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Abstract

Purpose – The purpose of this paper is to present numerical studies on thermally induced vibrations
of piezo-thermo-viscoelastic composite beam subjected to a transient thermal load using coupled finite
element method.

Design/methodology/approach – The thermal relaxation and viscoelastic relaxations are taken
into consideration to obtain the system response. The concept of “memory load” along with the
thermal relaxation is accounted for viscoelastic core material. The influence of type of core material on
the response of the system also analyzed.

Findings – The findings show viscoelastic behavior with relaxation times in composite sandwich
structures.

Originality/value – The paper shows accounting relaxation times as a memory load in composite
sandwich structures.

Keywords Composite materials, Relaxation theory, Vibration, Thermal properties of materials,
Piezoelectricity

Paper type Research paper

1. Introduction
The development of intelligent composite materials with piezoelectric components
under thermal environment offers great potential for their use in advanced aerospace
structural applications due to high strength to weight and high stiffness to weight
ratios. Aircraft and space vehicles usually work in severe temperature environments
and the heat sources change quite often from time to time. A significant variation of
temperature in a solid may cause deformation due to thermal expansion or contraction.
Depending on the constraint, the solid can bend, elongate or subjected to thermal
stresses. If the temperature varies rapidly, vibration may also occur, which can affect
the dynamics and stability of the structures. Therefore, thermally induced vibration is
an important concern for the design of these structures.

Thermal induced vibrations are basically vibrations generated in structures
subjected to transient thermal loading. When these structures subjected to thermal
shock loading, finiteness speed of propagation of heat front becomes important.
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In Fourier heat diffusion, it is implicitly assumed that speed of propagation of heat is
infinite. The finiteness speed of propagation of heat can be modeled by introducing two
thermal relaxation times in the coupled constitutive equations (Green and Lindsay,
1972) or by using the modified Fourier law of heat conduction (Lord and Shulman,
1967) with one relaxation time. These theories are known as generalized thermo-elastic
theories. In the present study, the constitutive model proposed by Green and Lindsay
(1972) is used. The present work deals with the thermally induced vibration of
composite beam treated with piezo and viscoelastic layers subjected to transient
thermal load.

The classical Fourier law of heat conduction leads to instantaneous propagation of
heat to infinitely remote areas of space. This paradox is traditionally surmounted by
describing the heat signal as a wave, called second sound. One of the most popular
generalizations of the thermoelasticity theory allowing for the second sound is the
model of Green and Lindsay (GL) (1972). Prohofsky and Krumhansl (1964) discuss the
feasibility of experimental observation of thermal pulses in dielectric materials,
indicating the optimum temperature and frequency range for the observation of second
sound.

The application of generalized thermo-elastic theories to piezoelectric media using
finite element method is an emerging research field. For example, Mindlin (1974)
presented the high-frequency vibrations of thermo-piezoelectric crystal plates. Tiahanu
et al. (2002, 2004) studied the generalized thermal shock problem of a thick piezoelectric
plate based on Green and Lindsay (G-L) theory. They extended research to half space
in electro-magneto-thermo-elasticity using Lord and Shulman (L-S) theory. Recently,
Tran et al. (2007) studied the thermally induced vibration and its control for thin
isotropic and laminated composite plates using finite element method.

In many applications of piezo-electrically controlled smart structures, the
functionality of the system has to be ensured even in an extremely hot and cold
condition. Hence, the thermal effect is very important and must be taken into account
when designing such structures. Gornandt and Gabbert (2002) have investigated the
static and dynamic response of thermo-piezoelectric smart structures using finite
element analysis by considering combined thermal, electric and mechanical excitations.
Srinatha and Lewis (1981) presented the stress analysis of plane problems in linear
thermo-viscoelasticity using finite element formulation. Bargmann (1974) discussed
memory effects in the mechanical and thermal response, i.e. viscoelasticity and second
sound. Johnson and Tessler (1995) investigated the viscoelastic internal variable
constitutive theory applicable to higher order elastic beam theory using finite element
formulation. The behavior of the viscous material is approximately modeled as a
Maxwell solid. Rao and Sunar (1993) derived thermo-piezoelectric beam finite element
formulation to model the distributed actuation and sensing in a thermal environment.
Raja et al. (2004) investigated the thermally induced vibration control for composite
plates and shells with piezoelectric active damping. Muki and Sternberg (1961)
presented the quasi-static analysis of transient thermal stresses in the linear theory of
viscoelastic solids with temperature dependent properties. The modeling is based on
“thermorheologically simple” material model.

Tzou and Howard (1994) discussed the piezo-thermo-elastic thin shell theory applied
to active structures. Tzou and Ye (1994) presented the piezo-thermo-elastic effects
of distributed piezoelectric sensor/actuator and structural systems. Pradeep (2006)
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investigated the piezothermo-viscoelastic isotropic beams by considering the two
thermal relaxation times and viscoelastic relaxation function. Lee and Saravanos (1996)
analyzed the complete coupled mechanical, electrical, and thermal response of
piezoelectric composite beams by accounting the thermal effects. Kapuria et al. (2004)
developed the zig-zag theory for the static and dynamic electro-thermo-mechanical
analysis of piezoelectric layer composite beams.

