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We analyze the generic structure of Einstein tensor projected onto a 2-D spacelike surface S
defined by a unit timelike and spacelike vectors u and n respectively, which describe an accelerated
observer (see text). Assuming that flow along u defines an approximate Killing vector ξ, we then
show that near the corresponding Rindler horizon, the flux ja = Ga

b ξ
b along the ingoing null geodesics

k, i.e., j · k, has a natural thermodynamic interpretation. Moreover, change in cross-sectional area
of the k congruence yields the required change in area of S under virtual displacements normal to it.
The main aim of this note is to clearly demonstrate how, and why, the content of Einstein equations
under such horizon deformations, originally pointed out by Padmanabhan, is essentially different
from the result of Jacobson, who employed the so called Clausius relation in an attempt to derive
Einstein equations from such a Clausius relation. More specifically, we show how a very specific
geometric term [reminiscent of Hawking’s quasi-local expression for energy of spheres] corresponding

to change in gravitational energy arises inevitably in the first law: dEG/dλ ∝
∫

H

d2x
√
σ (2)R (see

text) – the contribution of this purely geometric term would be missed in attempts to obtain area
(and hence entropy) change by integrating the Raychaudhuri equation.

PACS numbers: 04.62.+v,04.60.-m, 04.70.Dy

I. INTRODUCTION

The study of thermodynamic aspects of black holes over the past decades has given several insights into the
nature of gravity as described by Einstein’s General Relativity, and is expected to be a crucial link in constructing
a quantum theory of gravity (see [1] for a recent review and references). In a paper more than a decade back [2],
Jacobson speculated that it might be possible to invert the logic of the “physical process” version of the laws of
black hole mechanics, developed by Wald, and by applying it to local Rindler horizons, one can derive Einstein field
equations from Clausius relation, TdS = dEM , where EM is related to matter flux (and vanishes when Tab = 0).
The essential new idea introduced by Jacobson was that of local Rindler horizons in a small patch of spacetime which
can be approximated as flat once one has set the acceleration length scale appropriately. (See Appendix A1 for an
elaboration on this construction.) Einstein equations would then emerge as consistency conditions on the background.
In a later paper [3], Padmanabhan pointed out that if one actually looks at the structure of Einstein tensor near

a spherically symmetric horizon, it has the form TdS = dEG + PdV , where EG is associated with horizon energy
(and unlike EM , EG 6= 0 when Tab = 0) and P with matter flux (these are defined below). In fact, the above relation
has been shown to hold for a wide class of horizons, including arbitrary static horizons in Lanczos-Lovelock theory
as well. This result looks different from what Jacobson had started with to deduce the null-null part of Einstein
equations - specifically, the energy term EG has nothing to do with EM , which is more like the PdV term but with
different interpretation in terms of matter flux. So, while the Clausius relation seems to yield null-null component of
Einstein equations, the Einstein tensor itself has a very different structure. It is important to relate these results and
understand where the difference comes from, which we intend to do in this note.
Before proceeding, we would like to clarify an important point so as to put the analysis presented here in proper

perspective. To begin with, we must mention that our main emphasis here is not to analyze pros and cons of one
method over the other, but rather to clarify why they differ and to characterise the difference(s) from a physical point of
view. It is indeed true that a priori there is a difference between the approaches of Jacobson and Padmanabhan; while
Jacobson’s analysis concerns deriving Einstein equations from Clausius relation, Padmanabhan’s result demonstrates
that Einstein equations on horizon is same as the first law of thermodynamics. However, once the physical content
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of Einstein equations has been claimed to be equivalent to a particular thermodynamic relation, one would have
expected a mapping between the two results, unless there are subtle differences at a fundamental level. Indeed, the
TdS term in the thermodynamic relation is fairly unambiguous, so that the remaining terms in the equations must
correspond in some manner. If they do not, then it implies that there is a difference at a conceptual level, which is
what we shall show in this note. We shall show that the difference arises in the particular manner in which matter
fluxes across the horizon are treated. Specifically, Padmanabhan’s result arises due to deformations of the future
horizon normal to itself, generated by ingoing null geodesic congruences, and this yields the force term PdV in the
final result. We discuss in some detail the resulting difference in physical interpretations. Furthermore, we show that
the additional term dEG is essentially the change in quasi-local energy associated with the horizon 2-surface, and is
related to horizon topology; more precisely, we show that dEG/dλ ∝

∫
d2x

√
σ (2)R. To summarize, we shall do the

following in this note:

1. Clarify the role of horizon deformations to be considered in a Rindler patch when matter crosses the future
Rindler horizon of the observer.

2. Clarify the differences between the “heat flux” term of Jacobson, and the “PdV ” term of Padmanabhan, and
highlight the physical implications.

3. Indicate clearly that the change in area of a horizon cross-section is determined by the expansion (and not its
first derivative) of the ingoing null congruence normalised to have unit Killing energy.

