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Abstract
Renaturation of the complementary single strands of DNA is one of the important processes

that requires better understanding in the view of molecular biology and biological physics.

Here we develop a stochastic dynamical model on the DNA renaturation. According to our

model there are at least three steps in the renaturation process viz. nonspecific-contact for-

mation, correct-contact formation and nucleation, and zipping. Most of the earlier two-state

models combined nucleation with nonspecific-contact formation step. In our model we sug-

gest that it is considerably meaningful when we combine the nucleation with the zipping

since nucleation is the initial step of zipping and nucleated and zipping molecules are indis-

tinguishable. Nonspecific contact formation step is a pure three-dimensional diffusion con-

trolled collision process. Whereas nucleation involves several rounds of one-dimensional

slithering and internal displacement dynamics of one single strand of DNA on the other com-

plementary strand in the process of searching for the correct-contact and then initiate nucle-

ation. Upon nucleation, the stochastic zipping follows to generate a fully renatured double

stranded DNA. It seems that the square-root dependency of the overall renaturation rate

constant on the length of reacting single strands originates mainly from the geometric con-

straints in the diffusion controlled nonspecific-contact formation step. Further the inverse

scaling of the renaturation rate on the viscosity of reaction medium also originates from non-

specific contact formation step. On the other hand the inverse scaling of the renaturation

rate with the sequence complexity originates from the stochastic zipping which involves

several rounds of crossing over the free-energy barrier at microscopic levels. When the

sequence of renaturing single strands of DNA is repetitive with less complexity then the

cooperative effects will not be noticeable since the parallel zipping will be a dominant

enhancing factor. However for DNA strands with high sequence complexity and length one

needs to consider the underlying cooperative effects both at microscopic and macroscopic

levels to explain various scaling behaviours of the overall renaturation rate.
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Introduction
The biological function of DNA depends largely on its double stranded helical structure and its
ability to unwind and rewind in a reversible manner. The double stranded structure of DNA
(dsDNA) is mainly stabilized by weak hydrogen bonds between the nitrogen bases of comple-
mentary single strands (c-ssDNAs) and the hydrophobic forces arising from the base-stacking
within the core of dsDNA polymer [1–2] These weak interactions melt down upon heating the
solution containing dsDNA beyond the melting temperature which in turn yields the corre-
sponding c-ssDNAs. These single strands exactly reunite (hybridize) back into their original
double stranded helical form upon cooling the solution below the melting temperature. Melt-
ing temperature of dsDNA is defined as the temperature at which precisely half of the dsDNA
melts into corresponding c-ssDNAs. Several molecular biological processes such as transcrip-
tion, translation and replication and in vitro laboratory techniques are solely based on the
reversible unwinding-rewinding property of dsDNA. Understanding the dynamics and mecha-
nism of renaturation of c-ssDNAs in solution is important in recombination, design of primers
for polymerase chain reaction, design of oligonucleotide probes for microarray chips, various
membrane blotting techniques and other related DNA fingerprinting technologies [2–5]. In
this context, several models describing the process of renaturation of c-ssDNAs in aqueous
solution have been developed and experimentally verified [6–29]. Detailed understanding of
the mechanism of renaturation of c-ssDNA at microscopic level is one of the important con-
temporary topics of interest in molecular biology and biological physics.

Renaturation of c-ssDNAs was initially thought [6] as one-step bimolecular second order
chemical kinetic process as in Scheme I of Fig 1. Several experimental observations could not
be explained by a simple one-step second order kinetics. One of such observations is that irre-
spective of the experimental conditions the overall bimolecular rate constant was directly pro-
portional to the square-root of the average length of c-ssDNAs and inversely proportional to
its sequence complexity. Whereas a one-step process predicted that the bimolecular collision
rate was directly proportional to the average length of c-ssDNA. To comply with various exper-
imental observations, Wetmur and Davidson [6] suggested a detailed two-step renaturation
model that comprised of nucleation and zipping steps as in Scheme II of Fig 1. They had
shown that the overall second order rate constant associated with the renaturation phenome-
non could be expressed as a function of the average length of the sheared DNA and sequence
complexity of the reacting c-ssDNAs. Here the sequence complexity is defined as the length of
DNA with unique nucleotide sequence pattern [Fig 1].

Detailed renaturation studies on the sheared genomic DNA suggests [2] the presence of two
different types of genomic sequences viz. nonrepetitive and repetitive. Here the degree of repet-
itiveness can vary from moderate to high. Moderately repetitive DNA contains short sequences
that are repeated 10−103 times whereas highly repetitive part of the genomic DNA contains
several thousand repeats of short sequences with length of<100 bases (1 base = 3.4 x 10-10m).
The overall length of nonrepetitive sequences (the sequence complexity) increases along with
the genome size and it seems to attain a plateau at ~2 x 109 bases [2]. Wetmur and Davidson
further formulated a theoretical model on the renaturation phenomenon according to which
the overall bimolecular rate was directly proportional to the nucleation rate apart from the
ratio between the average length of c-ssDNA and its sequence complexity. They argued that
the nucleation rate must be inversely proportional to the square-root of the average length of c-
ssDNA. As a consequence of these facts, the experimentally observed overall bimolecular rate
associated with renaturation is directly proportional to the square-root of the length of c-
ssDNA. They further suggested that the inverse scaling of the nucleation rate on the length of
c-ssDNA polymer must be owing to either the thermodynamic excluded volume effects
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associated with the intra-strand dynamics or stearic hindrance associated with the diffusion
controlled interpenetration of c-ssDNAs that is essential for the nucleation step.

Here one should note that the two-step model of Wetmur-Davidson will be inconsistent
whenever the sequence complexity has same magnitude as that of the length of c-ssDNA. Sub-
sequent experimental studies on the renaturation phenomenon were mainly focussed [16–28]
on unravelling the molecular mechanisms and the underlying thermodynamics and kinetics
aspects. In line with these experiments, several theoretical and computational models [6, 7, 14–
17, 23–27] were also developed to explain the observed scaling behaviours of the overall second
order renaturation rate on the size of reacting c-ssDNAs, temperature, ionic strength and vis-
cosity of the reaction medium. Recent studies [23–27] considered either the excluded volume
effects acting on the intrastrand dynamics or stearic hindrance associated with the diffusion
controlled interpenetration of c-ssDNAs to explain the observed scaling behaviours of the
overall renaturation rate on the length of c-ssDNA strands. Diffusion based models provide

Fig 1. Earlier models on DNA renaturation kinetics. Renaturation of c-ssDNA strands was initially modelled as one-step bimolecular collision rate process
as in Scheme I with an overall bimolecular association rate of kHQ. S and S’ are the concentrations of c-ssDNA andH is the concentration of completely
renatured dsDNA. According to this model Scheme I the overall renaturation rate kHQ should scale with the length of the reacting c-ssDNA strands in a linear
manner. However experiments revealed a square-root dependency of the renaturation rate on the length of reacting c-ssDNA strands. To comply with the
experimental observation a two-step mechanism was proposed as in Scheme II which comprised of nucleation and zipping. In this mechanism the
nucleation rate (kN) is inversely proportional to the square-root of the length of c-ssDNA strands. This scaling seems to emerge as a consequence of
excluded volume effects of c-ssDNA polymer. Whereas the zipping rate (kZ) is directly proportional to the length of c-ssDNA strands (L) and inversely
proportional to the sequence complexity (c). Since the overall renaturation rate is directly proportional to both kN and kZ one observes a square-root
dependency of the overall renaturation rate on the length of c-ssDNA strands. To generalize nucleation is modelled as a reversible process with a
dissociation rate constant kr. Here YN is the concentration of the nucleus. Sequence complexity of c-ssDNA is defined as the length of DNA with unique
sequence pattern. For example consider sequences S1, S2 and S3 all with length of L = 30 bases. By definition the sequence complexity of S1 is c = 30
bases. Complexity of S2 is c = 10 bases since it has 3 repeats of ATGATCTACGwith 10 bases length. In the same way, the complexity of S3 is c = 5 bases
since it has 6 repeats of ATGAT with 5 bases length. The copy numbers ρ = L/c of S1, S2 and S3 are 1, 3 and 6 respectively. The zipping rate in two-step
renaturation models as in Scheme II is directly proportional to this copy number ρ. This means that the overall renaturation rate is inversely proportional to the
sequence complexity of the reacting c-ssDNA strands.

doi:10.1371/journal.pone.0153172.g001
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correct viscosity dependence of overall renaturation rate constant compared to the models
based on the framework of transition state theories (TST).

Recently nucleation step in renaturation was modelled as an escape over free energy barrier
[27] within the framework of Kramer’s theory that deals with the dynamics of Brownian parti-
cle over a potential energy barrier. It was argued [27] that the square root dependency of nucle-
ation rate on the length of c-ssDNAmainly originates from the entropic component of the free
energy barrier associated with the Kramer’s escape problem. Though this approach appeared
to be a reasonable one, nature of the reaction coordinate and potential energy barrier associated
with the renaturation process were not clearly defined. Moreover the exact connection between
the entropic component of the free energy barrier and the observed scaling behaviour was not
clearly established in detail. Here the entropic barrier associated with the nucleation step must
originate from the freely moving single stranded overhangs of colliding c-ssDNA strands.