Manolis and Beskos (1980) developed a general numerical method for determining
the dynamic response of beam structures to rapidly applied thermal loads. Yi et al. (1999)
developed finite element algorithm for the efficient analysis of smart composite
structures with piezoelectric layer based on piezo-electro-hygro-thermo-visco-
elastsicity. Song et al. (2003) presented the transient disturbance in a half space under
thermoelasticitywith two relaxation times due tomoving internal heat source using G-L
theory. Sherief (1993, 1994) presented the state space formulation for thermo-elasticity
with two relaxation times. He extended the study to thermo-mechanical shock problems
using half space governing equations. Pitman and Ni (1994) modeled the phase
transition by a viscoelastic relaxation law, and described the numerical experiments on
this system. Arup et al. (2004) investigated the two-dimensional problems of
thermo-elasticity dealing with thermo-elastic wave propagation in a rotating medium
with relaxation effects. Using the joint Laplace and Fourier transforms.

From the literature, it is found that there is no research has been done on the
piezo-thermo-visco-elastic composite beam by considering the two thermal relaxation
times and viscoelastic relaxation function and corresponding temperature shift
function. The present study shows realistic behavior of the viscoelastic material under
time domain analysis by taking into account “memory load” of previous time step. The
effect of temperature on the material response function is accounted by assuming the
temperature-time equivalence hypothesis and recasting the equations in terms of
shifted time.

2. Finite element formulation
Finite element formulation is derived for piezo-thermo-viscoelastic composite beam by
combining the finite element equation for piezo-thermo-elastic problem given by
Tiahanu et al. (2002) and thermo-viscoelastic formulation presented by Johnson and
Tessler (1995) and Srinatha and Lewis (1981). The eight-node plane stress element is
developed for the analysis. The temperature and memory (time) effects of viscoelastic
material are incorporated as a load vector in the solution procedure. Newmark-b
method is employed to solve the coupled dynamic equations. Piezo-thermo-elastic and
thermo-viscoelastic formulations are given in the following sections.

2.1 Piezo-thermo-elastic formulation
The constitutive equations for a generalized piezo-thermo-elastic material can be
written as (Tiahanu et al., 2002):

{s} ¼ ½C�{1}2 ½e�{E}2 {a}ðuþ t1 _uÞ

{D} ¼ ½e�T{1}þ ½ p�{E}2 {d}ðuþ t1 _uÞ

rh ¼ {a}T{1}þ {d}T{E}2 cðuþ t2 _uÞ {q} ¼ 2½k�{ u 0}

ð1Þ
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Here, {s}, {D}, {q} and h are stress, electric displacement, heat, flux, and entropy
density, respectively. {1}; {E}; u; _u and {u0} are strain, electric field, temperature
difference, rate of change of temperature, and temperature gradient, respectively.
[C ], [e ], [a ], [p ], [d ] and [k ] are stiffness coefficients, piezo electric coupling coefficients,
stress temperature coefficients, dielectric constants, pyroelectric coupling, and thermal
conductivity matrices, respectively. For plane stress problem plane stress reduced
constitutive relation are used. C ¼ rCE/T0, here r is the density, CE is the specific heat
and T0 is reference temperature. t1 and t2 are thermal relaxation times. In these set of
constitutive equation (1) first equation is the stress equation, second is electric
displacement equation, third and fourth put together will give the heat conduction
equation. The introduction of relaxation times is due to a rigorous thermodynamic
analysis by Green and Lindsay (1972). The terms multiplied with relaxation times
indicate the finiteness of the propagation of that particular quantity. When t1 and t2
are set to zero the constitutive relations reduce to conventional coupled
piezo-thermo-elastic constitutive relations. Eight-noded iso-parametric plane stress
element is developed using the above constitutive model.

Arrays of elemental degrees of freedom (d.o.f) are:

{ue} ¼ {u1v1u2 v2 . . . u8v8}
T Mechanical d:o:f

{fe} ¼ {f1f2 . . .f8}
T Electrical d:o:f

{ue} ¼ {u1 u2 . . . u8}
T Thermal d:o:f

ð2Þ

The displacements ({ue} ¼ {uv}), electric potential (f) and temperature difference (u)
within the element can be expressed in terms of shape functions and corresponding
nodal quantities as follows:

{u} ¼ ½Nu�{ue}; f ¼ ½Nf�{fe}; u ¼ ½N u�{ue} ð3Þ

½Nu� ¼

N 1 0 N 2 0 . . . N 8 0

0 N 1 0 N 2 0 . . . N 8

2

4

3

5;

{Nf}¼ {N u}¼ N 1 N 2 ::: N 8

n o

ð4Þ

N1, N2, . . ., N8 are the shape functions. The strain-displacement relation, electric fields
and temperature gradients for a plane stress two-dimensional piezo-thermo-elastic case
can be written as:

{1} ¼
›u

›x

›v

›y

›u

›y
þ

›v

›x

� �T

Mechanical strains

{E} ¼ 2
›f

›x
2

›f

›y

� �T

Electric fields

{ u 0 } ¼
›u

›x

›u

›y

� �T

Temperature gradients

ð5Þ
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The above equations can be expressed in terms of derivatives of shape functions as
follows:

{1} ¼ ½B1�{ue}; E ¼ 2½B2�{fe}; u 0 ¼ ½B2�{ u e} ð6Þ

where [B1] and [B2] are derivatives of shape function related to mechanical strains and
electric fields, temperature gradient, respectively, are expressed as follows:

½B1� ¼

›N 1

›x
0

›N 2

›x
0 :::

›N 8

›x
0

0
›N 1

›y
0

›N 2

›y
::: 0

›N 8

›y

›N 1

›y

›N 1

›x

›N 2

›y

›N 2

›x
:::

›N 8

›y

›N 8

›x

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

½B2� ¼

›N 1

›x

›N 2

›x
:::

›N 8

›x

›N 1

›y

›N 2

›y
:::

›N 8

›y

2

6

6

6

4

3

7

7

7

5

ð7Þ

The variational form of equation (6) is:

d{1} ¼ ½B1�d{ue}; d{E} ¼ 2½B2�d{fe}; d{u 0} ¼ ½B2�d{u e} ð8Þ

Considering the body force { f }, the virtual displacement principle for
piezo-thermo-elastic problem can be written in the following form:
Z

V

ðd{1}T{s}2 d{E}T{D}2 d{u 0 }T{q}2 durT0{ _h}ÞdV

¼

Z

V

d{u}T ð{ f }2 r{€u}ÞdV þ

Z

As

d{u}T{ �T}dAþ

Z

Aw

df �wdAþ

Z

Aq

du�qdA

ð9Þ

The L.H.S of the equation (9) shows the virtual work statement represents the internal
virtual work, and RHS shows the work done by external loads. {f} is the body force,
r{€u} are the inertia forces. As, Aw and Aq are the surface areas on which traction { �T},
electric charge w̄ and heat flux q̄ are imposed. d is the variational operator. Substituting
the constitutive equation (1) into equation (9) by using the equations (3) and (6) the each
term of virtual work expression are expressed as follows:
Z

V

d{1}T{s}dV ¼ d{u e}

Z

V

½B1�
Tð½C�½B1�{u

e}þ ½e�ð½B2�{f
e}Þ

2 {a} N e
u

� �T
ð{u e þ t1 _u

e}ÞÞdV

¼ d{u e}T Ke
uu

� �

{u e}þ Ke
uf

h i

{f e}2 Ke
uu

� �

{u e}2 ½Cuu�{ _u
e}

� �

ð10Þ
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Z

V

ð2d{E}T{D}ÞdV ¼d{f e}T
Z

V

½B2�
T ð½e�T ½B1�½u

e�þ½p�ð2½B2�{f
e}Þ

þ½d� N e
u

� �T
ð{u eþt1 _u

e}ÞÞdV

¼d{f e}T Ke
fu

h i

{u e}2 Ke
ff

h i

{f e}þ Ke
fu

h i

{u e}þ½Cfu�{ _u
e}

� �

ð11Þ

Z

V

d{u 0}T{q}dV ¼ d{ u e}T
Z

V

½B2�
Tð2½k�½B2�{u

e}ÞdV ¼ 2d{u e}T Ke
uu

� �

{u e} ð12Þ

Z

V

ð2durT0{ _h}ÞdV ¼2d{u e}T
Z

V

ðT0½N
e
u�Þ{a}

T
½B1�{_u

e}2 ½d�Tð½B2�{ _f e}Þ

þ c N e
2

� �T
{ _u e}þ ct2 N e

u

� �T
{ €u e}ÞdV

¼ d{u e}T 2 C
e
uu

� �

{_u e}þ C
e
uf

h i

{ _f e}2 C
e
uu

� �

{ _u e}2 M e
uu

� �

{ €u e}
� �

ð13Þ

Z

V

d{u}Tð{ f }2 r{€u}ÞdV ¼ d{u e}T
Z

V

N e
u

� �T
ð{ f }2 r N e

u

� �

{€u e}ÞdV

¼ d{u e}T f em
� �

2 M e
uu

� �

{€u e}
	 


ð14Þ

Z

As

d{u}T{ �T}dA ¼ d{u e}T
Z

As

N e
u

� �

{ �T}dA ¼ d{u e}T Te
m

� �

ð15Þ

Aw

Z

df{ �w}dA ¼ d{f e}T
Z

Aw

N e
f

h i

{ �w}dA ¼ d{f e}T Te
e

� �

ð16Þ

Z

Aq

du{�q}dA ¼ d{u e}T
Z

Aq

N e
u

� �

{�q}dA ¼ d{u e}T Te
u

� �

ð17Þ

Substituting the equations (10)-(17) in the virtual work expression (9) and equating the
like terms the following finite element equation can be arrived:

M e
uu

� �

{€u e}2 C
e
uu

� �

{ _u e}þ Ke
uu

� �

{u e}þ Ke
uf

h i

{f e}2 Ke
uu

� �

{u e} ¼ f em
� �

þ Te
m

� �

ð18Þ

2 C
e
fu

h i

{ _u e}2 Ke
fu

h i

{u e}þ Ke
ff

h i

{f e}2 Ke
fu

h i

{u e} ¼ 2 Te
e

� �

ð19Þ

M e
uu

� �

{ €u e}þ C
e
uu

� �

{_u e}2 C
e
uf

h i

{ _f e}þ C
e
uu

� �

{ _u e}þ Ke
uu

� �

{u e} ¼ 2{Te
u} ð20Þ

equations (18)-(20) can be expressed in matrix form as follows:
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M e
uu 0 0

0 0 0

0 0 M e
uu

2

6

6

6

4

3

7

7

7

5

€u e

€f e

€u e

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

þ

0 0 2C
e
uu

0 0 2C
e
fu

C
e
uu 2C

e
uf C

e
uu

2

6

6

6

6

4

3

7

7

7

7

5

_u e

_f e

_u e

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

þ

Ke
uu Ke

uf 2Ke
uu

2Ke
fu Ke

ff 2Ke
fu

0 0 Ke
uu

2

6

6

6

6

4

3

7

7

7

7

5

u e

f e

u e

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

¼

f em þ Te
m

2Te
e

2Te
u

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð21Þ

The elemental matrices used in the equation (21) are defined as:

Ke
uu

� �

¼

V

Z

½B1�
T½C�½B1�dV ; Ke

uf

h i

¼

V

Z

½B1�
T½e�½B2�dV

Ke
uu

� �

¼

Z

V

½B1�
T½a�½N u�

TdV ; Ke
ff

h i

¼

Z

V

½B2�
T½p�½B2�dV

Ke
fu

h i

¼

Z

V

½B2�
T½d�½Nu�

TdV ; Ke
uu

� �

¼

Z

V

½B2�
T½k�½B2�dV

Ke
fu

h i

¼

V

Z

½B2�
T½e�T½B1�dV ; C

e
uu

� �

¼

Z

V

T0½N u�c½d�
T½N u�

TdV

C
e
uu

� �

¼

Z

V

T0½N u�½a�
T½B1�dV ; C

e
uu

� �

¼

Z

V

t1½B1�
T½a�½Nu�

TdV ¼ t1½Kuu�

C
e
uf

h i

¼

Z

V

T0½N u�½d�
T½B2�dV ; C

e
fu

h i

¼

Z

V

t1½B2�
T ½d�½N u�

TdV ¼ t1 Ke
fu

h i

M e
uu

� �

¼

Z

V

½Nu�
Tr½Nu�dV ; M e

uu

� �

¼

Z

V

T0½N u�ct2½N u�
TdV ¼ t2 C

e
uu

� �

Te
e

� �

¼

Z

Aw

N e
f

h i

{ �w}dA; Te
u

� �

¼

Z

Aq

N e
u

� �

�qdA

f em
� �

¼

Z

V

N e
u

� �T
{f }dV ; Te

m

� �

¼

Z

As

N e
u

� �T
{ �T}dA

The equation (19) can be rewritten by assuming there is no external electrical
loading as:

{f e} ¼ Ke
ff

h i21

Ke
fu

h i

{u e}þ C
e
fu

h i

{ _u e}þ Ke
fu

h i

{u e}
� �

ð22Þ

Substituting the value of {f e} in the equations (18) and (20) can be written as:
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M e
uu

� �

{€u e}2 C
e
uu

� �

{ _u e}þ Ke
uu

� �

{u e}

þ Ke
uf

h i

Ke
ff

h i21

Ke
fu

h i

{u e}þ C
e
fu

h i

{ _u e}þ Ke
fu

h i

{u e}
� �

� �

2 Ke
uu

� �

{u e} ¼ f em
� �

þ Te
m

� �

ð23Þ

M e
uu

� �

{ €u e}þ C
e
uu

� �

{_u e}2 C
e
uf

h i

£ Ke
ff

h i21

Ke
fu

h i

{€u e}þ C
e
fu

h i

{ €u e}þ Ke
fu

h i

{ _u e}
� �

� �

þ C
e
uu

� �

{ _u e}þ Ke
uu

� �

{u e} ¼ 2 Te
u

� �

ð24Þ

The equations (23) and (24) can be written in the matrix form as follows:

M e
uu 0

0 M*
uu

2

4

3

5

€u e

€u e

( )

þ

C*uu C*uu

C*uu C*uu

2

4

3

5

_u e

_u e

( )

þ

K*
uu K*

uu

0 K*
uu

2

4

3

5

u e

u e

( )

¼

f em
� �

þ Te
m

� �

2 Te
u

� �

8

<

:

9

=

;

ð25Þ

where:

M*
uu

h i

¼ M e
uu

� �

2 C
e
uf

h i

Ke
ff

h i21

C
e
fu

h i

C*uu

h i

¼ C
e
uu

� �

2 C
e
uf

h i

Ke
ff

h i21

Ke
fu

h i

C*uu

h i

¼ C
e
uu

� �

2 C
e
uf

h i

Ke
ff

h i21

Ke
fu

h i

C*uu

h i

¼ 2 C
e
uu

� �

þ Ke
uf

h i

Ke
ff

h i21

C
e
fu

h i

K*
uu

h i

¼ 2 Ke
uu

� �

þ Ke
uf

h i

Ke
ff

h i21

Ke
fu

h i

K*
uu

h i

¼ Ke
uu

� �

þ Ke
uf

h i

Ke
ff

h i21

Ke
fu

h i

C*uu

h i

¼ a Ke
uu

� �

þ b M e
uu

� �

ðRayleigh dampingÞ

ð26Þ

The equation (25) written in the simplified form as:

½MG�{ €dg}þ ½CG�{ _dg}þ ½KG�{dg} ¼ {FG} ð27Þ

2.2 Thermo-visco-elastic formulation
In most of the problems, elastic behaviour is assumed, but memory effects, both in the
mechanical and thermal response, i.e. viscoelasticity and second sound, are also
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discussed (Bargmann, 1974). This reflects the intense interest, which has been shown
earlier days in this field, owing to the great practical importance of dynamic effects in
modern aeronautics and astronautics, nuclear reactors, high-energy particle
accelerators, and its potential importance in cryogenic applications. A finite element
formulation accounting both the temperature and memory (time) effects for
axisymmetric and plain strain problems were presented by Srinatha and Lewis
(1981). Plane stress finite element solution of beam without considering temperature
effect was given by Johnson and Tessler (1995). In the present formulation viscoelastic
plane stress finite element is developed based on the constitutive law given by Johnson
and Tessler (1995) and thermal effects are incorporated in the model by following the
procedure given by Srinatha and Lewis (1981). Viscoelastic materials have time
dependent stiffness coefficients [C*(t)]:

½C* ðtÞ� ¼ ½C�G0ðtÞ ð28Þ

At t ¼ 0, [C*(0)] ¼ [C ]. G0 (t) is relaxation law and is specific for a given material,
suffix “0” indicates that G0 (t) is valid at stress free reference temperature. The
relaxation modulus can be expressed in terms of “Prony series” (Zienkiewicz and
Taylor, 2000) as:

G0ðtÞ ¼ m0 þ
X

n

i¼1

mne
2t=tn ð29Þ

tn are called viscoelastic relaxation times and
Pn

i¼1mn ¼ 1 where n is the number of
terms chosen in Prony series to represent the relaxation law. In general, n ¼ 2, 3 may
give a reasonable approximation. The constitutive relation for a linear viscoelastic
solid under plane stress following the steps of Johnson and Tessler (1995) and
Christensen (1982) can be written as:

{s} ¼ ½C�{1}þ ½C�

Z t

t¼21

›G0ðt 2 tÞ

›t
{1}›t ð30Þ

The first term on RHS of the above equation represents instantaneous elastic response
and second term represents history dependent part. To bring the temperature effects
into the model, the relaxation modulus has to be a function of temperature. For this
purpose, the material is assumed to be “thermorheologically simple.” It means that a
uniform change in temperature of the body leads to a corresponding shift in relaxation
function on logarithmic time scale:

G0ðtÞ ; LðlogðtÞÞ ð31Þ

In the above equation t is time and L is Laplace transform, thermorheological
simplicity means that can be expressed as follows:

GT ðtÞ ¼ L½logðtÞ þ AðTÞ� ð32Þ

GT(t) is relaxation law valid at temperature T and A(T) is called temperature shift
function. The shift function obeys the following properties.
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Setting:

Að0Þ ¼ 0 and
›A

›T
. 0 ð33Þ

AðTÞ ¼ logðcðTÞÞ where c also obeys cð0Þ ¼ 0 and
›c

›T
. 0 ð34Þ

equation (32) can be written as:

GTðtÞ ¼ L½logðtÞ þ logðcðTÞÞ� ¼ L½logðjÞ� ¼ G0ðjÞ ð35Þ

j is called “reduced time” given as follows:

j ¼ tcðTÞ ð36Þ

Equation (35) states that relaxation modulus at any given temperature can be obtained
from the modulus at base temperature by simply replacing the time t by reduced time
j. This is only possible by postulating that material is thermorheologically simple. The
above formulae are valid when the body is in isothermal condition, above the stress
free temperature. When the body undergoes an arbitrary transient temperature
change, the reduced time is defined as:

j ¼ f ðx; tÞ ¼

Z t

0

c½Tðx; lÞ�dl ð37Þ

x is any special point. In finite element j is calculated for each element considering the
element’s average temperature. Hence, the constitutive law for a viscoelastic material
undergoing arbitrary transient temperature change can be written as:

{s} ¼ ½C�{1}2 {a}{u}

þ

Z t

t¼21

½C�
›G0ðj2 jtÞ

›t
{1}2 {a}

›G0ðj2 jtÞ

›t
{u}

� �

dt

ð38Þ

where j ¼ f(x, t), the effect of integral term appearing in the above equation can be
turned into what is known as “memory load” while handling in finite element:

{FM} ¼ {FM1}2 {FM2}

{FM1} ¼

Z

V

½B1�
T ½C�½B1�

Z t

t¼21

›G0ðj2 jtÞ

›t
{ue}dtdV ð39Þ

{FM2} ¼

Z

V

½B1�
T½a�½N 2�

Z t

t¼21

›G0ðj2 jtÞ

›t
{ue}dtdV

The time integrals appearing in equation (39) can be evaluated numerically using
trapezoidal rule (Srinatha and Lewis, 1981). For the k-th time interval:
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Z t

t¼21

›G0ðj2 jtÞ

›t
{ue}dt ¼

X

k21

i¼1

½G0ðjk 2 jiþ1Þ2 G0ðjk 2 jiÞ� u*ie
� �

Z t

t¼21

›G0ðj2 jtÞ

›t
{ue}dt ¼

X

k21

i¼1

½G0ðjk 2 jiþ1Þ2 G0ðjk 2 jiÞ� u*ie
� �

ð40Þ

where:

u*ie
� �

¼
1

2
uie þ uiþ1

e

� �

and u*ie
� �

¼
1

2
uie þ uiþ1

e

� �

ð41Þ

equation (40) shows that for evaluating memory load at current time step it is required
to store the displacement and temperature history up to that time step. A more efficient
way of doing this integration is by setting a recursive relation by making use of Prony
series (equation (29)). Substituting equation (29) in equation (40) it follows that the RHS
of equation (40) gives:

X

n

j¼1

mj

X

k21

i¼1

e2ðjk=tjÞ e jiþ1=tj 2 e ji=tj
h i

u*ie
� �

¼
X

n

j¼1

mj{qj;k}

X

n

j¼1

mj

X

k21

i¼1

e2ðjk=tjÞ e jiþ1=tj 2 e ji=tj
h i

u*ie
� �

¼
X

n

j¼1

mj{q
0
j;k}

ð42Þ

with recursive relations for {qj,k} and {q0j,k} as:

{qj;k} ¼ e2ðjk2jk21Þ=tj ½12 e2ðjk212jk22Þ=tj � u*k22
e

� �

þ {qj;k21}

{q0j;k} ¼ e2ðjk2jk21Þ=tj½12 e2ðjk212jk22Þ=tj� u*k22
e

� �

þ {q0j;k21}

ð43Þ

now the time integrals in equation (40) can be easily be evaluated. After evaluating the
integrals, the memory loads are obtained from equation (39). The memory load is
added to the mechanical load in equation (25).

2.3 Solution procedure
The coupled equation is solved after assembly using Newmark bmethod (Bathe, 1997)
with a time step of 1ms. The memory load is added to the RHS of the equation (25),
hence in equation (25), for n-th time interval the mechanical loading is given by:

{fm}n ¼ {FM1}n21 2 {FM2}n21 ð44Þ

3. Results and discussion
The response of cantilever piezo-thermo-viscoelastic composite beam under thermal
shock is studied. The effect of memory load and temperature dependent relaxation law
on the response of composite beam is considered. Two types of viscoelastic materials
(DYAD609 and DYAD606) are used in the present study. The effect of viscoelastic core
thickness (tc) on the response of the system is investigated. Figure 1 shows the physical
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configuration of a piezo-thermo-viscoelastic composite beam. The base beam is made
up of graphite-epoxy composite material and the piezo layer, which is bonded to base
beam is used as a sensor. The viscoelastic core is used in between the sensor and
actuator. The piezo layer, which is above the viscoelastic layer, is called actuator.
Generally, this type of treatment is called as active constrained layer damping (ACLD)
treatment. All the layers are firmly bonded to each other. It is assumed that there is no
slip between the layers. Thermal boundary conditions are shown in Figure 1. The
geometric parameters of beam model and material properties are tabulated in Tables I
and II.

It is well-known that the cantilever composite beam undergoes large vibration than
other configurations, so the cantilever beam is considered for the present analysis. The
primary objective of the study is to compare the system response with and without
viscoelastic relaxation under thermal environment by considering the thermal
relaxation times. The response is taken at the tip of the free end of cantilever beam.