4. Give an explicit expression for the expansion θ for the congruence mentioned in the previous point, in terms of
combination of curvature tensor components (see Eq. (5) below), and compare with the corresponding combi-
nation occuring in the Raychaudhuri equation. In particular, the area change involves not just the Ricci tensor,
but also the Riemann tensor – a point which is of relevance in the context of deriving field equations from
thermodynamics.

5. Exhibit explicitly the “thermodynamic” structure of Einstein tensor and show that there is a term corresponding
to quasi-local energy of the horizon, which must be separately accounted for when considering energy flow across
the horizon.

6. Show that, when using the Raychaudhuri equation with our prescribed null congruence, the O(λ) term does not
vindicate or necessitate setting the expansion to zero.

We shall address all the above points in the following sections. To avoid distraction from the main points, we have
relegated most of the mathematical details to appendices. Before proceeding, let us also clarify the restrictions on
the local frame of the accelerated observer that we shall impose. The most important restriction is that of staticity;
that is, we shall assume that, in the local coordinates near the observer worldline, one can define an approximate
timelike Killing vector field. Consequently, the near horizon geometry is assumed to be static. For static spacetimes,
we shall use, for the near horizon metric, the form: ds2 = −N2dt2 + dz2 + σABdy

AdyB, with the Taylor expansions
for N and σAB derived by Visser et al [4]. As our discussion will make clear, the above form of metric is just a good,
convenient parametrization – the final results are of course stated in a manifestly tensorial form. The only crucial
input is staticity, which requires a satisfactory notion of a timelike Killing vector which is hypersurface orthogonal,
and a spacelike surface whose unit normal points in the direction of acceleration.

II. THE NULL BASIS NEAR A HORIZON

Let us concentrate on the future horizon H of the right Rindler wedge, which is generated by outgoing null rays.
The most natural transverse null vector for H is therefore defined by affinely parametrized [5] ingoing null geodesics,

k, and can be chosen to be: k = N−1(u − n). Here, N =
√

−ξ2,u = ξ/N , and existence of a local timelike Killing
field ξ (which generates local Lorentz boosts) is assumed. Also, n is the unit normal in the direction of acceleration of
u. The existence of ξ is also assumed in the work of Jacobson [2], and without this no further progress can be made.
The choice of normalization is such that k · ξ = −1, implying that k has unit Killing energy. It must be also

noted that the corresponding outgoing null rays are given by l = N−1(u + n); we note that, N2l → ξ on H. More
precisely, N2l become tangent to horizon generators [the vector l itself does not, since l ·ξ = −1 by construction]. The
standard Rindler transformations in the local inertial fram (LIF) has an additional parameter κ which characterizes
orbits of Lorentz boosts and generates constant acceleration trajectories. In inertial coordinates (T,X, Y, Z), we have
k = κ−1(X + T )−1 (∂T − ∂X) → (2κX)−1 (∂T − ∂X) on H, i.e., T = X . In fact, we could as well have used l below
for discussion without any change in the final result, but this would be a weird thing to do since these geodesics
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behave badly near the future horizon. Specifically, l = κ−1(X − T )−1 (∂T + ∂X), so the components in the locally
inertial coordinates blow up at X = T .
We shall now demonstrate that the expansion of k (or l) governs the changes in cross sectional area of the horizon.

To exhibit the result for both k and l simultaneously, we write kǫ = N−1 (u− ǫn), where ǫ = +1 corresponds to k

and ǫ = −1 to l. First, note that, in terms of the covariant derivative (3)D compatible with t =constant hypersurface,
we have

(3)D · n =
(
gab + uaub

)
∇anb

= ∇ · n− n · a (1)

Now evaluate

∇ · kǫ = −ǫN−1∇ · n+Nkǫ · ∇N−1

= −ǫ
1

N
(3)D · n− ǫ

a · n
N

− kǫ · ∇N

N

= −ǫ
1

N
(3)D · n (2)

where we have noted that a = ∇N/N , so that the last two terms in second equality cancel. Now, since the t =constant
metric is dz2 + σABdy

AdyB, the n = ∂z congruence is an affinely parametrized geodesic congruence, and therefore
we can use the standard interpretation of (3)D · n in terms of fractional rate of change in “volume” of z =constant
surfaces, which corresponds to the 2-D manifold described by the metric σAB. Hence, we finally get

∇ · kǫ = −ǫ
1

N
∂z ln

√
σ = −ǫ

d

dλ
ln
√
σ (3)

which is the desired result. (We have used Ndz = dλ in arriving at the second equality, see Appendix A2 for details.)
This straightforward evaluation should leave no doubt as to how the change in cross sectional area of the horizon is
actually described by considering ingoing (or outgoing) null geodesic congruences, constructed in the manner we have
described. In fact, the choice of ingoing congruence k is also strengthened by some old results due to T. Dray and G.
’t Hooft [6], which clearly shows that a massless particle falling into a Schwarzschild black hole corresponds to a shift
in the ingoing Kruskal coordinate, the shift being proportional to the particle energy.