According to the current theoretical understandings over experimental and computational
observations [23–29], the renaturation process should have at least three distinct steps namely
(a) formation of nonspecific contact (b) nucleation or correct contact formation and (c) zip-
ping [Fig 2A]. In the first step, the reacting c-ssDNAs collide with each other via three-dimen-
sional (3D) diffusion controlled routes. This results in the formation of Watson-Crick (WC)
base pairs at random nonspecific contacts between the reacting c-ssDNAs. Such nonspecific
WC contacts randomly translocate along c-ssDNAs either via thermally driven one-dimen-
sional (1D) slithering dynamics or internal displacement [29] mechanisms [Figs 2A and 3A–
3C] until finding the correct-contact and initiate the nucleation process which is in turn fol-
lowed by spontaneous zippering of c-ssDNAs.

Here one should note that steps (a) and (b) are purely stochastic dynamical processes simi-
lar to that of the site-specific DNA-protein interactions [17, 30–31]. Additionally zippering
step (c) will be a stochastic dynamical process since there is a finite probability of dissociation
of c-ssDNA strands at each step of the zipping reaction. These mean that one needs to apply
stochastic dynamics based arguments rather than merely thermodynamics based ones to
explain the observed scaling behaviours and underlying mechanisms. In this paper we will for-
mulate such a stochastic dynamics based theoretical framework of renaturation phenomenon
and explain various scaling properties associated with the renaturation rate.

Results

Theoretical Formulation of DNA Renaturation Kinetics
At a coarse grained level one can consider the c-ssDNA polymer as a chain of nitrogen base
beads with an average bond length of 1 base. The process of renaturation essentially involves
collisions between the clusters of nitrogen base beads corresponding to c-ssDNA strands. The
basic steps involved in the process of renaturation of c-ssDNA strands viz. (a) formation of
nonspecific contact (b) nucleation or correct contact formation and (c) zippering can be well
represented by Scheme III of Fig 2. Here 3D diffusion controlled collisions between the nitro-
gen base beads of c-ssDNA strands lead to the formation non-specific contacts between them
that results in the formation of cn-ssDNA [Figs 2A and 3A]. Under non-specifically bound
condition, the probe strand of cn-ssDNA searches over the template strand for the correct con-
tact via a combination of 1D and 3D diffusion. Here the 1D diffusion comprises of facilitating
processes such as slithering and internal displacement dynamics. Slithering dynamics involves
[Fig 3B] a random search with unit base step size whereas internal displacement mechanism
involves an inchworm type movement of the probe strand over the template strand with a step
size of few hundreds to thousand bases [Fig 3C]. One should note that internal displacement
mainly depends on the 3D conformational state of the template c-ssDNA strand.
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Fig 2. Basic steps of DNA renaturation phenomenon. A. Three basic steps in the renaturation of complementary single strands of DNA (c-ssDNA) are viz.
nonspecific-contact formation, nucleation and zipping. Two arbitrary locations on the probe c-ssDNA are marked as 1 and 2 (blue and green dots
respectively). Nonspecific-contact formation (cn-ssDNA) is purely a three dimensional (3D) diffusion controlled collision rate process (I) where the rate
constant associated with the formation of nonspecific-contact scales with the length of colliding c-ssDNAmolecules in a square root manner and it scales
with the solvent viscosity in an inverse manner. Nucleation involves a one dimensional (1D) slithering dynamics (II) of one strand on the other strand of cn-
ssDNA in the process of searching for correct-contact (cc-ssDNA). Internal displacement dynamics through inchworm movements (III) of one complementary
strand on the other can facilitate the 1D diffusion dynamics. Upon finding the correct-contact and forming the nucleus, zipping of cc-ssDNA step (IV) follows.
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Condensed conformational state of template c-ssDNA always favours internal displace-
ments while relaxed conformational state favours the slithering dynamics. Here slithering and
internal displacement mechanism are similar to that of the sliding and intersegmental transfer
dynamics as in case of site-specific DNA-protein interactions [Fig 3D]. Intersegmental transfer
occurs whenever two distal segments of the same dsDNA chain come close by over 3D space
via ring closure events. Under such conditions the non-specifically bound DNA binding pro-
tein molecules can move from one segment of DNA to another segment of the same DNA
without dissociation. Analogous to intersegmental transfer, internal displacement occurs
whenever the overhang parts of the probe strand of cn-ssDNA make contact with some other
region of the template strand of cn-ssDNA without dissociation of the previous nonspecific
contact. In this way the probe strand of cn-ssDNA can perform an inchworm type movement
over the template strand of cn-ssDNA without physical dissociation [Fig 3C]. One should note
that the probe strand of cn-ssDNAmay dissociate after searching n numbers of nonspecific
sites on the template strand where n is a random variable. These 1D random search processes
in combination with several rounds of nonspecific association and dissociation will result in
the finding of the correct-contact on the template strand of cn-ssDNA by the probe strand that
in turn results in the formation of cc-ssDNA.

Upon formation of cc-ssDNA, the zipping reaction needs to progress against the entropic
barrier associated with the single strand overhangs of cc-ssDNA. Nucleation occurs whenever
the number of correct contacts in cc-ssDNA exceeds certain critical value (N) against the entro-
pic barrier imposed by the freely moving single stranded overhangs [27]. Since the time that is
required to locate the correct-contact is a random variable, nucleation rate also will be a ran-
dom variable. Nucleation will be followed by zipping of cc-ssDNA into a completely renatured
dsDNA. Here one should note that both the nucleation and zipping are parts of a continuous
process after the formation of cc-ssDNA i.e. there is no clear cut timescale separation or
boundary between them. Zipping step will also be a stochastic process since at each step of zip-
ping there is a finite nonzero probability of dissociation of cc-ssDNA. When the c-ssDNA
strands are repetitive then the zipping reacting can progress in parallel. As the zipping reaction
progresses towards completion, in case of nonrepetitive c-ssDNA strands the stability of cc-
ssDNA gradually increases and as a result the probability of dissociation of cc-ssDNA
decreases.

In Scheme III of Fig 2 [S] and [S’] are the concentrations (mol/lit, M) of the colliding c-
ssDNAs whose lengths are L bps (template) and l bps (probe) respectively where by definition

Scheme III. According to this scheme both the nucleation and zipping are coupled stochastic dynamical processes. In this scheme there are three distinct
steps in the process of renaturation viz. 3D diffusion mediated nonspecific contact formation with an on rate of kfQ and off-rate of kr, 1D and 3D diffusion
mediated nucleation step with rate kN and zipping which is a 1D diffusion process with a rate of kZ. Before forming a successful nucleus with a critical size ofN
bases the colliding c-ssDNA strands undergo several rounds of nonspecific contact formation to form cn-ssDNA, 1D diffusion of one of the cn-ssDNA strands
over the other and then dissociation. Upon formation of the nucleus (cc-ssDNA withN numbers of correct contacts) zipping process commences. Since
nucleated cc-ssDNA is indistinguishable from zipping one, it is more appropriate to combine the nucleation with the zipping with an overall rate of kNZ = 1/(1/
kN + 1/kZ) rather than with the nonspecific-contact formation step as in Scheme II. Conformational state of the reacting c-ssDNAmolecules seems to
significantly affect the reaction mechanism and scaling relationships associated with the overall renaturation rate on the size of the system.B, C. We can
model the c-ssDNA chains as clusters of nitrogen bases so that the overall bimolecular rate associated with the formation of nonspecific contacts between
spatially distributed base-clusters of c-ssDNAs is proportional of the product of concentrations of the total nitrogen bases in c-ssDNAmolecules. The
cylindrical surface areaCM ~ 2πrDM of a c-ssDNAmolecule with a radius of rD bases will be confined within the spherical solvent shell with surface area VM ’
4pr2M (M = L for template andM = l for probe c-ssDNA strands) where rM is the radius of gyration of the respective c-ssDNAmolecule. Under strongly
condensed state of c-ssDNA one finds that VM < CM (C) and when the DNA polymer is in a relaxed state then one find that VM > CM. At a coarse grained level
one can model the bases of c-ssDNA as a chain of spherical beads with radius rD. Under relaxed conformational state all these nitrogen base beads are
distributed on the surface of the spherical solvent shell that covers a c-ssDNAmolecule (B). Under condensed conformational state of c-ssDNAmolecules
significant fraction of nitrogen base beads will be inaccessible to the inflowing c-ssDNAmolecules since they are buried inside the matrix of condensed c-
ssDNA (C).

