rate parameter λ > 0, then the probability mass function (pmf)
is given by

P[N (k) = n] =
∑

x∈Ω(k,n)

e−kλ
λζk

Πk!
, n = 0, 1, . . . .

The probability generating function (pgf ) is given by (see [33, Lemma 2.2])

(2) GN(k)(s) = e−λ(k−
∑k
i=1 s

i).

It is also known that (see [19]) the PoK has the following compound Poisson representation

(3) N (k) d
=

N∑
i=0

Xi,

where N is Poisson random variable with rate parameter kλ > 0, X0 ≡ 0, and {Xi}i≥1is a
sequence of IID discrete uniform random variable with pmf given by P[Xi = j] = 1/k, j =

1, 2, . . . , k, which is independent of N . Then the pgf of X1 is given by GX1(s) = s
k

1−sk
1−s ,

s ∈ (0, 1). Therefore, the pgf of N (k) given in (3) is

(4) GN(k)(s) = GN (GX1(s)) = e−kλ(1−GX1
(s)).

It can be easily seen that pgf obtained in (2) and (4) are same.

2.2. The Poisson process of order k. The Poisson process of order k (PPoK) is introduced
and studied by Kostadinova and Minkova (see [19]) which can be defined as follows.

Definition 2. Let {N(t, kλ)}t≥0 denote Poisson process with rate parameter kλ > 0, X0 ≡ 0,
and {Xi}i≥1 be a sequence of IID discrete uniform random variables over k points. Then the

PPoK, {N (k)(t, λ)}t≥0, is defined (see [19]) as

N (k)(t, λ) =

N(t,kλ)∑
i=0

Xi,

where {Xi}i≥1 and {N(t, kλ)}t≥0 are assumed to be independent.
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Henceforth, for brevity, the parameter λ is suppressed and N (k)(t, λ) is written as N (k)(t), when
no confusion arises.

Remark 2.1. For k = 1, the distribution of Xi’s degenerate to Dirac-delta distribution at 1
and {N (1)(t)}t≥0 reduces to the Poisson process {N(t)}t≥0.

Remark 2.2. The pgf of N (k)(t) is GN(k)(t)(s) = exp (−kλt(1−GX1(s))), where GX1(s) =
s
k

1−sk
1−s is the pgf of X1.

The mean, variance and covariance function of the PPoK are given by

E[N (k)(t)] =
k(k + 1)

2
λt

Var[N (k)(t)] =
k(k + 1)(2k + 1)

6
λt

Cov[N (k)(s), N (k)(t)] =
k(k + 1)(2k + 1)

6
λmin(s, t).

Also, observe that the transition probabilities of the PPoK {N (k)(t)}t≥0 are given by

P[N (k)(t+ h) = n|N (k)(t) = m] =

{
1− kλh+ o(h) if n = m,
λh+ o(h) if n = m+ i, i = 1, 2, . . . , k.

Let pm(t) = P[N (k)(t) = m],m = 0, 1, 2, . . . denote the pmf of PPoK, then

d

dt
p0(t) = −kλp0(t),

d

dt
pm(t) = −kλpm(t) + λ

m∧k∑
j=1

pm−j(t), m = 1, 2, . . . ,(5)

with initial condition p0(0) = 1 and pm(0) = 0,m = 1, 2, . . . and m ∧ k := min{m, k}.
Next, note that the pgf of {N (k)(t)}t≥0 satisfies the following differential equation

∂

∂t
GN(k)(t)(s) = −kλ[1−GX1(s)]GN(k)(t)(s), with GN(k)(0)(0) = 1.

The Lévy exponent (characteristic exponent) (see [13]) of {N (k)(t)}t≥0 is given by

ψ(u) =

∫ ∞
−∞

kλ(exp(ιuy)− 1)µX1(dy).

2.3. Lévy subordinator. A Lévy subordinator (hereafter referred to as the subordinator)
{Df (t)}t≥0 is a non-decreasing Lévy process and its Laplace transform (LT) (see [3, Section
1.3.2]) has the form

(6) E[e−sDf (t)] = e−tf(s), where f(s) = bs+

∫ ∞
0

(1− e−sx)ν(dx), b ≥ 0, s > 0,

is the Bernstein function (see [38] for more details). Here b is the drift coefficient and ν is a
non-negative Lévy measure on positive half-line satisfying∫ ∞

0
(x ∧ 1)ν(dx) <∞ and ν([0,∞)) =∞

which ensures that the sample paths of Df (t) are almost surely (a.s.) strictly increasing. Also,
the first-exit time of {Df (t)}t≥0 is defined as Ef (t) = inf{r ≥ 0 : Df (r) > t},which is the
right-continuous inverse of the subordinator {Df (t)}t≥0.

Remark 2.3. Note that a Lévy subordinator is a class of subrodinators, which is useful in
generating various subordinated stochastic processes in general. Next, we include some well-
known examples of Lévy subordinators with drift coefficient b = 0 which are used later in the
article.
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(i) Let the Lévy measure be ν(dx) = pe−αx

x dx, x > 0, p > 0, α > 0 then using (6), we get the
Gamma subordinator {Y (t)}t≥0 with Bernstein function f(s) = p log(1 + s

α) (see [13], p.
115).

(ii) Let the Lévy measure be ν(dx) = c e
−µx

xα+1dx, x > 0, c > 0, µ > 0, 0 < α < 1 then using

(6), we get the Tempered α-stable subordinator Dµ
α(t) with Bernstein function f(s) =

(s+ µ)α − µα (see [13], p. 115).

(iii) Let the Lévy measure be ν(dx) = δ√
2πx3

e
−γ2x

2 dx, x > 0, γ > 0, δ > 0 then using (6), we get

the Inverse Gaussian subordinator G(t) with Bernstein function f(s) = δ(
√

2s+ γ2 − γ)
(see [41]).