III. THE THERMODYNAMIC STRUCTURE OF EINSTEIN TENSOR

We shall now analyze the near-horizon form of Einstein tensor, and reveal how its thermodynamic structure emerges.
Before proceeding, however, we wish to clarify an important point concerning the variations we shall be considering.
We shall base our discussion on the ingoing null geodesics k of the previous section, satisfying k ·ξ = −1. As should be
evident from comments in the previous section, the entire analysis can be repeated in a straightforward manner using
outgoing null geodesics l satisfying l · ξ = −1; the only difference is the change in sign in n at various intermediate
steps, while the final result remains unchanged. The reason for using ingoing null geodesics k, as mentioned above, is
that these have components which are well behaved at the future horizon in the locally inertial coordinates; the only
crucial thing is the normalization based on unit Killing energy.
We begin with the following (exact) identity [see Appendix B for a proof]:

Gabg
⊥ab = 2

(
Rabξ

akb −Rabcdu
anbucnd

)
− (2)R

− N2Rabk
akb +Π[K, k] (4)

where g⊥ab = −uaub + nanb is the metric on the surface orthogonal to the horizon, and Π[K, k] = f(k) − f(K) −
φ(K), with f(K) = K2 − K2

µν (similarly for f(k)), and φ(K) = nµnρ
(
Kν

µKνρ −KKµρ

)
. Here, Kµν and kAB are

extrinsic curvatures of level surfaces of u embedded in 4-D spacetime, and of n embedded in the resultant 3-D space,
respectively. Note that the above expression is true for an arbitrary spacetime without any geometric constraints
imposed so far. 1

1 In particular, for a flat 3-D space in a flat 4-D spacetime, one obtains (2)R = f(k), which is essentially the content of Gauss’s Theorema

Egregium.
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We shall now impose the condition of staticity, that is, we shall require that the near horizon geometry, to a sufficient
approximation, has a local timelike Killing vector field. In that case, we can show that (see Appendix C), on the
horizon z → 0:

Rabξ
akb −Rabcdu

anbucnd = κ
d

dλ
ln
√
σ (5)

The above equation gives the derivative of area (rather than it’s second derivative) in terms of curvature components,
and deserves several comments, which we list below:

• It clearly shows that the change in cross sectional area (obtained by integrating
√
σ over transverse coordinates)

of the k (or the l) congruence (normalized so as to have unit Killing energy), on a cross section of H, depends
on a very different combination of Riemann tensor components than the one occurring in the Raychaudhuri
equation [which only involves Ricci tensor, Rabk

akb].

• Raychaudhuri equation gives second derivative of area and our analysis above shows that “integrating” it naively
to obtain the first derivative will, in general, be tricky. Indeed, the null-null component does not appear in the
above equation at all! In section IV, we shall present an analysis a la Jacobson using Raychaudhuri equation,
which should clarify further what is going on here.

(This and the previous comment are important particularly when we consider Jacobson’s argument and compare
it with our result, see section IV.)

• The appearance of Rabcdu
anbucnd also must be highlighted; one could have simply ignored this term by de-

manding it to be small, and calling this demand a further restriction on the definition of a local Rindler horizon.
This, however, would be adhoc, since for Schwarzschild horizon, it involves ∂2

r (1− 2M/r). Indeed, as is evident
from above, there is actually no need to throw away this term, since it occurs in just the right combination in
Einstein tensor so as to give the change in area correctly.

• Even if we did throw away the Rabcdu
anbucnd term, we are left with Rabξ

akb which has nothing to do with the
null-null component of Ricci [recall that k · ξ = −1].

Proceeding to the main analyis, note that if Rabk
akb [and hence Gabk

akb] is finite on the horizon, then the cor-
responding term on RHS of Eq. (4) is O(z2). Also, Π[K, k] is ignorable because it is O(z2). This comes about as
follows: Kµν is zero due to staticity. On the other hand, kAB ∝ ∂zσAB is O(z) since, from the Taylor expansion of
area, σAB = (z-independent part) +O(z2) (see Ref. [4]). Since Π[K, k] is quadratic in kAB, it is O(z2). So we finally
obtain:

P
√
σ =

κ

2π

d

dλ

(
1

4

√
σ

)

− 1

16π
(2)R

√
σ (6)

where we have defined P = (1/2)Tabg
⊥ab. The differential version of the above equation (multiplying it by dλ) yields

Padmanabhan’s result:

PdV = TdS − dEG (7)

Having established the above relation, we can ask how general it is. It might seem that the result is very specific to
Einstein gravity since in arriving at it, we used Eq. (5) for change of area, and in Einstein gravity horizon entropy is
proportional to area. We could therefore relate entropy change to area change and derive the result. However, when
one goes beyond Einstein theory, entropy is no longer proportional to area but is instead given by Wald entropy. It
is therefore quite a non-trivial fact that exactly the same result can be proved for a much larger class of lagrangians
– the so called Lanczos-Lovelock (LL) lagrangians – for which the horizon entropy is given by a non-trivial function
of area. Once again, we find that the near-horizon structure of field equations for LL actions can be cast in the form:

PdV = TdSLL − dE(G)LL (8)

and the resulting expressions for SLL and E(G)LL turn out to be [7]:

SLL ∝
∫ √

σL
(D−2)
m−1 (9)

(dEG/dλ)LL ∝
∫ √

σL(D−2)
m (10)
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We see that S is precisely the Wald entropy, whereas EG gives the correct expression for quasilocal energy when
applied to known black hole solutions. 2

Before turning to Raychaudhuri equation, let us make another relevant comment: It is easy to see, from our
definitions, that Gabg

⊥ab = −2Gabξ
akb + N2Gabk

akb. Therefore, provided Gabk
akb is finite on the horizon, one

obtains, in the limit N → 0: Gabξ
akb → −(1/2)Gabg

⊥ab (which, incidentally, is the so called work function, W ,
defined by Hayward in the context of spherically symmetric, dynamical horizons [8]; note that we have not assumed
spherical symmetry to obtain Eq. (6)). On the horizon, we therefore have natural interpretation for this term as the
force acting on the horizon in the direction defined by k. Let us also mention its form for an ideal fluid, described by
Tab = ρ0vavb + p0(gab + vavb), where va is the fluid 4-velocity, and we assume for simplicity that it lies only in the
u–n plain. Then, a trivial calculation shows that Tabu

aub = γ2
rel(ρ0 + p0v

2
rel) and Tabn

anb = γ2
rel(p0 + ρ0v

2
rel), where

γrel = −u · v. We then immediately obtain P = (1/2)Tabg
⊥ab = (p0 − ρ0)/2.

It is also instructive to compare this analysis with the one given by Jacobson, in which case the most natural
starting point would be the Raychaudhuri equation. We do this in section IV. We shall show that, for our k (or l)
congruence, the starting assumption of equating TdS with matter flux gives, at O(λ0), a relation which is inconsistent
with the algebraic identity obtained in this section. However, if one makes further approximations and ignore certain
terms, then we do recover the null-null part of Einstein equations at O(λ), although in a manner completely different
from Jacobson’s, since our analysis is not based on the null generators. Most importantly, we do not require the
vanishing of expansion of the null congruence at all. Before proceeding, we must emphasize that, in the next section,
we shall be trying to follow Jacobson’s reasoning in our setup; the final results and implications must, of course, be
interpreted keeping this in mind. Needless to say, our main emphasis is towards trying to understand why there are
differences between the work and energy terms in the two approaches; the answer, as we hope this note would make
evident, lies in different ways of treating fluxes across the horizon.

IV. ANALYSIS BASED ON RAYCHAUDHURI EQUATION

In this section, we turn to Raychaudhuri equation, in an attempt to understand better the difference between above
result and Jacobson’s derivation of the null-null component of the field equations. To do so, we repeat Jacobson’s
analysis using the k congruence; this should indicate where the difference lies. Once again, it is worth emphasizing
that we will obtain the same results upon using the outgoing l congruence of unit Killing energy. As we have shown
above, the Einstein tensor on the whole has a much richer structure due to the presence of the (2)R term, which we
would want to explore further. Unfortunately, Raychaudhuri equation, as we will see, has nothing much to say about
this term, but our analysis will shed some light on the role of certain assumptions in Jacobson’s derivation, and also
the differences between the work term as well as horizon energy.
Start with the equation defining variation of area in terms of expansion θ of a congruence of ingoing null geodesics

w.r.t. the affine parameter λ along k (see Appendix A2 for more details). Assuming that entropy is proportional to
area, this gives:

THdS = α−1

∫

θ dΣ dλ (11)

where α = (8πcL2
P
/~)/κ, and the integration is over the null 3-surface generated by the cross-section of a bundle of

ingoing null geodesics k across an affine distance λ. The horizon is at λ = 0. Now expand θ

θ(λ) = θ(0) + θ̇(0)λ+
1

2
θ̈(0)λ2 +O(λ3) (12)

in obvious notation. Now we can use Raychaudhri equation to substitute for the first derivative of θ evaluated at
λ = 0. That is,

θ̇(0) = −1

2
θ2(0)−

[
Rabk

akb
]

λ=0
(13)

where we have ignored shear and rotation for the time being (which is also an assumption in Jacobson’s work).

2 A general definition for quasilocal energy, such as Hawking’s definition for Einstein theory, is not available for the LL actions; in fact,
ours can be taken as a natural generalization of Hawking’s quasilocal energy for LL actions.
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Now consider the heat flux through dΣ dλ:

dQ =

∫

Tabξ
akb dΣ dλ (14)

for which a similar expansion gives:

Tabξ
akb =

[
Tabξ

akb
]

λ=0
+ λ

[
d

dλ
Tabξ

akb
]

λ=0

+O(λ2) (15)

Following Jacobson, we now impose the Clausius relation, TdS = dQ and equate equal powers of λ on both sides.
That is,

α−1

∫ [

θ(0) + θ̇(0)λ+
1

2
θ̈(0)λ2 +O(λ3)