doi:10.1371/journal.pone.0153172.g002
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Fig 3. Mechanisms of DNA renaturation. A. Collision between c-ssDNA strands leads to the formation of nonspecific contacts (cn-ssDNA) at a diffusion
controlled bimolecular collision rate of kfQ (Q = C for condensed conformation and Q = R for relaxed conformational state of c-ssDNA). B, C. Slithering and
internal displacement mechanism are involved in the nucleation step of renaturation of c-ssDNA strands. Here slithering is a 1D diffusion dynamics (with unit
base step size) of one of the cn-ssDNA strands on the other in the process of searching for the correct-contact to initiate nucleation and zipping. Slithering
involves local dynamics of individual bases of one strand of cn-ssDNA over the other. Internal displacement mechanism involves inchworm type movement
of one of the cn-ssDNA strand over the other. Here two different segments of the same cn-ssDNA strand involved in the inchworm type 1D diffusion
dynamics where second nonspecific contact is formed between cn-ssDNA strands before the dissociation the former one with a dissociation rate kr. In the
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L� l, [X] is the concentration of c-ssDNAs with nonspecific contacts (cn-ssDNA), [YN] is the
concentration of c-ssDNAs with correct-contact (cc-ssDNA) and nucleation, and [H] is the
concentration of completely renatured dsDNA form. Here one should note that [YN] is a spe-
cial form of [H] since the complementary strands are already nucleated and aligned in [YN].
Since it is very difficult to identify and quantity [YN] in experiments we consider [H] as the
main product of renaturation in this paper. Further kfQ (M-1s-1) and kr (s

-1) are the forward
second-order and reverse first-order rate constants associated with the formation of nonspe-
cific contacts between colliding c-ssDNAs, kN (s-1) is the nucleation rate constant and kZ (s

-1)
is the zippering rate constant. Since [YN] is a hidden intermediate we consider the overall rate
constant associated with both nucleation and subsequent spontaneous zipping as kNZ which is
the inverse of total time required for nucleation and zipping processes together i.e. kNZ = 1/
(1/kZ + 1/kN). Typical values of the size of nuclei [6] seems to be N ~ 4–7 bases. Here we set
the subscript Q = C for condensed conformational state of c-ssDNA and Q = R for relaxed
conformational state of c-ssDNA throughout this paper. The set of differential rate equations
associated with Scheme III of Fig 2 can be written as follows.

d½X�=dt ¼ kfQ½S�½S0� � ðkr þ kNZÞ½X�; d½H�=dt ¼ kNZ½X�; d½H�=dt ’ �kHQ½S�½S0� ð1Þ

Since nucleation step involves several rounds of 1D slithering and internal displacement
dynamics of one of the cn-ssDNA strand over the other in combination with nonspecific asso-
ciation and dissociation events, kNZ will be a function of n. Here n is the number of nonspe-
cific sites scanned by cn-ssDNA strands on each other before dissociation. With this

background one can define the overall second order rate constant as �kHQ ¼
ðL

0

kHQpðnÞdn
where we have defined kHQ = kfQkNZ/(kNZ + kr) and p(n) is the probability density function
associated with the random variable n. We will derive the explicit expressions for kNZ and p(n)
in subsequent sections. Various parameters and variables defined throughout this paper are

summarized in Table 1. While deriving the expression for �kHQ we have assumed that the

nucleation and zipping are the rate limiting ones so that d[x]/dt’ 0 in the timescales of nucle-
ation and zipping.

Essentially the first reaction in Scheme III of Fig 2 can be thought as collisions between the
spatially distributed clusters of nitrogen bases corresponding to the two reacting c-ssDNAs as
in case of a mean field approach [27]. As a result, the overall bimolecular rate associated with
the formation of nonspecific contacts between spatially distributed base-clusters of c-ssDNAs
is proportional of the product of concentrations of the total nitrogen bases in c-ssDNA mole-
cules. The cylindrical surface area CM ~ 2πrDM of a c-ssDNA molecule will be confined within

illustration (C) three different locations of red colored strand of cn-ssDNA are marked as 1, 2 and 3. Initially position 2 of the probe c-ssDNA strand has a
nonspecific contact with the template strand. In this condition the position 3 located on the freely moving overhang of probe strand makes contact with the
template strand after which dissociation of the nonspecific contact at position 2 occurs. In this way the probe strand performs an inchworm type movement
over the template strand. Occurrence of internal displacements in turn speeds up the 1D diffusion dynamics up to certain extent as in case of the
intersegmental transfers via ring closure events associated with the site-specific DNA-protein interactions [31]. Both slithering and internal displacement
mechanism are thermally driven stochastic processes which independently contribute to the 1D diffusion coefficientDo. Correct contact formation leads to
nucleation with rate kN beyond the critical nucleus size ofN ~ 4–7 bases which in turn results in the zipping of cc-ssDNA strands into dsDNA with a rate of kZ.
D. Slithering seems to be analogous to the sliding mode of searching in the site-specific DNA-protein interactions whereas internal displacement is similar to
that of the intersegmental transfer dynamics via ring closure events. Here two distal segments of the same DNA polymer come nearby in 3D space through
thermally driven looping dynamics so that the nonspecifically bound protein molecule moves between them. As in DNA renaturation k0

fQ is the rate constant
associated with the forward 3D diffusion mediated nonspecific binding of proteins with DNA and k0

r is the rate constant associated with the reverse
dissociation step. Before reaching the CRMs (specific binding site) the protein molecules perform several rounds of 3D diffusion mediated association with
DNA at random locations, 1D diffusion (which includes various modes of facilitating processes such as sliding, hopping and intersegmental transfers) along
the DNA polymer and dissociations.

doi:10.1371/journal.pone.0153172.g003
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Table 1. Various symbols and their definitions

Symbol Definition Remarks

[S], [S’] Concentration of complementary single strands of DNA (= [c-ssDNA]) mol/lit, M

[X] Concentration of complementary strands with nonspecific contact between them
(= [cn-ssDNA])

M

[YN] Concentration of nucleated complementary single strands with nucleus size of N
base pairs (= [cc-ssDNA])

M

[H] Concentration of double stranded DNA (= [dsDNA]). M

kt Smolochowski type 3D diffusion controlled collision rate limita. M-1s-1

DL, Dl (= kBT/6πηrM) 3D diffusion coefficients associated with c-ssDNA polymers with
length M bases (M = L, l).

bases2s-1

lp, ld Step sizes associated with the 1D slithering (lp = 1 base) and internal
displacement dynamics (ld > lp)

b.
bases

Dos (= lp
2 (wf pf + wr pr)) 1D diffusion coefficient for the searching for the correct

contact via slithering c.
bases2s-1

Doi (= ld
2 (wf,d pf,d + wr,d pr,d)) 1D diffusion coefficient associated internal

displacementd.
bases2s-1

Do (= Dos + Doi) bases2s-1

rD Radius of DNA cylinder or radius of a nitrogen base bead. (1base = 3.4 x 10−10

m)
bases

L, l Lengths of template and probe c-ssDNA strands, L � l. bases

rL, rl Radius of gyration of c-ssDNA polymer in aqueous solution whose lengths are L
(template) and l (probe) e.

bases

δC, δR Multiplication factor corresponding to geometric constraints for the collision of c-
ssDNA strands f.

dimensionless

κ Onsager radius*. bases

ψQ Multiplication factor for the electrostatic repulsion component associated with the
collision of c-ssDNA.

dimensionless

χQ Multiplication factor for the overall electrostatic component associated with the
collision of c-ssDNA.

dimensionless

kfQ Bimolecular collision rate constant for the formation of nonspecific contacts (=
ktχQδQ), (Q = C, R).

M-1s-1

kr Rate constant associated with the dissociation of cn-ssDNA. s-1

λ (= L/n) minimum number of 1D slithering of cn-ssDNA of n bases required to find
the correct contact.

dimensionless

N Critical number of correct contacts in cc-ssDNA that can be considered as
nucleus. (N ~ 4–7 bases).

bases

τN (= λn2/12Do) overall time required for nucleation. s

τZ Zippering time to generate a completely renatured dsDNA from nucleation. s

kN Rate constant associated with the formation of nucleus (= 1/τN, where τN is the
nucleation time).

s-1

kZ Macroscopic zippering rate constant (= 1/τZ, where τZ is the zippering time). s-1

kNZ (= 1/(1/kZ + 1/kN) = 1/ (τZ + τN)) coupled stochastic nucleation-zipping rate
constant.

s-1

CL, Cl Area of cylindrical surface of c-ssDNA (CL = 2πrD
2L, Cl = 2πrD

2l) whose lengths
are L and l bases.

bases2

VL, Vl Area of spherical solvent shell that covers c-ssDNA polymer (= 4πrM
2). bases2

rC, rR Reaction radius associated with the collision of one c-ssDNA polymer with
another c-ssDNAg.

bases

c Sequence complexity of c-ssDNA which is the length of unique sequence found in
a given stretch of DNA.

bases

ρ (= L/c) number of repeats in c-ssDNA with length L bases and complexity of c
bases.

dimensionless

k+, k- Microscopic forward (k+) and reverse (k-) transition rate constants associated with
the zipping process.

s-1

(Continued)
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Table 1. (Continued)

Symbol Definition Remarks

KZ (= k-/k+) equilibrium constant associated with the microscopic zipping process. dimensionless

D± (= lp
2k+) microscopic diffusion coefficient associated with the zipping process

when k+ = k- where lp = 1 base.
bases2s-1

n Number of possible nonspecific contacts scanned by cn-ssDNA before it
dissociates into c-ssDNA.

dimensionless

u Number of correct contacts at a given time point in the reaction associated with
the zipping cc-ssDNA.

dimensionless

β (= L/lp) maximum number of correct contacts in the completely renatured dsDNA. dimensionless

kp (= k+lp) microscopic zipping rate constant. bases s-1

YA Distance travelled by nonspecific contact via 1D slithering before cn-ssDNA
dissociates.

bases

YE (= kp/kr) distance travelled in the zipping reaction before cn-ssDNA dissociates. bases

kHQ Bimolecular rate constant associated with the complete renaturation h. M-1s-1

Lopt optimum value of the length of c-ssDNA at which kHR will be a maximum i. bases

p(n) Probability density function (pdf) associated with the 1D slithering length (n). pdf

ksm (= ktε) Smolochowski type 3D collision rate limit associated with nitrogen bases A
with T or G with C j.