3. Time-changed Poisson process of order k - I

In this section, we consider the PPoK with a subordinator {Df (t)}t≥0, satisfying E[Dρ
f (t)] <∞

for all ρ > 0, which can be defined as follows.

Definition 3. The time-changed PPoK of Type-I (TCPPoK-I) is defined as

{Q(1)
f (t)} = {N (k)(Df (t))}, t ≥ 0

where {N (k)(t)}t≥0 is the PPoK and is independent of the subordinator {Df (t)}t≥0.

Next, we derive some properties of the TCPPoK-I. Let us first compute its pmf .

Theorem 3.1. Let the Bernstein function f(s), as defined in (6), be such that E[Dρ
f (t)] < ∞

for all ρ > 0. Then, the pmf of the TCPPoK-I is given by

(7) P [Q
(1)
f (t) = n] =

∑
x∈Ω(k,n)

λζk

Πk!
E
[
e−kλDf (t)Dζk

f (t)
]
, n = 0, 1, 2, . . . .

Proof. Let gf (y, t) be the probability density function (pdf ) of Lévy subordinator. Then

P [Q
(1)
f (t) = n] = P [N (k)(Df (t)) = n] =

∫ ∞
0

P [N (k)(Df (t)) = n|Df (t)]gf (y, t)dy

=

∫ ∞
0

∑
x∈Ω(k,n)

e−kλy(λy)ζk

Πk!
gf (y, t)dy

=
∑

x∈Ω(k,n)

λζk

Πk!
E
[
e−kλDf (t)Dζk

f (t)
]
,

which completes the proof. �

Corollary 3.1. The pmf of the TCPPoK-I satisfies the normalizing condition
∞∑
n=0

P [Q
(1)
f (t) = n] = 1.

Proof. We first prove this result for the case k = 2. From (7) we have
∞∑
n=0

P [Q
(1)
f (t) = n] =

∞∑
n=0

∑
x∈Ω(2,n)

λζ2

Π2!
E
[
e−2λDf (t)Dζ2

f (t)
]
.

Set xi = ni i = 1, 2 and n = x+
∑2

i=1(i− 1)ni in the above expression. Then

∞∑
n=0

P [Q
(1)
f (t) = n] =

∞∑
x+n2=0

∑
n1,n2≥0
n1+n2=x

λn1+n2

n1!n2!
E
[
e−2λDf (t)Dn1+n2

f (t)
]

=

∞∑
x=0

(2λ)x

x!
E
[
e−2λDf (t)Dx

f (t)
]

(using binomial theorem)
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=

∫ ∞
0

e−2λy
∞∑
x=0

(2λ)x

x!
yxgf (y, t)dy

=

∫ ∞
0

e−2λye2λygf (y, t)dy =

∫ ∞
0

gf (y, t)dy = 1.

Using similar arguments one can prove for higher values of k. �

Using simple algebraic calculations, one can see that the transition probabilities of the TCPPoK-

I {Q(1)
f (t)}t≥0 are given by

(8)

P[Q
(1)
f (t+h) = n|Q(1)

f (t) = m] =


1− hf(kλ) + o(h), n = m

−h

( ∑
x∈Ω(k,i)

(−λ)ζk

Πk! f (ζk)(kλ)

)
+ o(h), n = m+ i, i = 1, 2, . . .

,

where f(kλ) is the Bernstein function.
Further, we present some interesting examples for the TCPPoK-I.

Example 3.1 (Negative Binomial process of order k). It is known that negative binomial process
can be obtained by subordinating the Poisson process with gamma process (see [42]). In a similar
spirit, we can define the negative binomial process of order k by subordinating PPoK with an
independent gamma process {Y (t)}t≥0 as defined in Remark 2.3(i) and its pmf is given by

P[N (k)(Y (t)) = n] =
∑

x∈Ω(k,n)

λζk

Πk!

∞∑
m=0

(−kλ)m

m!

Γ(pt+ ζk +m)

αζk+mΓ(pt)
, n = 0, 1, 2, . . . .

Example 3.2 (Poisson-tempered α-stable process of order k). Let {Dµ
α(t)}t≥0, µ > 0, 0 <

α < 1 be the tempered α-stable subordinator as defined in Remark 2.3(ii). Then pmf of the
Poisson-tempered α-stable of order k is given by

P[N(Dµ
α(t)) = n] =

∑
x∈Ω(k,n)

(λ)ζk

Πk!
eµ

αt
∞∑
m=0

(−kλ)m

m!
E[(Dα(t))ζk+me−µDα(t)], n = 0, 1, 2, . . . .

Example 3.3 (Poisson-inverse Gaussian process of order k). Let {G(t)}t≥0 be the inverse
Gaussian subordinator as defined in Remark 2.3(iii). The moments of {G(t)}t≥0 are given by
(see [42])

E[Gq(t)] =

√
2

π
δ

(
δt

γ

)q− 1
2

teδγtKq− 1
2
(δγt), δ, γ > 0, t ≥ 0, q ∈ (−∞,∞),

where Kν(z) is the modified Bessel function of third kind with index ν, defined by

Kν(ω) =
1

2

∫ ∞
0

xν−1e
−1
2
ω(x+x−1)dx, ω > 0.

Using the above expression, we get the following

E[Gζk+m(t)] =

√
2

π
δ

(
δt

γ

)(ζk+m)− 1
2

teδγtK(ζk+m)− 1
2
(δγt),

where δ, γ > 0, t ≥ 0. Substituting above values of moments in Theorem 3.1, we get the pmf of
Poisson-inverse Gaussian process of order k.

Next, we discuss some distributional properties of TCPPoK-I.