The relaxation function of DYAD 609 and DYAD606 viscoelastic core materials at
different temperature in frequency domain is given by Nashif et al. (1985). The
relaxation function in time domain is obtained by transforming the data in frequency
domain to the time domain by following the procedure of Christensen (1982). The
relaxation function in time domain for DYAD 609 and DYAD606 viscoelastic material
at reference temperature 24 and 108C, respectively, are given as follows:

GoðtÞ ¼ 0:008þ 0:783e2t=0:00532 þ 0:21e2t=0:05002 ðDYAD 609Þ ð45aÞ

GoðtÞ ¼ 0:006þ 0:21e ð2t=0:03706Þ þ 0:784e ð2t=0:00253Þ ðDYAD 606Þ ð45bÞ

The temperature shift factor c(T) is obtained by curve fitting, using the relaxation
functions defined at 24, 38, 668C for DYAD 609 and 10, 38, 938C for DYAD 606
viscoelastic materials (Nashif et al., 1985):

cðTÞ ¼ 24:06608þ 0:20992T þ 4:84694 £ 1025T 2 ðDYAD 609Þ ð46aÞ

cðTÞ ¼ 20:05635þ 0:11313T 2 7:49804 £ 1024T 2 ðDYAD 606Þ ð46bÞ

Figure 1.
Schematic diagram of

piezo-thermo-viscoelastic
composite beamθ = 0°C for t > 0

 θ = 20°C for t > 0

Composite base beam

Piezo layerViscoelastic layer

Length (L) 1m
Thickness of base beam tb ¼ 6mm
Thickness of piezo layer tp ¼ 254mm
Thickness of viscoelastic layer tc ¼ 1mm

Table I.
Geometry of

piezo-thermo-viscoelastic
composite beam

Piezo-thermo-
viscoelastic

composite beam
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The relaxation function at any other temperature is obtained by using the shift factor
in the equation (32). Figures 2 and 3 shows the relaxation function and shift factor of
DYAD 609 and DYAD 606 viscoelastic material at different temperature. The postulate
of thermo-rheological simplicity can be verified from these curves. The meaning of this
is change in temperature causes a uniform shift of relaxation function on a logarithmic
time scale. The properties of viscoelastic material are given in the Table II.

In the present analysis Newmark b method is used to solve the dynamic system.
Initially, the time step is selected as 0.01, which is selected, based on 1/20f ( f is lowest
natural frequency) and transient response is obtained. To find the influence of smaller
time steps, the beam analyzed for 0.1, 0.01, 0.001 and 0.0001 s time steps also. From the
Figure 4, it is clear that there is no significant change in the transient response for time
step beyond 0.001 s. So, the time step has been taken as 0.001 s for all the analysis
carried out in the paper.

The relaxation time represents the time-lag needed to establish steady state heat
conduction in an element of volume when a temperature gradient is suddenly imposed

Viscoelastic material
Properties Graphite/epoxy Cadmium selenide DYAD 609 DYAD 606

Thermal conductivity (W/mK)
k11 4.62 2.5 0.18 0.18
k22 0.72
Specific heat ( J/KgK) 998.12 420 2,000 2,000
Density (kg/m3) 1,603 7,600 1,250 1,300
Stiffness coefficients (MPa)
C11 140,200 74,000 1,100 1,352
C12 3,905 45,000 900 579
C13 3,905 39,000 900 579
C22 9,954.9 74,000 1,100 1,352
C23 3,062.5 39,000 900 579
C33 9,954.9 83,000 1,100 1,352
C44 3,447 13,000 100 313
C55 ¼ C66 7,100 13,000 100 313
Piezoelectric coupling coefficients (C/m 2)
e31 – 20.16 –
e33 – 0.347 –
e15 – 20.138 –
Dielectric constants 10 212 (C/Vm)
p11 – 82.6 –
p33 – 90.3 –
Stress temperature coefficients (MPa/K)
a11 0.162 0.621 1.45 1.25
a22 0.338 0.621 1.45 1.25
Pyroelectric coefficients (mC/Km2)
d31 – 22.94 –
d33 – 22.94 –
Relaxation times (s)
t1 0 0.01 0 0
t2 0 0.05 0 0

Sources: Tiahanu et al. (2002); Nashif et al. (1985); Chang and Shyong (1994)

Table II.
Properties of composite,
piezoelectric, and
viscoelastic materials
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Figure 4.
Transient response of

sandwich beam at
different time steps
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on that element (Lord and Shulman, 1967). The magnitude of the relaxation time has
been estimated for particular types of collision processes, the details are given by
Peierls (1955). In present case, the relaxation time for piezo layers taken from the
reference (Tiahanu et al., 2002), for other layers (base and visco layers) it is taken as
zero. In the present work, the relaxation time have been taken to the particular material
based on literature. Apparently, the results are converged to 0.001 s, which is 1/10th
and 1/50th (0.01 and 0.05 s) of the relaxation times used in the study.

3.1 Validation
In order to ensure the correctness of the present formulation, the results are taken for
one typical case of a piezo-thermo-viscoelastic isotropic beam and validated with
Pradeep (2006) as shown in Figure 5.

The base beam is made up of mild steel and the properties and geometry of other
layers used for validation are given in the Tables I and II. From the Figure 5 it is
observed that, results obtained using the present formulation are in good agreement
with the results presented by Pradeep (2006). Hence, the present formulation can be
used to study the response of piezo-thermo-viscoelastic composite beam.