M-1s-1

k2 Overall bimolecular renaturation rate in Wetmur-Davidson model k. M-1s-1

Notes:

*Onsager radius is defined as the distance between negatively charged phosphate backbones of colliding

c-ssDNA chains at which the electrostatic repulsive energy is same as that of the thermal energy.
a. Here colliding molecules are of same in size with no charge on them (= 8kBT/3η where kB is the

Boltzmann constant, T absolute temperature in degree K and η is the viscosity of solvent). For T = 298K

and η ~10−1 kgm-1s-1 one obtains kt ~ 109 M-1s-1.
b. Here lp is the average bond length associated with c-ssDNA polymer and ld is the average step size

associated with the internal displacement mechanism. Here we consider the average step size since the

step size associated with the internal displacement is a random variable.
c. Here wf and wr are microscopic forwards and reverse transition rates, pf and pr are the corresponding

transition probabilities and lp = 1 base is the step size.
d. Here wf,d and wr,d are microscopic forward and reverse transition rates, pf,d and pr,d are the

corresponding transition probabilities and ld > lp is the average step size.

e. For a linear chain polymer rM ’
ffiffiffiffiffiffiffiffiffiffiffiffi
Mlp=6

q
where M = L, l.

f. (δR = L (1/rL + 1/rl)/8, δC = (rL + rl)
2/4 rLrl.). When L = l, then one finds that δR = L/4rL, δC = 1.

g. In case of condensed conformational state, rC = rL + rl and in case of relaxed conformational state, rR = rD
+ rl).
h. (= kfQkNZ/(kr + kNZ)). Since kNZ is a function of 1D slithering length (n), kHQalso will be a function of n and

subsequently we find that kHQ :! kHQðnÞ ’ kfQ=ð1þ nL=Y 2
A þ c=YEÞ. Here Q = C, R depending in the

conformational state of c-ssDNA strands. �kHQ :! Ð L

0
kHQpðnÞdn. Under relaxed conformational state of c-

ssDNA strands when (pYE/YA) � 1 then as in Eq 15 one obtains �kHR ’ ksm
ffiffiffiffiffiffiffiffiffiffiffi
Llp=c

q
where ksm = ktε.

i. (’ Y 2
Aðcþ YEÞ=nYE) Under relaxed conformational state. Solution of @LkHR = 0 for L.

j. (Where L = c = 1). Here we have defined ε ’ wRðkþ=krÞ
ffiffiffiffiffiffiffiffi
3=8

p
. Upon comparison with the experimental

data [6] one finds that ε~ 10−3.
k. Detailed fitting over the experimental data suggested [6] the empirical form as k2 ¼ 3:5� 105

ffiffiffiffiffiffiffiffi
L=c

p
. We

denote this by kHR in our model.

doi:10.1371/journal.pone.0153172.t001
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the spherical solvent shell with surface area VM ’ 4pr2M (M = L for template andM = l for
probe) where rQ is the radius of gyration of the respective c-ssDNA molecule. Under strongly
condensed conformational state of c-ssDNA one finds that VM < CM and when the DNA poly-
mer is in a relaxed conformational state then one find that VM > CM. At a coarse grained level
one can model the bases of c-ssDNA as a chain of spherical beads with radius rD. Under relaxed
conformational state all these nitrogen base beads are distributed on the surface of the spherical
solvent shell that covers the entire c-ssDNA molecule [Fig 2B]. Whereas under condensed con-
formational state of template c-ssDNA significant fraction of nitrogen base beads will be inac-
cessible to the inflowing probe c-ssDNA molecules since they are buried inside the matrix of
condensed c-ssDNA polymer [Fig 2C].

Calculation of the Nonspecific-Contact Formation Rate
Actually most of the theoretical models derived the scaling over the length of c-ssDNAs mainly
from the fact that the radius of gyration (measured in bps) associated with reacting c-ssDNAs
scales with their length as rM /Mα (M = L and l for the template and probe strands respec-
tively). Here the value of the exponent 0< α< 1 varies depending on the type of polymer and
solvent conditions. For an ideal Gaussian chain polymer that is immersed in a theta solvent

one finds that α ~ ½. For a linear chain polymer one finds that rM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Mlp=6

q
(M = L, l) where

lp is the average bond length [32, 33]. For c-ssDNA we have lp ~ 1 base between nitrogen base
beads. Noting these facts the Smolochowski type limiting rate for a diffusion controlled non-
specific contact forming step can be given as follows.

kfQ ¼ BQJQ; JQ ¼ ðDl þ DLÞ=rQ; DM ¼ kBT=6pZrM; Q ¼ fC;Rg; M ¼ fL; lg ð2Þ

Here JQ is the inflowing flux of c-ssDNA molecules, BQ is the exposed total surface area on
which the influx of c-ssDNA molecules JQ is acting, DS is the three-dimensional (3D) diffusion
coefficient associated with the colliding c-ssDNAs and rQ is the reaction radius that depends
on the conformational state of c-ssDNA. When c-ssDNA strands are relaxed, then all the base
beads will be distributed over the surface of the solvent shell that covers the entire c-ssDNA
polymer. Since VM > CM forM = {L, l} there will be several patches on the solvent shell surface
without base beads. Noting that a nonspecific contact can be formed only upon collision
between probe and base beads of template, one needs to integrate over the surface of the tem-
plate c-ssDNA polymer that is spread over the surface of spherical solvent shell rather than the
entire surface of spherical solvent shell [Fig 2B]. In this situation one finds that BR’ 2πrRL
where rR = rD + rl is the reaction radius associated with the collision of the probe c-ssDNA
strand on a nitrogen base bead of template c-ssDNA strand. On the other hand, when the c-
ssDNA polymer is highly condensed then significant fraction of the nitrogen base beads will be
buried inside the matrix of the DNA condensate [Fig 2C].

Unlike the relaxed conformational state, in case of condensed conformational state the sur-
face of the spherical solvent shell that covers entire c-ssDNA strands will be filled with nitrogen
base beads. This means that collision between base bead clusters of c-ssDNA strands always
result in the formation of nonspecific contacts under condensed conformational state. In this
condition one finds that BC ’ 4pr2C . Here rC = rL + rl is the reaction radius associated with the
collision between the condensed nitrogen base bead clusters of template and probe c-ssDNA
strands. Therefore depending on the conformational state of the colliding c-ssDNA molecules
the bimolecular collision rate associated with the formation of nonspecific contact between the
template and probe molecules can be written as follows.
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Case I: Relaxed conformational state of c-ssDNA

kfR ’ 2prRLJR; JR ’ ðDl þ DLÞ=rR; rR ¼ rD þ rl; ;kfR ’ ktLð1=rl þ 1=rLÞ=8 ð3Þ

Case II: Condensed conformational state of c-ssDNA

kfC ’ 4pr2CJC; JC ’ ðDl þ DLÞ=rC; rC ¼ rL þ rl; ;kfC ’ ktðrL þ rlÞ2=4rLrl ð4Þ

Here kt ’ (8kBT/3η) is the Smolochowski type 3D diffusion controlled collision rate limit
(M-1s-1) associated with the bimolecular collisions between the c-ssDNA molecules. Here kB is
the Boltzmann constant, η is the viscosity of the reaction medium and T is the absolute temper-
ature in degrees K. Further the colliding molecules are assumed to be same in size with no
charge on them. In general kfQ ’ ktδQ where δR’ L(1/rl + 1/rL)/8 and δc’ (rL + rl)

2/4rLrl.
When the colliding c-ssDNA strands are same in size then δR’ L/4rL and δc’ 1. Noting that

[32–33] for a linear chain polymer rL ¼
ffiffiffiffiffiffiffiffiffiffiffi
Llp=6

q
one obtains dR ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3L=8lp

q
.