]

dΣ dλ =

∫ [
[
Tabξ

akb
]

λ=0
+ λ

[
d

dλ
Tabξ

akb
]

λ=0

+O(λ2)

]

dΣ dλ (16)

This gives

O(λ0) : θ(0) = α
[
Tabξ

akb
]

λ=0
(17)

O(λ1) : −1

2
θ2(0)−

[
Rabk

akb
]

λ=0
= α

[
d

dλ
Tabξ

akb
]

λ=0

(18)

Using Eq. (17) to replace θ2(0), this becomes

O(λ1) : −1

2

[
αTabξ

akb
]2

λ=0
−
[
Rabk

akb
]

λ=0
= α

[
d

dλ
Tabξ

akb
]

λ=0

The relevant points to note here are:

– On the horizon, κλka goes to ξa, that is [κλka]λ=0 = ξa (see Appendix A2) , which is obviously a O(λ0)
expression and NOT O(λ). This is a key difference from Jacobson’s argument, arising because Jacobson considers
fluxes along generators k̄a of the horizon. [In that case, κλ̄k̄a = ξa is valid all across the Killing horizon (λ̄ being
the affine parameter along the generators k̄a). This then necessitates that expansion of the generators vanish at
the bifurcation surface λ̄ = 0 (corresponding to T = 0 = X), since the matter flux term becomes O(λ̄).] In our
opinion, since one would expect to associate entropy with cross sections of arbitrary null vectors in an arbitrary
curved spacetime, such an assumption on the expansion is restrictive.

– In our setup, it would actually be incorrect to deduce that
[
Tabξ

akb
]

λ=0
is O(λ); as seen from above, this term

is in fact related to θ(0), which in general does not vanish. In fact, one would expect arbitrary null congruences
to block information of a certain region of spacetime from a class of observers; for such congruences, there is
actually no need to constrain the expansion to vanish.

So, whether Einstein equations come out at O(λ) depends on
[
dλ

(
Tabξ

akb
)]

λ=0
=

[
ka∇a

(
Tabξ

akb
)]

λ=0
. In general,

it is not at all obvious what this will lead to, but let us consider this term in more detail:

kc∇c

[
Tabξ

akb
]

= ξakbkc∇cTab
︸ ︷︷ ︸

ignore

+ Tabξ
a kc∇ck

b

︸ ︷︷ ︸

=0

+ Tabk
bkc∇cξ

a (19)

where we have ignored the derivatives of Tab, which is justified in the approximation in which we are working here. For
consistency, one must then also ignore the T 2

ab term on the LHS of Eq. (18). Now concentrate on the term involving
kc∇cξ

a, which is to be evaluated at λ = 0 after computing the derivative. This term at λ = 0 can be shown to give
−κka. Therefore we obtain:

kc∇c

[
Tabξ

akb
]
≈ −κTabk

akb (20)

The last term in
[
d
(
Tabξ

akb
)
/dλ

]

λ=0
therefore reproduces precisely the contribution which would come from calling

(in our case incorrectly)
[
Tabξ

akb
]

λ=0
as a O(λ) term! Therefore the O(λ1) becomes [Note that α = (8πcL2

P
/~)/κ]:
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O(λ1) : −
[
Rabk

akb
]

λ=0
= −(8πcL2

P
/~)

[
Tabk

akb
]

λ=0

thereby giving the null-null component of Einstein equations yet again, as Jacobson had obtained, but in a completely
different manner! Also, note that the above relation is applicable all along the future horizon, and not just near the
bifurcation point, in so far as the notion of local, static Rindler horizon remains well defined.
The discussion above clearly implies that:

1. In our setup, Einstein equations do NOT necessarily follow from TdS = dEmatter; this is so since one could also
have included an additional term, involving curvature tensor, which will only modify the O(λ0) term, which is
anyway ignored while evaluating the O(λ1) contribution. In fact, as we demonstrated in the previous section,
such a term is present in Einstein equations, and corresponds to a change in “gravitational energy”.

2. The above claims can be explicitly demonstrated by evaluating Einstein equations near a static horizon, in
which case a very natural energy term is picked out; the resultant equation, in fact, can be thought of as
TdS − dEhorizon = PdV = −dEmatter. Note that the O(λ0) piece above can be rewritten as (κ/2π)d(δA/4) =
−Tabξ

akbδA, which is, of course, Padmanabhan’s result without the (2)R term. Of course, since the latter result
is algebraically correct (as we showed in the previous section), this actually makes the O(λ0) contribution (and
by implication, the starting relation) incorrect at a purely algebraic level – one needs the (2)R contribution for
consistency [the minus sign above is due to k being an ingoing congruence; as an interesting aside, let us also
mention that this fact is one of the “boundary conditions” for dynamical/isolated horizons imposed by Ashtekar
et. al.].

In fact, we feel that the “ (2)R” term reinforces the well known quasi-local character of gravitational energy; an
ultra-local description of energy balance might therefore be a bit tricky.