Theorem 3.2. Let 0 < s ≤ t < ∞, then the mean and covariance function of TCPPoK-I are
as follows

(i) E[Q
(1)
f (t)] = k(k+1)

2 λE[Df (t)],
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(ii) Cov[Q
(1)
f (s), Q

(1)
f (t)] = k(k+1)(2k+1)

6 λE[Df (s)] + (k(k+1)
2 λ)2Var[Df (s)],

Proof. Let gf (y, t) be the pdf of the Lévy subordinator {Df (t)}t≥0. Then

E[Q
(1)
f (t)] = E[N (k)(Df (t))] = E[E[N (k)(Df (t))|Df (t)]] =

k(k + 1)

2
λE[Df (t)],

which proves Part (i).

Now, we derive the expression for covariance of TCPPoK-I. First, we evaluate E[Q
(1)
f (s)Q

(1)
f (t)].

E[Q
(1)
f (s)Q

(1)
f (t)] =E[N (k)(Df (s))N (k)(Df (t))]

=E[N (k)(Df (s)){N (k)(Df (t))−N (k)(Df (s))}] + E[(N (k)(Df (s)))2]

=E[N (k)(Df (s))]E[N (k)(Df (t))−N (k)(Df (s))] + E[(N (k)(Df (s)))2]

=E[N (k)(Df (s))]E[N (k)(Df (t− s))] + E[(N (k)(Df (s)))2]

=
k(k + 1)

2
λE[Df (s)]

k(k + 1)

2
λE[Df (t− s)]+

k(k + 1)(2k + 1)

6
λE[Df (s)] +

(
k(k + 1)λ

2

)2

E[(Df (s))2],

where the last equality follows from the fact that

E[(N (k)(Df (s)))2] =
k(k + 1)(2k + 1)

6
λE[Df (s)] +

(
k(k + 1)λ

2

)2

E[(Df (s))2].

Therefore, we get

Cov[Q
(1)
f (s), Q

(1)
f (t)] =E[Q

(1)
f (s)Q

(1)
f (t)]− E[Q

(1)
f (s)]E[Q

(1)
f (t)]

=
k(k + 1)(2k + 1)

6
λE[Df (s)] +

(
k(k + 1)

2
λ

)2

Var[Df (s)].

which completes the proof of Part (ii). To get the expression of variance of the TCPPoK-I, we
can put s = t in the Part (ii). �

Remark 3.1. From Theorem 3.2, it is clear that V ar[Q
(1)
f (t)] > E[Q

(1)
f (t)].Therefore, the index

of dispersion I(t) := V ar[Q
(1)
f (t)]/E[Q

(1)
f (t)] (see [24] for more details) is greater than 1. Hence,

we conclude that TCPPoK-I exhibits overdispersion.

3.1. Long-range dependence. Now we discuss the long-range dependence (LRD) property
of the TCPPoK-I. We first need the following definitions.

Definition 4. Let f(x) and g(x) be positive functions. We say that f(x) is asymptotically equal
to g(x), written as f(x) ∼ g(x), as x→∞, if

lim
x→∞

f(x)

g(x)
= 1

Definition 5. (see [23]) Let 0 ≤ s < t and s be fixed. Assume a stochastic process {X(t)}t≥0

has the correlation function Corr[X(s), X(t)] that satisfies

c1(s)t−d ≤ Corr[X(s), X(t)] ≤ c2(s)t−d,

for large t, d > 0, c1(s) > 0 and c2(s) > 0. That is,

lim
t→∞

Corr[X(s), X(t)]

t−d
= c(s)

for some c(s) > 0 and d > 0. We say that X(t) has the long-range dependence (LRD) property
if d ∈ (0, 1) and short-range dependence (SRD) property if d ∈ (1, 2).

Now, we show that the TCPPoK-I has the LRD property.
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Theorem 3.3. Let Df (t) be such that E[Df (t)] ∼ k1t
ρ and E[(Df (t))2] ∼ k2t

2ρ for some
0 < ρ < 1, and positive constant k1 and k2 with k2 ≥ k2

1. Then the TCPPoK-I has the LRD
property.

Proof. Let 0 ≤ s < t <∞, we have that

Var[Q
(1)
f (t)] =

k(k + 1)(2k + 1)

6
λE[Df (t)] +

(
k(k + 1)

2
λ

)2 (
E[Df (t)2]− E[Df (t)]2

)
∼k(k + 1)(2k + 1)

6
λk1t

ρ +

(
k(k + 1)

2
λ

)2 (
k2t

2ρ − (k1t
ρ)2
)

∼
(
k(k + 1)

2
λ

)2

t2ρ(k2 − k2
1) (using Definition 4),

=d1t
2ρ,

where d1 =
(
k(k+1)

2 λ
)2

(k2 − k2
1). Now, we study the asymptotic behavior of the correlation

function

Corr[Q
(1)
f (s), Q

(1)
f (t)] =

Cov[Q
(1)
f (s), Q

(1)
f (t)]√

Var[Q
(1)
f (s)]Var[Q

(1)
f (t)]

∼
k(k + 1)(2k + 1)λE[Df (s)] + 6

(
k(k+1)

2 λ
)2

Var[Df (s)]

6
√

Var[Q
(1)
f (s)]

√
d1t2ρ

=

k(k + 1)(2k + 1)λE[Df (s)] + 6
(
k(k+1)

2 λ
)2

Var[Df (s)]

6
√
d1Var[Q

(1)
f (s)]

 t−ρ,

which decays like the power law t−ρ, 0 < ρ < 1. Hence the TCPPoK-I exhibits the LRD
property. �

Lemma 3.1. The PPoK has the LRD property.

Proof. Let 0 ≤ s < t <∞, then

Corr[N (k)(s), N (k)(t)] = s
1
2 t−

1
2

⇒ lim
t→∞

Corr[N (k)(s), N (k)(t)]

t−d
= lim

t→∞

s
1
2 t−

1
2

t−
1
2

= c(s).

From the Definition 5, we can say that the PPoK has the LRD property. �

3.2. Limit theorems. In this subsection, we derive some results on limit theorems of the PPoK
and the TCPPoK-I.

Lemma 3.2. Let {N (k)(t)}t≥0 be the PPoK. Then

(9) lim
t→∞

N (k)(t)

t
=
k(k + 1)

2
λ, in probability.