Role of Electrostatic Repulsions at the DNA-DNA Interface
While deriving Eqs 3 and 4 we have not considered the electrostatic repulsions between the
negatively charged phosphate backbones of c-ssDNA chains and shielding effects of solvent
and other ion molecules present at the DNA-DNA interface of c-ssDNA molecules. Upon con-
sidering this fact and following the detailed works of Montroll in Ref. [34] we find the expres-
sion for the modified bimolecular rate constants as follows.

kfQ ¼ ktcQdQ; cQ ’ ðk=rQÞ=ðek=rQ � 1Þ; k ¼ zSzS0e
2=mkBT; Q ¼ ðC;RÞ ð5Þ

Here κ is the Onsager radius which is defined as the distance between negatively charged
phosphate backbones of colliding c-ssDNA chains at which the electrostatic repulsive energy is
same as that of the thermal energy (~kBT), zSe and zS’e are the overall charges on the respective
c-ssDNAmolecules. Since |κ|�rQ by definition and κ> 0 in the present context, one finds that
ψQ ~ |κ|/rQ for large values of |κ| and for |κ| = rQ one obtains ψQ’ 0.58. For a typical value of
|κ|’ 10rQ we find that ψQ’ 10−4. When κ< 0 as in case of site-specific DNA-protein interac-
tions we obtain limjkj!rQ

cQ ’ 1:58. One should also note that ψQ’ 1 only when we have

|κ| = 0. While deriving Eq 5 we have not considered the shielding effects of solvent ions present
at the DNA-DNA interface over the electrostatic repulsive forces between the phosphate back-
bones of c-ssDNA strands. Upon following the Debye theory of kinetic salt effects over diffusion
controlled collision rate processes [35], one can rewrite the modified bimolecular rate constant
in the presence of other ions in the solvent as follows.

kfQ ’ ktwQdQ; wQ ¼ cQexpð2FzSzS0
ffiffiffiffi
X

p
Þ; F ’ 0:509 ð6Þ

Here X is the overall ionic strength of the aqueous medium andQ = (C, R) as defined in Eqs
3–5 depending on the type of conformational state of colliding c-ssDNA polymers.

Calculation of the Nucleation Time and Nucleation Rate
We learnt from recent computational studies [29] that the colliding c-ssDNA with nonspecific
contacts between them undergo several trials of slithering and internal displacement dynamics
before reaching the correct-contact and then nucleate the zipping process. These dynamical
processes are similar to that of the facilitating 1D diffusional dynamics as in case of site specific
DNA-protein interactions. Unlike the overall electrostatic attractive forces acting at the DNA-
protein interface, in case of DNA renaturation there is a strong electrostatic repulsive force
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acting at the interface of cn-ssDNA that will be shielded by the solvent molecules present at the
interface of cn-ssDNA strands. With this background one can model the slithering dynamics
as 1D diffusion of one c-ssDNA molecule on the other in the process of searching for the cor-
rect-contact. To find the correct-contact on one c-ssDNA the other c-ssDNA needs to try out
at least λ = L/n stretches of 1D slithering with an average size of n bases. This will ensure that
the initial nonspecific contact visits all the possible positions and subsequently the correct con-
tact is formed. The mean first passage time (τN) associated with the visit of all the possible posi-
tions of c-ssDNAs by the initial nonspecific-contact between them via 1D diffusion can be
given as tN ¼ l�tc where �tc ’ n2=12Do is the average time that is required by an unbiased 1D
random walker to visit n sites of a linear lattice [36–38] confined inside the interval x 2(0, n)
starting from anywhere inside the interval as shown in Appendix A.

Noting that the nucleation rate is given as kN = 1/τN one can obtain kN ’ 12Do/nL which
means that kN / 1/L. This is a reasonable one since the probability of finding the correct con-
tact upon each 3D diffusion mediated nonspecific collisions between c-ssDNA strands is pcc =
1/L. One should also note that the probability of finding the correct contact upon each nonspe-
cific collisions will be independent on the repetitiveness of c-ssDNA strands. Here Do is the
one dimensional diffusion coefficient associated with the dynamics of the probe c-ssDNA
strand over the template c-ssDNA strand. One should note that Do includes the contributions
from both slithering and internal displacement dynamics which occurs within a cn-ssDNA
molecule. Actually one can write down the expression for the 1D diffusion coefficient as fol-
lows.

Do ¼ Dos þ Doi; Dos ’ l2pðpf wf þ prwrÞ; Doi ’ l2dðpf ;dwf ;d þ pr;dwr;dÞ ð7Þ

Here Dos is the diffusion coefficient corresponds to slithering dynamics and Doi corresponds
to the internal displacement dynamics where pf/r are the transition probabilities associated with
the forward and reverse steps of the random walker with step size lp = 1 base and wf/r are the
corresponding transition rates. Similarly in case of internal displacement dynamics ld is the
average step size and pf/r,d are the respective forward and reverse transition probabilities and
wf/r,d are the corresponding transition rates. Here we consider the average step size since the
step size associated with the inchworm type movements in the internal displacement mecha-
nism is a random variable. For an unbiased searching via both 1D slithering and internal dis-
placements we have pf/r = pf/r,d = 1/2.

Although ld > lp, internal displacement dynamics may not be able to contribute much to the
overall searching dynamics under relaxed conformational state of the colliding c-ssDNA
strands since it requires looping and segmental motion of c-ssDNA chains. Therefore in gen-
eral we have wf/r > wf/r,d. Further one should note that slithering dynamics is a purely a local
one i.e. slithering involves the local movement of bases. This means that the transition rates
wf/r and diffusion coefficient Dos will be independent of the length of c-ssDNA. Whereas inter-
nal displacement involves the movement of bulky segments [29] of the colliding c-ssDNA
strands and therefore the corresponding transition rates wf/r,d and diffusion coefficient Doi will
be dependent on the size of c-ssDNA strands. Here we can ignore the contribution of Doi to the
overall diffusion coefficient Do only for the relaxed conformational state of c-ssDNA and we
cannot ignore it for the condensed conformational state of c-ssDNA since the contribution
from internal displacement mechanism will be the dominating one under such conditions.

Calculation of the Zipping Time
Formation of correct-contact will result in the nucleation of zipping process. Upon formation
of a nucleation site, the subsequent stochastic zipping of cc-ssDNA can be described by the
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following birth-death master equation.

@tPðu; tÞ ¼ kþPðu� 1; tÞ þ k�Pðuþ 1; tÞ � ðkþ þ k�ÞPðu; tÞ ð8Þ

Here P(u,t) = P(u,t|u0,t0) is the probability of finding the cc-ssDNA with u numbers of cor-
rect contacts at time t starting from the nucleation at t = t0 with u = u0 numbers of correct con-
tacts, k+ (s

-1) and k- (s
-1) are the respective average forward and reverse rate constants

associated with the microscopic zipping reaction. Here the initial and boundary conditions cor-
responding to Eq 8 can be written as follows.

Pðu; t0Þ ¼ Pðu; t0ju0; t0Þ ¼ dðu� u0Þ; k�Pð1; tÞ ¼ kþPð0; tÞ; Pðbþ 1; tÞ ¼ 0 ð9Þ

Here u = 1 is a reflecting boundary and u = β is the absorbing boundary. One can solve the
difference equation Eq 8 as follows. By defining equilibrium constant as KZ = (k-/k+), one can
find the following expression for the overall mean first passage time associated with complete
zipping of β correct contacts (u = β) of cc-ssDNA starting from the number of correct contacts
u = 1 as shown in Appendix B.

tZ ¼
Xb

u¼1
�ðuÞ

Xu

w¼1
ðkþ�ðwÞÞ

�1

¼ ðKbþ1
Z � KZðbþ 1Þ þ bÞ=kþð1� KZÞ2 ð10Þ

From this equation we find the limits limKZ!1tZ ’ bð1þ bÞ=2kþ and limKZ!0tZ ’ b=kþ
where β = L/lp is a dimensionless quantity which is the total number of correct-contacts
between colliding c-ssDNA upon formation of dsDNA. Here L is total length of c-ssDNA in
bases and lp = 1 base (1 base ~ 3.4x10-10 m). When the forward rate constant associated with
formation of dsDNA is much higher than the reverse rate constant then we find the expression
for the zipping rate constant as that kZ = 1/τZ ’ kp/L where we have defined kp = k+lp (bases/s).
On the other hand when k+ = k- then the zipping will be a pure 1D diffusion process with the
phenomenological diffusion coefficient as D� ’ l2pkþ(base

2/s) and subsequently τZ ’ L2/2D±.

When the reacting c-ssDNA is repetitive with a sequence complexity of c bases (here we have
c2(1, L)), then the observed zipping rate will be proportional to the number of repeats in that
template c-ssDNA strand (ρ = L/c) and one obtains limKZ!0tZ ’ c=kp i.e. the total zipping time

will be directly proportional to the complexity of the reacting c-ssDNA molecules which is in
line with the experimental observations [6–7]. Using these results one can write down the
expression for the total time that is required for the overall nucleation and zipping processes
(τNZ) to generate dsDNA as follows.

tNZ ¼ tN þ tZ; limKZ!0tZ ’ c=kp; limKZ!1tZ ’ Lc=2D�; tN ¼ ln2=12Do; l ¼ L=n ð11Þ

Here one should note that the zipping process can be thought as a random walk over a linear
lattice [36–38] with initial and boundary conditions given in Eq 9. The phenomenological dif-
fusion coefficient associated with such random walk is defined as D� ’ l2pðpþkþ þ p�k�Þ where
p± are the transition probabilities associated with the forward and reverse steps in the zipping
process. When the zipping is unbiased over forward or reverse steps with k+ = k- then p± = 1/2
and we recover the expression for D� ’ l2pkþ in the limit as KZ = 1.