3. Let us also highlight the role of the ingoing congruence k. The other null congruence N2l generates the horizon,
and since we have taken great pains to construct a local Killing horizon, the expansion along the generators would
vanish everywhere on the horizon so long as our local constructs make sense; when they don’t, we cannot even
talk about local Rindler observers and local Killing horizons. Instead, the congruence k captures information
infinitesimally away from the horizon in the direction normal to it [that it is a natural “normal” is easily seen in
inertial coordinates, where future horizon is T −X = 0 whose normal is clearly along k.], and provides a natural
flow to define variations of various quantities. We hope to have shown that it is this congruence which gives, in
a sensible manner, the change in a cross-section of the horizon, as well as the matter flux across it. Of course,
the result can also be justified by applying to event horizons of a black hole solution of Einstein field equations.
For a stationary black hole horizon, the only sensible change in area when matter crosses the horizon is given
by expansion of k, since the expansion of horizon generators vanish for a Killing horizon. Moreover, as we have
already mentioned before, it has been shown rigorously by T. Dray and G. ’t Hooft that a massless particle
falling into a Schwarzschild black hole corresponds to a shift in the ingoing Kruskal coordinate, the shift being
proportional to the particle energy. This further strenghtens our motivation for using the ingoing congruence
for horizon deformations.

4. One of our main conclusions, as far as comparison with Jacobson’s analysis is concerned, is the following: The
difference between Einstein equations being identical to the first law of thermodynamics, as was pointed out by
Padmanabhan, differs from the Clausius relation of Jacobson due to difference in the manner matter fluxes
across the horizon are defined. Our analysis seems to be closer to the one in Refs. [8] and [12].

5. There are also other significant issues which go beyond the algebraic ones we have mostly concentrated on till
now. In using the Clausius relation, one is trying to derive field equations from a starting thermodynamic
relation. In such a case, one has to change the starting relation depending on what type of congruence one
chooses. These additional terms are then interpreted as dissipation terms and are accounted for by adding
suitable entropy production terms in the Clausius relation. However, our analysis above shows that, for a
suitably defined horizon (with static near-horizon geometry), the field equations take the form of the first law
of thermodynamics without involving any additional terms, under prescribed horizon deformations. The only
sensible quantity to concentrate on, while comparing these two approaches, is the TdS term (which can have no
ambiguity once the entropy density is suitably defined, and which can be verified by applying it to known cases
of black hole horizons); in our case, this term is derived using the expansion θ alone, rather than its derivative,
as is required while using Clausius relation. However, as has already been emphasized several times before, it
must be remembered that the difference originates in using different definitions for matter fluxes (and not due to
any in-correctness in any of the two approaces); the physical motivations for the choice used here are mentioned
in point (3) above.
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Before moving on, we would like to point out that there have been some recent attempts to derive field equations
for higher derivative gravity theories [13] along the lines of Jacobson. In these works (except Padmanabhan’s, see
below), the starting point is Clausius relation along with Wald’s definition of entropy in terms of Noether charge of
diffeomorphism invariance. However, while the definition of matter flux is similar to Jacobson’s, the Raychaudhuri
equation is never invoked, thereby avoiding any need for assumptions such as vanishing expansion etc. present in
original Jacobson work. It would be worth investigating further how the comments in this note are to be considered
in the context of these recent attempts. (For one thing, the difference in the definition of matter flux remains.) We
must, however, point out that the situation is far from clear since these works do not all agree with each other.
For e.g., Parikh and Sarkar have pointed out issues with the Brustein and Hadad paper, whereas Padmanabhan has
highlighted certain conceptual issues regarding interpretation of both these papers. Specifically, Padmanabhan has
stressed the subtleties in interpreting these results as derivation of field equations from thermodynamics; the result, he
argues, is better viewed as interpretation of field equations as a thermodynamic relation. More importantly, Brustein
and Hadad derive their result using a different form for Noether potential (used to define entropy) than the other two
papers; this calls for a more detailed and critical look at the analysis therein. Moreover, the fact that they still derive
the same result implies non-uniqueness of the analysis (which a quick look at these papers will confirm), whereas in
Jacobson’s case, once the assumptions are stated, the analysis is unique. Hence, the status of these results in the light
of the original Jacobson calculation remains unclear; the derivations are not only very different from Jacobson’s, they
are not even similar to each other! Perhaps the most important point indicating why these analyses are conceptually
different from Jacobson’s is f(R) theory: whereas the above papers derive the field equations from a Clausius relation,
Jacobson and collaborators needed to add extra terms to the Clausius relation in their earlier paper [14], to proceed
with the analysis. We hope further work will clarify these issues.