3.2 Mechanical response of a piezo-thermo-viscoelastic beam
Figure 6 shows the mechanical response of piezo-thermo-viscoelastic cantilever
composite beam subjected to transient thermal load. The response is obtained for
different viscoelastic core thickness, with and without memory load (viscoelastic effect).
The response for instantaneous elastic (without memory) case can be obtained by
assuming a constant value ¼ 1 for the viscoelastic relaxation law in place of equations
(45a) and (45b). Figure 6 shows the comparison of responsewithmemory (black line) and
without memory (gray line). It can be seen that there is decay in the response when the
memory load is considered. The instantaneous elastic response (without memory) runs
away from the actual response. This shows the need for considering the viscoelastic
effect. The reason can be attributed to the very quick relaxation of property ofDYAD609
viscoelastic material.

Figure 5.
Validation with isotropic
piezo-thermo-viscoelastic
clamped free beam with
3mm core thickness
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Figure 6.
Effect of viscoelastic

memory on mechanical
response of a

piezo-thermo-viscoelastic
composite beam
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The viscoelastic relaxation times t1 and t2 are the measure of quickness of relaxation. If
the relaxation times are small then there is a greater discrepancy between the
instantaneous elastic response and viscoelastic response. Also it can be seen from
equation (45a) and (45b), if viscoelastic relaxation times are high then the exponential
time decaying terms do not contribute much to the relaxation function. On the other
hand when viscoelastic relaxation times are small the contribution of exponential
terms become high, due to that the response characteristics get drastically affected. In
the present case t1 ¼ 0.00532 s and t2 ¼ 0.05002 s (equation (45a)) which are very small
compared to response period of interest (10 s). Hence, there is a discrepancy by ignoring
the viscoelastic relaxation effects.

If the viscoelastic core thickness increases then damping increases, hence there is
more deviation in the instantaneous elastic response. This is because, the more is the
viscoelastic content in the system the greater is the importance of memory effect.
However, if the response period of interest and viscoelastic relaxation times is closer to
each other then there is no deviation between instantaneous elastic response and
viscoelastic response (with andwithout memory) as shown in Figure 7 with a magnified
view.

In Figure 7, the response is plotted for a period of 0.2 s, it is clearly noticed that there
is no deviation in the instantaneous elastic and viscoelastic responses up to second
viscoelastic relaxation time (t2 ¼ 0.05 s).

3.3 Electric response of piezo-thermo-viscoelastic cantilever beam at different locations
across the clamped end of beam
Figure 8 shows the variation of electric potential at different locations of a cantilever
piezo-thermo-viscoelastic composite beam. The results are taken for three different
thickness of the core when the beam is subjected to transient thermal environment. The
potential generated in the top piezoelectric layer (Figure 8(a)) is mostly due to
pyroelectric effect and hence will be mostly dictated by upper surface temperature
effects. In the sensor layer (Figure 8(b)) with increase in core thickness heat takes time

Figure 7.
Effect of viscoelastic
memory on mechanical
response of a
piezo-thermo-viscoelastic
composite beam in zoomed
view
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to propagate to the sensor layer and also some amount of the heat dissipation takes
place in viscoelastic layer hence only piezoelectric effect is dominant.

3.4 Effect of viscoelastic material on the mechanical response of the system
Figure 9 shows the influence of viscoelastic core material on the mechanical response
of piezo-thermo-viscoelastic composite beam. Using DYAD609 and DYAD606 as core
materials, the comparison on the mechanical response of cantilever composite beam is
made. The thickness of the core material considered is 3mm. The response is plotted
for both, by considering with and without memory effect.

Figure 9(a) shows that when the memory effect is considered the DYAD609
viscoelastic material damping increases with time, and hence the amplitude of vibration
decreases. In case of DYAD606 material the response deviates in positive direction
because there is a different relaxation times (equation (45a) and (45b)) for DYAD606 and
DYAD609 material, which may have effect on the response of the system. Figure 9(b)
shows the comparison of response without memory effect, the elastic properties of
DYAD606 material is having much influence on damping because of that the response
curve deviates from DYAD609 core material.

Figure 8.
Electric response
of a clamped-free

piezo-thermo-viscoelastic
composite beam
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Mechanical response of a
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4. Conclusions
The transient response of piezo-thermo-viscoelastic composite beam under thermal
environment is analyzed. The configuration of the beam is ACLD. The viscoelastic
layer of the system is appropriately modeled using “thermorheologically simple
material model.” The influence of viscoelastic effect “memory effect” on the system
response is investigated. There are two types of viscoelastic core materials (DYAD609
and DYAD606) used in the study; the influence of core material and core thickness on
the response of the system is also discussed. Some salient features of the present study
are as follows:

. The effect of memory load on the system is considerable. Neglecting the memory
effect the response of the system deviates from the actual solution. If the
response period of interest and viscoelastic relaxation times is same then the
influence of memory load may not have effect on the response of the system. In
general, the viscoelastic relaxation times are very less than the response period of
interest, then the memory effect is very important factor to be considered.

. As the thickness of viscoelastic layer increases the effects of viscoelastic
relaxation becomes important in mechanical and electrical response of the
system.

. Influence of viscoelastic material is also having more effect on the response of the
system.
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