Proof. We know that the PPoK can be represented as sum of k independent Poisson processes
N1(t), N2(t), . . . , Nk(t) (see [19]).

N (k)(t)
d
= N1(t) + 2N2(t) + 3N3(t) + .....+ kNk(t).

Consider

lim
t→∞

N (k)(t)

t
= lim
t→∞

N1(t) + 2N2(t) + 3N3(t) + .....+ kNk(t)

t
, in distribution

= lim
t→∞

N1(t)

t
+ 2 lim

t→∞

N2(t)

t
+ . . .+ k lim

t→∞

Nk(t)

t
, in distribution.
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Using the law of large numbers and as limit in distribution goes to a constant, we get

=λ+ 2λ+ . . .+ kλ, in probability,

=
k(k + 1)

2
λ, in probability. �

Next, we prove limit theorem for TCPPoK-I. To do so, we first need the following definition.

Definition 6. We call a function l : (0,∞)→ (0,∞) regularly varying at 0+ with index α ∈ R
if

lim
x→0+

l(λx)

l(x)
= λα, λ > 0.

The following result of the law of iterated logarithm for subordinator is reproduced from [8,
Chapter III, Theorem 14].

Lemma 3.3. Let Df (t) be a subordinator with E[e−sDf (t)] = e−tf(s), where f(s) is regularly
varying at 0+ with index α ∈ (0, 1). Let h be the inverse function of f and

g(t) =
log log t

h(t−1 log log t)
, (e < t).

Then

(10) lim inf
t→∞

Df (t)

g(t)
= α(1− α)(1−α)/α, a.s.

Theorem 3.4. Let the Laplace exponent f(s) of the subordinator Df (t) be regularly varying at
0+ with index α ∈ (0, 1). Then

lim inf
t→∞

Q
(1)
f (t)

g(t)
=
k(k + 1)

2
λα(1− α)(1−α)/(α), in probability,

where

g(t) =
log log t

f−1(t−1 log log t)
(e < t).

Proof. We know that, by definition, Q
(1)
f (t) = N (k)(Df (t)). Now,

lim inf
t→∞

Q
(1)
f (t)

g(t)
= lim inf

t→∞

N (k)(Df (t))

g(t)

= lim inf
t→∞

N (k)(Df (t))

Df (t)

Df (t)

g(t)

Note that Df (t)→∞, a.s. as t→∞ (see [3, Section 1.5.1]). We have that

=
k(k + 1)

2
λ lim inf

t→∞

Df (t)

g(t)
, in probability (using (9))

=
k(k + 1)

2
λα(1− α)(1−α)/(α), in probability,

where the last step follows from (10), which completes the proof. �

4. Time changed Poisson process of order k-II

In this section, we consider the PPoK time-changed by inverse of Lévy subordinator.
The first exit time of the subordinator Df (t), called as inverse subordinator, is defined by

Ef (t) = inf{r ≥ 0 : Df (r) > t}, t ≥ 0.

Definition 7. The time-changed PPoK of Type-II (TCPPoK-II) is defined as

Q
(2)
f (t) = N (k)(Ef (t)), t ≥ 0,

where N (k)(t) is independent of the inverse subordinator {Ef (t)}t≥0.
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As proved in the case of TCPPoK-I, one can prove the following results on similar lines.
The pmf of the TCPPoK-II is given by

P [Q
(2)
f (t) = n] =

∑
x∈Ω(k,n)

λζk

Πk!

∞∑
m=0

(−kλ)m

m!
E[Eζk+m

f ], n = 0, 1, 2, . . . .

Let 0 < s ≤ t <∞, then the mean and covariance function of TCPPoK-II are given by

(i) E[Q
(2)
f (t)] = k(k+1)

2 λE[Ef (t)]

(ii) Cov[Q
(2)
f (s), Q

(2)
f (t)] = k(k+1)(2k+1)

6 λE[Ef (s)] +
(
k(k+1)

2 λ
)2

Var[Ef (s)].

Now, we discuss the asymptotic behavior of moments of the TCPPoK-II. First we need the
following Tauberian theorem (see [8, 40]).

Theorem 4.1. (Tauberian Theorem) Let l : (0,∞) → (0,∞) be a slowly varying function at
0 (respectively ∞) and let ρ ≥ 0. Then for a function U : (0,∞) → (0,∞), the following are
equivalent

(i) U(x) ∼ xρl(x)/Γ(1 + ρ), x→ 0 (respectively x→∞).

(ii) Ũ(s) ∼ s−ρ−1l(1/s), s→∞ (respectively s→ 0), where Ũ(s) is the LT of U(x).

The Laplace Transform (LT) of pth moment of Ef (t) is given by (see [24])

M̃(s) =
Γ(1 + p)

s(f(s))p
, p > 0,

where f(s) is the corresponding Bernstein function associated with Lévy subordinator Df (t).

Example 4.1 (PPoK time-changed by inverse gamma subordinator). Let EY (t) be the first
hitting time of gamma subordinator Y (t) as defined in Remark 2.3(i) is defined as

EY (t) = inf{r ≥ 0 : Y (r) > t}, t ≥ 0.

We study the asymptotic behavior of mean of the TCPPoK-II {Q(2)
Y (t)}t≥0. The LT of E[EY (t)]

is given by

M̃Y (s) =
Γ(2)

s(p log(1 + s
α))

.

It can be seen that

p log
(

1 +
s

α

)
∼ ps

α
, s→ 0⇒ M̃Y (s) ∼ Γ(2)s−2α

p
, s→ 0.

Then by Theorem 4.1, we have that

E[Q
(2)
Y (t)] =

k(k + 1)

2
λE[EY (t)] ∼ k(k + 1)

2
λ
tα

p
, as t→∞.