V. IMPLICATIONS

In this brief paragraph, we would like to emphasize the need for the analysis done in this note. Whether Einstein
equations are just equations of thermodynamics in disguise is a well motivated question, and we do agree that the
answer to this might be yes. The important point realized by Jacobson in [2] while addressing this question, was
to introduce local Rindler frames in an arbitrary curved spacetime, and use the thermal aspects of corresponding
horizons as probes of the background curvature. However, one needs to impose certain restrictions to proceed from
there, and to put the result in a physically relevant context. The necessity of highlighting such restrictions goes hand
in hand with identifying specific geometric quantities with (variation of) the thermodynamic variables.
In this sense, as we have shown, the expression for change in entropy of a cross section of a static horizon is related to

very specific components of the Riemann tensor (and is readily verified for known black hole solutions). Once we agree
on these algebraic identifications, Einstein equations take the nice form of the first law of thermodynamics, provided
one attributes to a 2-surface an energy proportional to its intrinsic curvature. Therefore, Einstein equations resemble
the first law of thermodynamics in this very specific form. Of course, we have also shown that using Raychaudhuri
equation also yields, at a higher order (and after justifying ignoring certain terms), the null-null component of Einstein
equations; the crucial point, however, is that the null-null component of Ricci itself has no clear meaning in terms of
change of entropy. Looked at in this way, the null-null part of Einstein equations seem to be a secondary consequence
of the first law itself. Of course, one can reinterpret Einstein equations as representing some sort of a Clausius relation;
if one insists upon doing so, one must redefine the matter flux suitably. It is easy to see that such a definition of flux
will involve the trace of the matter stress tensor, and will not be equivalent to the heat flux defined by Jacobson; see,
for example, reference [8] which gives one such definition for dynamical horizons, but assuming spherically symmetry.
In fact, this can be easily demonstrated using our Eq. (5):

( κ

2π

) d

dλ

(
1

4

√
σ

)

=
1

8π

√
σ

(

Rabk
aξb +

1

2
R⊥

)

≈
√
σ

(

Tab −
1

2
Tgab

)

kaξb (21)

where R⊥ is defined in Appendix C. We have used the field equations in the second equality, and the approximation
is obtained after ignoring the R⊥ term. Moreover, inverting the logic and deriving field equations in this latter case
is again not sraightforward. We hope to have clarified all the above issues in the present note.
At a more conceptual level, one of the possible implications of this note is that it might be necessary to adopt a new

starting point if one wants to establish Einstein theory in terms of thermodynamics, in which case the thermodynamic
structure of the Einstein tensor would serve as the most important supporting evidence. This point of view, of course,
also applies to the wider class of Lanczos-Lovelock lagrangians for which similar results hold. A survey of some of the
attempts that have been made along these lines can be found in [1, 9].
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Appendix A: Some mathematical details

1. Approximate local Killing vector generating Lorentz boosts

The existence of an approximate boost generating Killing field in a locally flat patch of spacetime is a crucial
assumption which goes into applying notions of thermodynamics to local acceleration horizons, and it is therefore
important to make precise the details of such a construction, which we do below. Around an arbitary event P in the
spacetime, one can construct Riemann normal coordinates yk (with yk(P) = 0) in terms of which the metric takes
the form: gab = ηab − (1/3)Racbdy

cyd +O(y3∂R). One now wishes to find an approximate Killing vector field in this
patch of spacetime, which would generate approximate Killing boosts along some direction, say y1. That is, we want
an analog of Minkowski vector field ξM = κ[y1, y0, 0, 0] where κ is acceleration of the chosen Rindler observer. This
can be done by writing ξk as a series in yk (starting, of course, at linear order) and then checking how much freedom
one has in the choice of coefficients so as to satisfy Killing equations, Sab = ∇aξb+∇bξa = 0. The analysis shows that
ξk can be made Killing only upto cubic order, that is, Sab = O(y2). Incidentally, this also implies, upon using the
identity (valid for arbitrary vector field): ∇c∇aξb = Rbacnξ

n− (1/2)(∇aSbc+∇cSab−∇bSca), that ∇b∇aξc−Rcabnξ
n

is O(y). We also have: ✷ξb = −Rbnξ
n −∇aSa

b , where Sa
b = Sa

b − (1/2)Si
ig

a
b .

2. Parametrization of null geodesics

[The discussion below mostly follows Wald’s book [11], section 6.4: The Kruskal Extension.]
Consider the simpler form of the Rindler metric: ds2 = −x2dt2 + dx2. The null geodesics satisfy the equation:

ṫ = ±(log x)·, where dot denotes derivative w.r.t. affine parameter. Therefore, t = ± logx+const. for the null
geodesics. Further, due to staticity, −k0 = x2ṫ is constant along a geodesic, so that dλ = Cx2dt = ±Cxdx. Hence,
λ = ±C(x2/2) +D is the affine parameter. This is the choice we have made. It is further easy to see that the null
geodesics are given by ki = C−1[1/x2,±1/x]. Further, note that C−1 is the Killing energy associated with the null
geodesic; imposing k · ξ = −1 fixes C = 1 – that is, the multiplicative factor in the choice of affine parameter is fixed
by requiring the null geodesics to have unit Killing energy.
Note that the above parametrization is meaningful only for ingoing geodesics near future horizon (or outgoing

geodesics near the past horizon). An alternate parametrization is, of course, in terms of the Killing time t. It is easy
to see that this leads to λ ∝ exp (±2t)+const, which is perhaps a more familiar parametrization. Finally, it is easy to
deduce the following limits for the contravariant and covariant components of the vector k: (a)

[
x2ki

]

x=0
= [1, 0] ≡ ξi,

(b) [xki]x=0 = [0,±1] ≡ ni. These limits clearly confirm that x = 0 is a null surface, and also illustrates the subtlety
associated with taking such limits in a coordinate system which is singular (that is, when the metric or its inverse
blows up in some region, here x = 0).