Calculation of the Overall Renaturation Rate
Using the expressions for the nucleation and zipping times one can define the overall bimolecu-
lar collision rate associated with the complete formation of dsDNA from c-ssDNA in Scheme III
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of Fig 2 as follows.

�kHQ ¼
ðL

0

kHQpðnÞdn; kHQ ¼ kfQ=ð1þ krtNZÞ ’ kfQ=ð1þ nL=Y2
A þ c=YEÞ ð12Þ

Here we have defined two important characteristic lengths YA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Do=kr

p
and YE = kp/kr.

The length YA describes the distance that is travelled by the initial nonspecific contact before cn-
ssDNA dissociates whereas YE describes the distance travelled in the zipping reaction before cn-
ssDNA dissociates into corresponding c-ssDNAmolecules. Generally one observes that YA> YE.
The probability density function connected with the 1D slithering lengths n or its weighting func-
tion p(n) can be calculated as follows. When the residence times (τ) associated with the dissocia-
tion of cn-ssDNAmolecules is distributed as an exponential then one finds that pðtÞ / e�krt and

subsequently one obtains pðnÞ / ne�ðn=YAÞ2 which mainly originates from the fact that within the
residence time τ, the distance travelled by the nonspecific contact through 1D diffusion dynamics
can be anywhere in the interval n2(1, L) so that we obtain the transformation rule as τ = n2/12Do.
With this definition of the residence time of c-ssDNA strands in the cn-ssDNA configuration one
can write down the expression for the distribution of slithering lengths n as follows [Fig 4A].

pðnÞ ¼ 2ne�ðn=YAÞ2=Y2
Að1� e�ðL=YAÞ2Þ ’ 2ne�ðn=YAÞ2=Y2

A ð13Þ

Using the expression of p(n) in Eq 13 and expanding kHQ in a Maclaurin series one can
obtain the following expression for the overall renaturation rate constant.

�kHQ ’ ðkfQ=ð1þ c=YEÞÞ
X1

m¼0
Gðm=2þ 1Þð�L=YAð1þ c=YEÞÞm ð14Þ

While deriving this equation without losing generality we have extended the limits of n in
the integration towards infinity since both p(n) and kHQ approach zero at this limit. Under cer-
tain conditions one can obtain the following approximation for the series in Eq 14.

�kHQ ’ ðkfQYE=cÞ
X1

m¼0
Gðm=2þ 1Þð�rYE=YAÞm; YA � YE; ðc=YEÞ � 1 ð15Þ

Later we will show that these inequality conditions are indeed valid. When the sequence
complexity of the template c-ssDNA molecule is high enough and (pYE/YA)� 1 then one can
write down the leading zeroth order approximation (m = 0 in Eqs 14 and 15) of the overall sec-
ond order rate constant associated with the renaturation of relaxed c-ssDNA chains with equal
lengths L = l as follows.

�kHR ’ kfRYE=c ¼ kfRkp=krc ¼ ktwRkpL=4rLkrc /
ffiffiffi
L

p
=cZ; ∵ rL /

ffiffiffi
L

p
; kt / 1=Z ð16Þ

Upon substituting the expression rL ’
ffiffiffiffiffiffiffiffiffiffiffi
Llp=6

q
in Eq 16 one obtains that �kHR ’ ksm

ffiffiffiffiffiffi
Llp

q
=c

in line with the expression for the overall renaturation rate in Wetmur-Davidson model [6].
Here ksm ’ ktε is the Smolochowski type 3D diffusion controlled collision rate limit corre-

sponding to a situation L = c = 1 where we have defined ε ’ wRðkþ=krÞ
ffiffiffiffiffiffiffiffi
3=8

p
. When the condi-

tions given in Eq 15 are true then Eq 16 suggests that the overall bimolecular collision rate
associated with the renaturation reaction is directly proportional to the square-root of the
length of c-ssDNA and inversely proportional to both sequence complexity of the reacting c-
ssDNA molecules and viscosity of the reaction medium in line with the experimental observa-
tions. Experiments suggest that the scaling of renaturation rate with the length of c-ssDNA
molecules that is given in Eq 16 is valid [6] only in the range of L ~ 102−104 bases. In this con-
text our model suggest that the square root scaling of the renaturation rate on length of reacting
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Fig 4. Cooperative effects on DNA renaturation. A. Probability density function associated with the one dimensional slithering length (nmeasured in
bases) of cn-ssDNA in the process of searching for the correct-contact as given in Eq 13 for different values of the characteristic length YA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12Do=kr
p

ranging from 10 to 100 bases where Do (base
2s-1) is the one dimensional diffusion coefficient associated with the slithering dynamics and kr is the

dissociation rate constant connected with cn-ssDNA. B. Zipping time (τZ, measured in seconds) in the presence of cooperative effects. Here sequence
complexity (c) is same as that of the length (L) of c-ssDNA i.e. c = L. The number of correct-contacts β = L/lp is a dimensionless quantity where lp = 1 base
and L is the length of the reacting c-ssDNA. Green solid line is calculation from Eq 18 and blue solid line is calculation from Eq C9 of Appendix C. Here we
have set KZ ~ 10−6 and k+ ~ 1 s-1. Red solid line is the derivative of zipping time with respect to β as in Eq 21 which shows that the value of the derivative of
overall zipping time with respect to β is < 10−2 when β > 102. These plots suggest that when KZ tends towards zero, the overall zipping time of a non-repetitive
and long c-ssDNA will be independent of the length of the reacting c-ssDNAmolecules. Zipping time of a repetitive c-ssDNA with a sequence complexity of c
bases increases linearly with c. C. Variation of the overall renaturation rate kHR with respect to length and complexity of c-ssDNA under relaxed
conformational state. Here settings are kfR ’ 6� 105

ffiffiffi
L

p
M-1s-1, YA = 100 bases, YE = 1 bases and n = 10 bases.D. Variation of the overall renaturation rate

kHR as in Eq 12 with respect to the length of reacting c-ssDNA strands L and 1D slithering distance n under relaxed conformational state. Here settings are
kfR ’ 6� 105

ffiffiffi
L

p
M-1s-1, YA = 100 bases, YE = 1 bases and c = 10 bases. In bothC andD, kHR shows a maximum at L = Lopt. Here Lopt can be obtained by

solving @LkHR = 0 for L. Explicitly one finds that Lopt ’ Y 2
Aðcþ YEÞ=nYE . The dotted line in (C) is kHR ’ 6� 105

ffiffiffi
L

p
=ð1þ c=YEÞ which breaks down beyond Lopt.

doi:10.1371/journal.pone.0153172.g004
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c-ssDNA strands will be valid only when the inequalities given in Eq 15 are true apart from the
condition that (pYE/YA)� 1 which may break down beyond certain values of the copy number
(ρ) in the repetitive c-ssDNA.

Role of Cooperativity in Renaturation Kinetics
Scaling results given by Eq 16 works only for highly repetitive and relaxed conformational state
of c-ssDNA (L> c) and it will break down at L = c since at this point the scaling becomes as
�kHR / 1=

ffiffiffi
L

p
which is not true. The main reason for this observation is that while calculating

the zipping rate constant we have not considered the underlying cooperative effects over the
zipping process. When c-ssDNA is highly repetitive then the zipping process can take place in
parallel for all the ρ = (L/c) number of short repetitive motifs. Under such conditions the coop-
erative effects will not be noticeable since the enhancement of renaturation process by the par-
allel-zipping will dominate over the underlying cooperative effects. This means that Eq 16 will
be true only for repetitive c-ssDNA.

When the reacting c-ssDNA molecules are non-repetitive and long enough then the proba-
bility of formation of an additional correct-contact in the cc-ssDNA molecule that is undergo-
ing zipping reaction will be directly proportional to the existing number of correct-contacts (u)
and the probability of breakdown of an existing correct-contact will be directly proportional to
the number of overhanging single stranded stretches of cc-ssDNA (β-u). This is true since the
existing correct-contacts always stabilize newly formed correct-contacts and overhang single
stranded regions of cc-ssDNA always try to destabilize the newly formed correct-contacts.
Here one should note that we are dealing with the cooperative effects at a mesoscopic level
within an independent and single renaturing cc-ssDNA molecule rather than at macroscopic
level where the descriptive parameter of the renaturation process will be the number of mol-
bases in c-ssDNA (nSS) or dsDNA (nDS) form rather than the number of correct-contacts in cc-
ssDNA (u) as in the current context.