In a similar manner, we can compute the asymptotic behavior of Var[Q
(2)
Y (t)].

Var[Q
(2)
Y (t)] =

k(k + 1)(2k + 1)

6
λE[EY (t)] +

(
k(k + 1)

2
λ

)2

[E[EY (t)2]− E[EY (t)]2]

∼k(k + 1)(2k + 1)

6
λ

(
tα

p

)
+

(
k(k + 1)

2
λ

)2
[(

tα

p

)2

−
(
tα

p

)2
]
, as t→∞

∼k(k + 1)(2k + 1)

6
λ

(
tα

p

)
, as t→∞.

Example 4.2 (PPoK time-changed by the inverse tempered α-stable subordinator). We con-
sider the PPoK time-changed by the inverse tempered α-stable subordinator Eµα(t) (see [21]).
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The asymptotic behavior of the p-th moment of Eµα(t) is given by (see [21, Proposition 3.1])

E[(Eµα(t))p] ∼


Γ(1 + p)

Γ(1 + pα)
tpα, as t→ 0,

λp(1−α)

αp
tp, as t→∞.

We consider the case for p = 1, then by Theorem 4.1, we get

E[Q(2)
µ,α(t)] =

k(k + 1)

2
λE[Eµα(t)] ∼


k(k + 1)λΓ(2)

2Γ(1 + α)
tα, as t→ 0,

k(k + 1)λ(2−α)

2α
t, as t→∞.

Example 4.3 (PPoK time-changed with inverse of the inverse Gaussian subordinator). Let
EG(t) be the right-continuous inverse of the inverse Gaussian subordinator {G(t)}t≥0 as defined
in Remark 2.3(iii). It is defined as

EG(t) = inf{r ≥ 0 : G(r) > t}, t ≥ 0.

The mean of EG(t) is given by (see [21, 24])

M(t) = E[EG(t)] =
Γ(2)

s(δ(
√

2s+ γ2 − γ))
.

Taking the LT of the above expression, we get

M̃(s) ∼


Γ(2)

(δ/γ)
s−2, as s→ 0,

Γ(2)

(δ
√

2)
s−

3
2 , as s→∞.

Using Theorem 4.1, we have that

E[Q
(2)
G (t)] =

k(k + 1)

2
λE[EG(t)] ∼


k(k + 1)λΓ(2)

2Γ(1 + 1
2)(δ
√

2)
t
1
2 , as t→ 0,

k(k + 1)

2
λ(γδ )t, as t→∞.

5. Governing equation for time-changed Poisson processes of order k

Stochastic processes are intimately connected with partial differential equations (pde) (e.g.
Brownian motion and its diffusion equation), and difference-differential equation (dde) (Poisson
process and its governing equation). In this section, we present the governing equations for
some special cases of the TCPPoK-I and the TCPPoK-II.

5.1. Governing equation for Poisson-inverse Gaussian process of order k. Let N (k)(t)
be the PPoK and G(t) ∼ IG(δt, γ) be the inverse Gaussian subordinator. Then density function
g(x, t) of G(t) solves the following pde (see [20])

∂2

∂t2
g(x, t)− 2δγ

∂

∂t
g(x, t) = 2δ2 ∂

∂x
g(x, t).

We derive the governing equation for the TCPPoK-I.

Theorem 5.1. Let p̂m(t) denote the pmf of the TCPPoK-I {N (k)(G(t))}t≥0. Then it solves the
following dde(

d2

dt2
− 2δγ

d

dt

)
p̂m(t) = 2δ2λ [kp̂m(t)− (p̂m−1(t) + p̂m−2(t) + ...+ p̂m−m∧k(t))]
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Proof. We know that

p̂m(t) = P[N (k)(G(t)) = m] =

∫ ∞
0

pm(x)g(x, t)dx.

Since g(x, t) is measurable and integrable, we have the following expression

d

dt
p̂m(t) =

∫ ∞
0

pm(x)
∂

∂t
g(x, t)dx,

and
d2

dt2
p̂m(t) =

∫ ∞
0

pm(x)
∂2

∂t2
g(x, t)dx.

Consider now(
d2

dt2
− 2δγ

d

dt

)
p̂m(t) =

∫ ∞
0

pm(x)

(
∂2

∂t2
− 2δγ

∂

∂t

)
g(x, t)dx

=2δ2

∫ ∞
0

pm(x)
∂

∂x
g(x, t)dx

On applying integration by parts and using limx→∞ g(x, t) = limx→0 g(x, t) = 0, we get

=− 2δ2

∫ ∞
0

d

dx
pm(x)g(x, t)dx

=− 2δ2

∫ ∞
0

[−kλpm(x) + λ[pm−1(x) + pm−2(x) + . . .+ pm−m∧k(x)]g(x, t)dx

=2δ2λ [kp̂m(t)− (p̂m−1(t) + p̂m−2(t) + . . .+ p̂m−m∧k(t))] . �

5.2. Governing equation for PPoK time-changed by hitting time of inverse Gaussian
subordinator. Next we consider the TCPPoK-II where the time-change is done by the hitting
time of the inverse Gaussian process G(t). The first hitting time of the process G(t) is defined
by

EG(t) = inf{s ≥ 0 : G(s) > t}.
We know that (see [20]) the density function h(x, t) of EG(t) satisfies the following pde

∂2

∂x2
h(x, t)− 2δγ

∂

∂x
h(x, t) = 2δ2 ∂

∂t
h(x, t) + 2δ2h(x, 0)δ0(t).