Appendix B: Gauss-Codazzi decomposition relations

[For greater clarity and notational convenience, we use boldface subscripts for contraction on corresponding vectors
in this and the following appendices; for e.g., Rξk ≡ Rabξ

akb.]
Begin with the Gauss-Codazzi expression for the 4-D Ricciscalar R with respect to a foliation defined by a timelike

unit vector u:

R = 2ǫuRabu
aub + (3)R+ ǫu

(
KµνKµν −K2

)

[See, for e.g., [10] sec 3.5.3, page 78.] Similarly, we next decompose the 3-D space into a foliation defined by a spacelike
vector n. This gives

(3)R = 2ǫn
(3)Rµνn

µnν + (2)R+ ǫn
(
kABkAB − k2

)
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Above, ǫu = −1, ǫn = +1. Similarly, one can use a standard expression to write [with qab = gab + uaub]

(3)Rµρ = (3)Rµνρσq
νσ

= Rabcde
a
(µ)e

c
(ρ)

(
gbd + ubud

)
+Kν

µKνρ −KKµρ

= Race
a
(µ)e

c
(ρ) +Raucue

a
(µ)e

c
(ρ) +Kν

µKνρ −KKµρ

Using this, we obtain

(3)Rµνn
µnν = nµnνKρ

µKρν −KKµνn
µnν +Rnn +Rnunu

Putting it all together, we get

(2)R = R + 2 (Ruu −Rnn)− 2Rnunu

+ f(k)− f(K)− φ(K) (B1)

where f(K) = K2 −K2
µν , similarly for f(k), and φ(K) = nµnρ

(
Kν

µKνρ −KKµρ

)
. Here, Kµν and kAB are extrinsic

curvatures of level surfaces of u embedded in 4-D spacetime, and of n embedded in the resultant 3-D space, respec-
tively. This can be rewritten in a better way by defining g⊥ab = −uaub + nanb, and separating out the part depending
on extrinsic curvatures in Π[K, k] = f(k)− f(K)− φ(K). This yields

R = (2)R+ 2Rabg⊥ab + 2Runun −Π[K, k] (B2)

Note that gabg⊥ab = 2, g⊥abg
⊥ bc = g⊥ c

a , and ǫabǫcd = 2g⊥
a[dg

⊥

c]b, where ǫab = 2u[anb] is the binormal to the surface.

A slight rearrangement of terms give

Gabg
⊥ab = −Rabg⊥ab + Racbdg⊥abg

⊥

cd − (2)R+Π[K, k]

(B3)

We stress that the above expression is an identity for any spacelike 2-D surface embedded in a 4-D spacetime, and
no assumptions such as spherical symmetry or staticity have yet been made. It can be further rewritten as:

Gabg
⊥ab = (RuAuB −RnAnB)σAB − (2)R+Π[K, k]

(B4)

where RuAuB = Rabcdu
aucEb

(A)E
d
(B), where Ea

(A) are the dyads for the surface. Finally, upon using σABEa
(A)E

b
(B) =

σab = gab + uaub − nanb, we arrive at the equation quoted in the text.

Appendix C: Derivation of Eq. (5)

Begin with the identity: Rξk = −ka✷ξa = ∇c (k
a∇aξ

c) for ∇[akb] = 0. Now consider the relation kc∇cξ
a =

−(∂zN)ka which is easy to establish for static spacetimes. We can then prove the following:

∇a (k
c∇cξ

a) = −(∂zN)∇ · k − ka∇a(∂zN)

= −κ∇ · k +O(z2) +
∂2
zN

N

= −κ∇ · k +O(z2)− 1

2
R⊥ (C1)

where R⊥ is the Ricciscalar of the t− z part of the metric: −N2dt2 +dz2, and is algebraically equal to −2(∂2
zN)/N .

On the other hand, we also have, from Eq. (3): ∇ · k = − d
dλ ln

√
σ.

Putting it all together, we have

Rξk = κ
d

dλ
ln
√
σ − 1

2
R⊥ (C2)

We now note that, for the 2-D t− n metric, Runun = −(1/2)R⊥ [note that u and n form an orthonormal basis],
which finally yields the desired expression

Rξk −Runun = κ
d

dλ
ln
√
σ (C3)
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Some aspects of this expression have been discussed in the main text. We must also mention that the peculiar
combination of curvature tensor components above also arises in the analysis in [15] [see Appendices A and B], in
which area variation of an “acceleration surface” is considered along the observer trajectory [and not along null
geodesics as in our case].
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