At macroscopic level the rate of change in the number of mol-bases in ssDNA form in the
process of zipping will be directly proportional to the number of mol-bases in ssDNA form as
well as number of mol-bases in dsDNA form which results in a cooperative sigmoidal type
time evolution of the renaturation process [16–17, 28] where the macroscopic kinetic rate
equation will be written as dnDS/dt/ ncc(n0−nDS)nDS. Here n0 is the initial concentration of
mol-bases of c-ssDNAmolecules in the system and ncc is the total number of cc-ssDNA mole-
cules in the system. With this background the birth-death master Eq 8 can be rewritten to
include the cooperative effects for renaturation of a single cc-ssDNA molecule as follows.

@tPðu; tÞ ¼ kþðu� 1ÞPðu� 1; tÞ þ k�ðb� u� 1ÞPðuþ 1; tÞ � ðkþuþ k�ðb� uÞÞPðu; tÞ ð17Þ

Upon solving the backward type equation corresponding to this differential difference equa-
tion for appropriate boundary conditions as shown in Eq 9 and Appendix C one obtains the
following expression for the overall zipping time that is required for the formation of u = β
numbers of correct-contacts starting from u = 1 in the presence of cooperative effects.

tZ ¼
Xb

u¼1
Ku

Zðx2F1ð½1; 1�; ½2� b�;�K�1
Z Þ þ �2F1ð½1; uþ 1�; ½uþ 2� b�;�K�1

Z ÞÞ ð18Þ

Here 2F1 is the hypergeometric function and we have defined various parameters as follows.

x ¼ ð�1ÞuGðuþ 1� bÞ=k�Gðuþ 1ÞGð1� bÞðb� 1Þ;
�¼Gðuþ 1� bÞ=Kuþ1

Z kþGðuþ 2� bÞ ð19Þ
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The hypergeometric function of type 2F1 is defined as follows.

2F1ð½a; b�; g;wÞ ¼
X1

m¼0
wmðaÞmðbÞm=m!ðgÞm; ðhÞq ¼ Gðhþ qÞ=GðhÞ ð20Þ

One can simplify the complicated expression given by Eq 18 using Fokker-Planck equation
especially for large values of β as shown in Appendix C. Upon defining limKZ!0tZ ¼ ~tZ one
can derive the following approximate expression for the overall zipping time.

~tZ ¼ ð2=kþÞ
ðb

1

e�2yðEið1;�2Þ � Eið1;�2yÞÞdy; Eiða; zÞ ¼
ð1

1

e�mzm�adm ð21Þ

It seems from Eq 21 along with other computational analysis that the dependency of overall
zipping time decreases with increasing β in the presence of cooperative effects which can be
demonstrated by the following limiting conditions.

@~tZ=@b ’ 2e�2bðEið1;�2Þ � Eið1;�2bÞÞ=kþ; limb!1@~tZ=@b ¼ 0 ð22Þ

From Eqs 17–22 one finds that when KZ tends towards zero then in the presence of strong
cooperative effects the zipping time of a non-repetitive cc-ssDNA will be independent of the
length of the reacting c-ssDNA molecules especially for large values of L as shown in Fig 4B.
Based on these observations we recover the observed scaling of the overall bimolecular rate

constant on the length of the colliding c-ssDNA molecules as �kHR /
ffiffiffi
L

p
=Z for the renaturation

of the non-repetitive c-ssDNA strands for which L = c in Eqs 15 and 16 since YE will be inde-
pendent of sequence length and the number of copies will be ρ = 1.

Discussion

Two-Step DNA Renaturation Model of Wetmur and Davidson
Understanding the mechanism of renaturation of c-ssDNA is one of the central topics in molec-
ular biology and biological physics. Wetmur and Davidson [6] developed their model by assum-
ing that the renaturation rate is directly proportional to the total phosphate concentration
which is in turn directly proportional to the total number of mol-bases in ssDNA or dsDNA
form. According to their model the overall second order rate (k2) associated with the renatur-
ation of repetitive c-ssDNA can be written as k2/ kNp where ρ = L/c is the copy number of
repetitive motifs in the entire c-ssDNA polymer. Here L is the length of c-ssDNA and c is the
sequence complexity and the nucleation rate was assumed to scale with L as L-α where α = 1/2
due to the excluded volume effects associated with the interpenetration of c-ssDNAmolecules

that is essential for the nucleation reaction. As a result one obtains the scaling as k2 /
ffiffiffi
L

p
=c

where the proportionality constant was assumed to be the Smolochowski type bimolecular colli-

sion rate limit (ksm) i.e.k2 ¼ ksm
ffiffiffiffiffiffi
Llp

q
=c.

InWetmur-Davidson model it was assumed that ksm = kt. Here one can identify that k2 ¼ �kHR

and ksm = (kt ε) of our model Eq 16 particularly for a relaxed conformational state of c-ssDNA
that also includes the contributions from the electrostatic repulsions at the interface of colliding
c-ssDNAmolecules. Since in this model the nucleation is combined with nonspecific-contact for-
mation step one finds that the nucleation rate is inversely proportional to the square root of the
length of c-ssDNA strands. The main arguments for this scaling result put forth byWetmur and
Davidson were viz. (a) the radius of gyration of c-ssDNA is directly proportional to its length and
(b) the reaction radius associated with the collision between c-ssDNAmolecules is independent
of the radius of gyration of c-ssDNA chains since both these strands can interpenetrate freely
upon their collision. Though the assumption (a) is a right one for Gaussian chain polymers there
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are several questions associated with the assumption (b) since the reaction radius always depends
on the sum of the radii of gyration of reactant molecules. In this context our detailed model clari-
fies the origin of such scaling in the renaturation phenomenon. It is clear from our theory that the
rate constant associated with the formation of initial nonspecific-contact is directly proportional
to the square-root of the length of the reacting c-ssDNAmolecules.

One should note that it is very difficult to identify and isolate nucleated cc-ssDNA mole-
cules since they are indistinguishable from the zipping cc-ssDNA molecules. Therefore it is
more appropriate to combine the nucleation step with the zipping step rather than with the
nonspecific-contact formation step as in case of Wetmur-Davidson model. Other issues in
their model are such as the breakdown of scaling at L = c arises because the underlying cooper-
ative effects in the long and non-repetitive c-ssDNA were not considered in their model as in
case of our Eq 16. Further upon extrapolating towards the limit L = 1 base (so that the sequence
complexity becomes as c = 1 base) Wetmur-Davidson model predicted that k2 = kt. However
experimental observations suggested that the extrapolated bimolecular collision rate constant
associated with the renaturation reaction at L = c = 1 was ~103 times lower than the Smolo-
chowski type diffusion controlled bimolecular collision rate limit (kt). On this basis they in
turn discarded the possibility of diffusion control in the kinetics of renaturation of c-ssDNA
molecules.

In this context Eq 16 of our model suggests an approximate expression for the extrapolation

intercept as ksm’ ktε from which we can deduce that ε ’ wRðkþ=krÞ
ffiffiffiffiffiffiffiffi
3=8

p ’ 10�3. One should
note that scheme I of Fig 1 is still valid with zero nucleation and zipping times and the steric
factor εmainly accounts for the geometric constraints associated with the bond formation
between nitrogen bases A-T or G-C of the colliding single nucleotides in the limit L = 1 and
c = 1 apart from the electrostatic repulsions due to the negatively charged phosphate groups.
Here one should note that in our model the square-root dependency of renaturation rate on
the length of c-ssDNA molecules mainly originates from the fact that the radius of gyration of
c-ssDNA molecules scales with length as rL / Lα where α = ½ which is valid only for a Gauss-
ian type polymers in a theta solvent. It seems that the error introduced by this assumption in
the exponent is within the experimental error range [6].

Temperature Dependency of DNA Renaturation Rate
Although the dissociation rate (here it is kr) constant increases exponentially with temperature
[39–42] there are several controversies exist on the dependency of renaturation rate constant
on increasing temperature. Some experimental studies established [39–40] a decrease in the
renaturation rate constant with increase in temperature and some other studies have shown an
increase in the renaturation rate constant with increase in temperature [8, 41]. In general it
seems that the temperature dependency of the renaturation rate constant is of non-Arrhenius
one and non-monotonic type [42]. Simulation studies suggested that there exists an optimum
temperature at which the renaturation rate constant is a maximum [29]. In our model the non-
specific-contact formation, nucleation and zipping steps are all influenced by the rise in tem-
perature in a complicated way.

Actually in Eq 16, the Smolochowski type bimolecular collision rate constant depends on
temperature as kt = (8kBT/3η) where we assume that viscosity of the medium is not changing
much in the range of temperature variation and the dissociation rate scales with temperature as
kr ¼ k0r expð�o=kBTÞ in line with transition state theory where ω is the free energy barrier asso-
ciated with the dissociation of cn-ssDNA complex. The rate constant associated with the micro-
scopic zipping (kp ~ lpk+) is connected with the microscopic diffusion coefficient D± ~ lp

2k+
associated with the zipping reaction. Apart from these the dimensionless parameter χR
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corresponding to the overall electrostatic repulsions and the shielding effects of solvent ions at
the interface of cn-ssDNAmolecules also depends on the temperature as given in Eqs 5 and 6. It
seems that the non-Arrhenius type kinetic behaviour arises as a consequence of a complicated
interplay between increase in the rate of nonspecific-contact formation and combined effects of
increase in the dissociation rate constant and microscopic zipping rate constant as the tempera-

ture increases from low to high values. Since �kHR / kBTexpðo=kBTÞ one finds that ln�kHR will be
a maximum approximately at T ~ ω/kB as observed in the simulation studies [29].