To derive the governing dde for the TCPPoK-II we first need dde of PPoK for K = 2. Keeping
this in mind, we differentiate equation (5) with respect to t, we get for m = 1, 2, . . .

d2

dt2
pm(t) =

d

dt

−kλpm(t) + λ
m∧k∑
j=1

pm−j(t)

 ,

= −kλ d
dt
pm(t) + λ

m∧k∑
j=1

d

dt
pm−j(t),

= −kλ

−kλpm(t) + λ
m∧k∑
j=1

pm−j(t)

+ λ
m∧k∑
j=1

−kλpm−j(t) + λ

(m−j)∧k∑
i=1

pm−j−i(t)



d2

dt2
pm(t) = (kλ)2pm(t)− 2kλ2

m∧k∑
j=1

pm−j(t) + λ2
m∧k∑
j=1

(m−j)∧k∑
i=1

pm−j−i(t)


(11)

Theorem 5.2. Let the pmf of the TCPPoK-II be denoted by p̂m(t) = P [N (k)(EG(t)) = m].
Then it satisfies the following dde

d

dt
p̂m(t) =

1

2δ2

∫ ∞
0

(kλ)2pm(x)− 2kλ2
m∧k∑
j=1

pm−j(x)
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+λ2
m∧k∑
j=1

(m−j)∧k∑
i=1

pm−j−i(x)

h(x, t)dx

+2δγ

∫ ∞
0

−kλpm(x) + λ
m∧k∑
j=1

pm−j(x)

h(x, t)dx+ h(0, t)p′m(0)

− δ0(t)p̂m(0),

when m = 1, 2, . . . and

d

dt
p̂0(t) =

1

2δ2

[∫ ∞
0

(kλ)2p0(x)h(x, t)dx− 2kλδγ

∫ ∞
0

p0(x)h(x, t)dx− kλh(0, t)

]
− δ0(t)p̂0(0),

when m = 0 with initial condition p′m(0) =


−kλ m = 0,

λ m = 1, 2, . . . , k,

0 m ≥ k + 1.

Proof. We first take the case when m = 1, 2, . . . . Consider

d

dt
p̂m(t) =

∫ ∞
0

pm(x)
∂

∂t
h(x, t)dx,

=
1

2δ2

∫ ∞
0

pm(x)

[
∂2

∂x2
h(x, t)− 2δγ

∂

∂x
h(x, t)− 2δ2h(x, 0)δ0(t)

]
dx,

=
1

2δ2

∫ ∞
0

pm(x)

[
∂2

∂x2
h(x, t)− 2δγ

∂

∂x
h(x, t)

]
dx− δ0(t)

∫ ∞
0

pm(x)h(x, 0)dx.(12)

We will now consider the first term in the above equation∫ ∞
0

pm(x)
∂2

∂x2
h(x, t)dx =pm(x)

∂

∂x
h(x, t)|∞0 −

∫ ∞
0

d

dx
pm(x)

∂

∂x
h(x, t)dx

=pm(x)
∂

∂x
h(x, t)|∞0 − h(x, t)

d

dx
pm(x)|∞0 +

∫ ∞
0

d2

dx2
pm(x)h(x, t)dx.

Since limx→∞ hx(x, t) = limx→∞ h(x, t) = 0 and hx(0, t) = 2δγh(0, t), we get

=− 2δγpm(0)h(0, t) + h(0, t)
d

dx
pm(0) +

∫ ∞
0

d2

dx2
pm(x)h(x, t)dx.

Also,∫ ∞
0

pm(x)
∂

∂x
h(x, t)dx =pm(x)h(x, t)|∞0 −

∫ ∞
0

d

dx
pm(x)h(x, t)dx

=− pm(0)h(0, t)−
∫ ∞

0

d

dx
pm(x)h(x, t)dx.

Then Equation (12) becomes

d

dt
p̂m(t) =

1

2δ2

[
−2δγpm(0)h(0, t) + h(0, t)p′m(0) +

∫ ∞
0

p′′m(x)h(x, t)dx

−2δγ{−pm(0)h(0, t)−
∫ ∞

0
p′m(x)h(x, t)dx}

]
− δ0(t)p̂m(0)

=
1

2δ2

[∫ ∞
0

p′′m(x)h(x, t)dx+ 2δγ

∫ ∞
0

p′m(x)h(x, t)dx+ h(0, t)p′m(0)

]
− δ0(t)p̂m(0).

Substituting the expressions of of p′m(x) and p′′m(x) from (5) and (11), respectively, we get the
desired result.
For m = 0, p0(t) = e−kλt.

d

dt
p̂0(t) =

∫ ∞
0

p0(x)
∂

∂t
h(x, t)dx
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=
1

2δ2

∫ ∞
0

p0(x)

[
∂2

∂x2
h(x, t)− 2δγ

∂

∂x
h(x, t)− 2δ2h(x, 0)δ0(t)

]
dx

=
1

2δ2

[
−2δγp0(0)h(0, t) + h(0, t)p′0(0) +

∫ ∞
0

p′′0(x)h(x, t)dx

−2δγ{−p0(0)h(0, t)−
∫ ∞

0
p′0(x)h(x, t)dx}

]
− δ0(t)p̂0(0)

=
1

2δ2

[∫ ∞
0

(kλ)2p0(x)h(x, t)dx− 2kλδγ

∫ ∞
0

p0(x)h(x, t)dx− kλh(0, t)

]
− δ0(t)p̂0(0)

�

6. Application in Risk Theory

The classical insurance risk model is defined by

Z(t) = ct−
N(t)∑
j=1

Zj , t ≥ 0,

where {N(t)}t≥0 is the homogeneous Poisson process, which counts the number of claim arrivals
upto time t and Zj is the claim amount size with distribution F , independent of N(t). The
risk process models the cash flow of an insurance company where the premium rate is fixed at
c > 0. Though this models is simple and easy to use, but it does not cover all practical aspects
of insurance ruin. In this section, we attempt to improve this model in following ways, namely,

(1) Group insurance schemes: Insurance companies sell group insurance policies for
families, businesses and institutions, and etc. where a single claim reporting implies
several claims within a group. These situations can be modelled using PPoK (see [19]),
where the claims arrive in groups of size less than or equal to k.

(2) Ruin due to sudden large scale extreme events: The classical Poisson process,
as evident from its transition probability function, assigns extremely low probability to
more than one event in a small time period. However, in practice, we have observed that
natural and man-made calamities can force large number of claim arrivals in a short span
of time. For example, after 9/11 attacks, the insurance companies were badly affected
by large scale claim arrivals in small time period. The Poisson process time-changed by
Lévy subordinator allows arbitrary arrivals in short span of time (see [32, 30]).

The model we proposed in this paper encapsulates the above improvements. Our proposed
model reduces to group insurance scheme model when no time-change is done. It also covers
sudden large scale extreme events when k = 1 (in case of non group insurance schemes). In
this section, we study ruin probability, joint distribution of time to ruin and deficit at ruin, and
derive their governing equation based on our generalized model given below.

Let {Q(1)
f (t)}t≥0 be the TCPPoK-I. Consider the risk model governed by the TCPPoK-I,

denoted by {X(t)}t≥0, defined as

(13) X(t) = ct−
Q

(1)
f (t)∑
j=1

Zj , t ≥ 0,

where c > 0 denotes premium rate, which is assumed to be constant and Zi be non-negative
IID random variables with distribution F , representing the claim size. The ratio of E[X(t)] and

E[
∑Q

(1)
f (t)

j=1 Zj ] is called premium loading factor, denoted by ρ, is given by

ρ =
E[X(t)]

E[
∑Q

(1)
f (t)

j=1 Zj ]

=
ct

µE[Q
(1)
f (t)]

− 1,
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where µ = E[Zj ]. The premium loading factor signifies the profit margin of the insurance firm.
Let us denote the initial capital by u > 0. Define the surplus process {U(t)}t≥0 by

U(t) = u+X(t), t ≥ 0.

The insurance company will be called in ruin if the surplus process falls below zero level. Let
T denote the first time to ruin and is defined as

T = inf{t > 0 : U(t) < 0}.
Then probability of ruin is given by

ψ(u) = P{T <∞}.
The joint probability that ruin happens in finite time and the deficit at the time of ruin, which
is denoted as D = |U(t)|, is given by

(14) G(u, y) = P{T <∞, D ≤ y}, y ≥ 0.

Observe that

ψ(u) = lim
y→∞

G(u, y).

Denote u′ := u+ ch. Now, using (8), we get

G(u, y) =(1− hf(kλ))G(u′, y)− h
∑

x∈Ω(k,1)

(−λ)ζk

Πk!
f (ζk)(kλ)

[∫ u′

0
G(u′ − x, y)dF (x)+

F (u′ + y)− F (u′) + . . .+

∫ u′

0
G(u′ − x, y)dF ∗k(x) + F ∗k(u′ + y)− F ∗k(u′)

]

− h
∑

x∈Ω(k,2)

(−λ)ζk

Πk!
f (ζk)(kλ)

[∫ u′

0
G(u′ − x, y)dF (x) + F (u′ + y)− F (u′) + . . .

+

∫ u′

0
G(u′ − x, y)dF ∗k(x) + F ∗k(u′ + y)− F ∗k(u′)

]
+ . . .

...
...

...
...

...

=(1− hf(kλ))G(u′, y)

− h
∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ)

[
k∑
i=1

∫ u′

0
G(u′ − x, y)dF ∗i(x) + F ∗i(u′ + y)− F ∗i(u′)

]
.

After rearranging the terms, we have that

G(u′, y)−G(u, y) =hf(kλ)G(u′, y)+

h
∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ)

[
k∑
i=1

∫ u′

0
G(u′ − x, y)dF ∗i(x) + F ∗i(u′ + y)− F ∗i(u′)

]
G(u′, y)−G(u, y)

ch
=

1

c
f(kλ)G(u′, y)+

1

c

∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ)

[
k∑
i=1

∫ u′

0
G(u′ − x, y)dF ∗i(x) + F ∗i(u′ + y)− F ∗i(u′)

]
.

Now taking h→ 0, we get

∂G

∂u
=
f(kλ)

c
G(u, y) +

1

c

∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ)

[
k∑
i=1

∫ u

0
G(u− x, y)dF ∗i(x) + F ∗i(u+ y)− F ∗i(u)

]
.
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The term in bracket in above expression, F ∗i, represents the i-fold convolution of the claim size

distribution. Let us denote the aggregate claims by B(x) =
∑k

i=1 F
∗i(x) and normalizing it to

a probability distribution by defining B1(x) = B(x)
k , then we have

∂G

∂u
=
f(kλ)

c
G(u, y) +

k

c

[∫ u

0
G(u− x, y)dB1(x) +B1(u+ y)−B1(u)

] ∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ).

Consider the last term in above expression, we obtain
∞∑
n=1

∑
x∈Ω(k,n)

(−λ)ζk

Πk!
f (ζk)(kλ) =

∞∑
n=1

∑
x1,x2,...xk≥0

x1+2x2+...+kxk=n

(−λ)x1+x2+...+xk

x1!x2! . . . xk!
f (x1+x2+...+xk)(kλ).

Set xi = ni, i = 1, 2, . . . k and n = x+
∑k

i=1(i− 1)ni. We get

=
∞∑
x=1

∑
n1,n2,...nk≥0

n1+n2+...+nk=x

(−λ)n1+n2+...+nk

n1!n2! . . . nk!
f (n1+n2+...+nk)(kλ)

=
∞∑
x=1

(−λ)x

x!
f (x)(kλ)

∑
n1,n2,...nk≥0

n1+n2+...+nk=x

(n1 + n2 + . . .+ nk)!

n1!n2! . . . nk!

=
∞∑
x=1

(−λ)x

x!
f (x)(kλ)(1 + 1 + . . .+ 1)x =

∞∑
x=1

(−λk)x

x!
f (x)(kλ)

=
∞∑
x=0

(−λk)x

x!
f (x)(kλ)− f(kλ).

As f is Bernstein function, it is infinitely differentiable and using Taylor’s series, we get

=f(kλ− kλ)− f(kλ) = −f(kλ) (using f(0) = 0).

From above calculations, we have the following result.

Theorem 6.1. Let G(u, y), defined in (14), denote the joint probability distribution of time to
ruin and deficit at this time of the risk model (13). Then, it satisfies the following differential
equation

(15)
∂G(u, y)

∂u
=
f(kλ)

c

[
G(u, y)− k

(∫ u

0
G(u− x, y)dB1(x) +B1(u+ y)−B1(u)

)]
.

Theorem 6.2. The joint distribution of ruin time and deficit at ruin when the initial capital
is zero, G(0, y), is given by

(16) G(0, y) =
f(kλ)

c

[
(k − 1)

∫ ∞
0

G(u, y)du+ k

∫ ∞
0

[B1(u+ y)−B1(u)]du

]
.

Proof. On integrating (15) with respect to u on (0,∞), we get

G(∞, y)−G(0, y) =
f(kλ)

c

[∫ ∞
0

G(u, y)du− k
(∫ ∞

0

∫ u

0
G(u− x, y)dB1(x)du +∫ ∞

0
[B1(u+ y)−B1(u)]du

)]
.

Note that G(∞, y) = 0,then

G(0, y) =
f(kλ)

c

[
(k − 1)

∫ ∞
0

G(u, y)du+ k

∫ ∞
0

[B1(u+ y)−B1(u)]du

]
.

�

Remark 6.1. On taking limit y →∞ in (16), we get

ψ(0) =
f(kλ)

c

[
(k − 1)

∫ ∞
0

ψ(u)du+ k

∫ ∞
0

[1−B1(u)]du

]
.
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Remark 6.2. From (15), we have that

∂G

∂u
=
f(kλ)

c

[
G(u, y)− k

(∫ u

0
G(u− x, y)dB1(x) +B1(u+ y)−B1(u)

)]
.

As limy→∞G(u, y) = ψ(u), on taking limit as y → ∞ in the above equation, we obtain the
following differential equation governing the ruin probability

∂ψ

∂u
=
f(kλ)

c

[
ψ(u)− k

(∫ u

0
ψ(u− x)dB1(x) + (1−B1(u))

)]
.

7. Simulation

In this section, we present the algorithm to generate simulated sample paths for some TCPPoK-I
and TCPPoK-II processes. Using the algorithms presented here, we generate simulated sample
paths for the PPoK, the TCPPoK-I subordinated with gamma and inverse Gaussian subordi-
nator, and the TCPPoK-II subordinated with inverse gamma and inverse of inverse Gaussian
subordinator for a chosen set of parameters. We first present the algorithm for simulation of
sample paths of the PPoK.

Algorithm 1 (Simulation of the PPoK). This algorithm (see [10]) gives the number of

events N (k)(t), t ≥ 0 of the PPoK up to a fixed time T .

(a) Fix the parameters λ > 0 and k ≥ 1 for the PPoK process.
(b) Set n = 0, a = 0 and t = 0.
(c) Repeat while t < T

Generate a uniform random variables U .
Compute t← t+

[
− 1
λ lnU

]
.

Generate an independent random variable X with discrete uniform distribution on k
points.
a← a+X and n← n+ 1.

(d) Next t.

Then n denotes the number of events N (k)(t) occurred up to time T .

We next present a general algorithm to simulate the TCPPoK-I, subordinated with gamma sub-
ordinator and the inverse Gaussian subordinator. The same algorithm can be used to simulate
the TCPPoK-II, subordinated with inverse gamma and inverse of inverse Gaussian processes.
We refer to Algorithm 2–5 from [24] to generate sample paths of the gamma and the inverse
Gaussian subordinator and their right-continuous inverses.

Algorithm 2 (Simulation of the TCPPoK-I and the TCPPoK-II).
(a) Fix the parameters for the subordinator (inverse subordinator), under consideration. Choose

λ > 0 and order k for the PPoK.
(b) Fix the time T for the time interval [0, T ] and choose n + 1 uniformly spaced time points

0 = t0, t1, . . . , tn = T with h = t2 − t1.
(c) Simulate the values W (ti), 1 ≤ i ≤ n, of the subordinator (inverse subordinator) at t1, . . . tn,

using the Algorithm 2–5 of [24] for respective subordinator (inverse subordinator).
(d) Using the values W (ti), 1 ≤ i ≤ n, generated in Step (c), as time points, compute the number

of events of the PPoK {N (k)(W (ti))}, 1 ≤ i ≤ n, using Algorithm 1.

Let λ = 1.2 and T = 10 be fixed for the simulated sample paths presented in this section below.
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(a) Parameters: k = 3 (b) Parameters: k = 5

Figure 1. Ten simulated sample paths of the PPoK process for order (A) k = 3,
and (B) k = 5

(a) Parameters: α = 3.0, p = 4.0, k = 3 (b) Parameters: α = 3.0, p = 4.0, k = 3

Figure 2. Ten simulated sample paths of time-changed PPoK with (A) gamma
subordinator, and (B) inverse gamma subordinator.

(a) Parameters: γ = 1, δ = 1, k = 3 (b) Parameters: γ = 1, δ = 1, k = 3

Figure 3. Ten simulated sample paths time-changed PPoK with (A) inverse
Gaussian subordinator, and (B) inverse of inverse Gaussian subordinator.

Interpretation of plots. The PPoK is interpreted as arrival coming in packets of size k. As
it is clear from Figure 1, as the packet size k is increased from 3 to 5, the number of arrivals
increased. The effect of time-change by subordinator in PPoK is clearly visible in Figure 2(A)

and 3(A) as the arrival rate of the packets increases compared with Figure 1(A). While if we observe the
effect of inverse subordinator in 2(B) and 3(B), we find that the waiting time between events are increased
predominantly compared to Figure 1(A).
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