Comparison with Experimental Data on DNA Renaturation
Under relaxed conformational state, the 3D diffusion mediated nonspecific contact formation

rate scales with the size of c-ssDNA strands as kfR ’ ktwR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3L=8lp

q
. Since the negatively charged

phosphate backbones of c-ssDNA repel each other the Onsager radius (κ) associated with the
collision of c-ssDNA strands will be much higher than the reaction radius (rR) under relaxed
conformational state. When κ ~ 10rR then one obtains χR~10

−3. Noting that kt~10
9 M-1s-1 and

lp ~ 1base one finds that kfR ’ 6� 105
ffiffiffi
L

p
M-1s-1. In the calculation of kt we have used

T = 298K and viscosity coefficient η ~10−1 kgm-1s-1 for aqueous conditions. Single molecule
experiments on DNA polymer in aqueous solution suggested [43–44] a 3D diffusion coefficient

as DL ’ Do
LðL=lpÞ�a where Do

L ’ 1:4� 1010 base2s-1 and α ~ 0.59–0.71 depending on the condi-

tion of the aqueous medium. Furthermore the 3D diffusion coefficient seems to be several
orders of magnitude less under crowded cytoplasmic environment [43]. Therefore the 1D dif-
fusion coefficient associated with the slithering dynamics will be 10−102 times slower than the
3D one since the local dynamics of individual bases which are involved in the slithering
dynamics will be significantly restricted by the adjacent bases apart from the reduced degrees
of freedom. In this background one can approximate the 1D diffusion coefficient as Do ’ 109

base2s-1 under relaxed conformational state of c-ssDNA strands. Using this one can arrive at
an empirical expression for the nucleation rate as kN ’ (109/nL).

From experimental studies [41] one finds the zipping rate as kp ~ 106 bases/s which means
that k+ ~ 106 s-1. Using these values one obtains the zipping rate as kZ’ (106/c) s-1. Noting from

experimental observations that ε ’ wRðkþ=krÞ
ffiffiffiffiffiffiffiffi
3=8

p
~10−3 and using the values of k+ and χR

one can obtain the value of the dissociation rate as kr~10
6 s-1. Using the numerical values of (Do,

kp and kr) one finds that YA ~ 102 bases and YE ~ 1 bases. Computational studies on the renatur-
ation of short fragments of c-ssDNA strands suggested [29] the most probable value for the 1D
slithering length as n ~ (4–10) bases. For the purpose of calculations we use n = 10 bases. From
Eq 12 one finds that the overall renaturation rate kHR will be a maximum at L = Lopt where
Lopt ’ Y2

Aðcþ YEÞ=nYE(Fig 4C and 4D). This can be obtained by solving @LkHR = 0 for L. Here

kHR scales with L as kHR /
ffiffiffi
L

p
whenever L<Lopt since the nonspecific contact formation step

will be the dominating component under such conditions. When L> Lopt then the scaling with

L becomes as kHR / 1=
ffiffiffi
L

p
since the nucleation and zipping steps will be the bottlenecks under

such conditions. Upon substituting L = Lopt into kHR one can obtain the maximum achievable

bimolecular renaturation rate as maxðkHRÞ ’ ktwRYA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=32nlpð1þ c=YEÞ

q
for the renaturation

of repetitive c-ssDNA strands. When the sequence complexity c is much higher than the charac-

teristic length YE then one can deduce that maxðkHRÞ / YA

ffiffiffiffiffiffiffiffiffiffiffiffi
YE=nc

p
and the maximum achiev-

able renaturation rate seems to be maxðkHRÞ ’ 3� 107=
ffiffiffiffiffi
nc

p
M-1s-1. Upon substituting the

numerical values of YA and YE into the expression for Lopt one obtains Lopt ~ 104c/n. For a
sequence of c-ssDNA strands with a complexity of c ~ n one finds that Lopt ~ 104 bases. From
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Eq 12 we find that the square root scaling of the renaturation rate on L will be valid only up to
~104 bases in line with the experimental observations [6, 27].

Upon substituting the numerical values of (YA, YE and kfR) into the expression for the rena-

turation rate kHR one finds that kHR ’ 6� 105
ffiffiffi
L

p
=ð1þ 10�4nLþ cÞ. Interestingly one

should note that this functional form will behave as kHR ’ 6� 105
ffiffiffi
L

p
=ð1þ cÞ whenever

L < ðY2
Ac=nYEÞ. When L< Lopt and c> 1 then one obtains that kHR ’ 6� 105

ffiffiffi
L

p
=c. Remark-

ably this expression for the renaturation rate kHR is much close to the experimentally obtained

fitting function of Wetmur-Davidson for the overall bimolecular renaturation rate as k2 ’
3:5� 105

ffiffiffi
L

p
=c for the experimentally measured range of L from 102 to 104 bases (Eq. 20 in

Ref. [6]). It is still not clear [27] whether this scaling relationship will be valid beyond this
range of L or not. In this context our theory based on Scheme III predicts that the square root
scaling of the overall renaturation rate on the length of c-ssDNA will break down beyond Lopt.
When the inequality conditions given in Eq 15 are not true then one can also show that the

average renaturation rate �kHR will be a maximum at L ¼ �Lopt where �Lopt is the solution of

@L
�kHR ¼ 0 for L as follows.

@L
�kHR ¼

ðL

0

ððn� 2Lðn=YAÞ2Þe�ðn=YAÞ2=gnÞdnþ 2L2e�ðL=YAÞ2=gL ¼ 0; gb ¼ ð1þ bL=Y2
A þ c=YEÞ

Here the subscript b in gb can take (n, L). Detailed analysis suggests an approximation as

�Lopt ’ Y2
Aðcþ YEÞ=�nYE where �n ’

ð1

0

npðnÞdn ’ ffiffiffi
p

p
YA=2. Clearly we find that �Lopt < Lopt .

This is because the probability density function associated with the 1D slithering lengths as
defined in Eq 13 will be valid only when the sequence complexity c is much higher than the
maximum possible 1D slithering length YA. When c< YA then the slithering dynamics associ-
ated with a nonspecific contact present in between the cn-ssDNA strands can progress only for
c number of steps. Beyond this point either dissociation of cn-ssDNA strands or relocation of
the nonspecific contact to some other position of cn-ssDNA is necessary. Therefore under such
conditions one can replace the probability density with a delta function as p(n)’ δ(n−c). This
means that we need to substitute as �n 	 c in our calculations whenever c< YA and one obtains
�Lopt ’ Y2

A=YE 	 104 in the present context.

Justifications for the Three-Step Model
In Scheme III the nucleation rate is inversely proportional to the length and zipping rate in
inversely proportional to the complexity of the c-ssDNA strands. Therefore it is reasonable to
cluster both nucleation and zipping steps together and assume that they are the rate limiting
ones compared to the nonspecific contact formation step. Unlike the rate of nucleation and
zipping the nonspecific contact formation rate increases with the length of c-ssDNA in a square
root manner. We substantiate the three steps of renaturation by the following reasons viz. (a)
the underlying microscopic processes are clearly dissimilar in cases of nonspecific contact for-
mation, nucleation and zipping. Here nonspecific contact formation is a pure 3D diffusion
mediated collision process. Whereas nucleation involves a combination of 1D and 3D diffu-
sion. The zipping step is pure 1D diffusion like process which progresses from a stable nucleus,
and (b) the scaling relationships associated with the corresponding rates on the length of react-
ing c-ssDNA and sequence complexity are different from each other. Clearly nonspecific con-
tact formation, nucleation and zipping are all phenomenologically distinct processes which
substantiate our three-step model. Since the nucleation and zipping and parts of a continuous
process and a nucleated cc-ssDNA molecule is indistinguishable from the zipping one we have
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combined the nucleation step with the zipping step for the purpose of computing the rate asso-
ciated with the overall nucleation-zipping. Here one should note that cn-ssDNA which is the
product of nonspecific contact formation step is distinct from nucleated/zipping cc-ssDNA
molecule.

Comparison with Earlier Diffusion Based Models
Since 3D diffusion based models predict the scaling of overall renaturation rate on the length
and sequence complexity of c-ssDNA strands as kHR/ L/c one can rule out the possibility of
Scheme I. Two step models as in Scheme II correctly predict the scaling of renaturation rate on
the length and complexity of the reacting c-ssDNA strands. However models based on Scheme
II such as theWetmur-Davidson model [6] fail when L = c apart from their inability to explain
the discrepancy in the intercept value of the bimolecular renaturation rate at L = c = 1. Models
based on transition rate theory cannot explain the inverse viscosity dependence of the overall
renaturation rate.

Sikorav et.al [27] suggested a Kramer’s type expression for the bimolecular nucleation rate
constant where the scaling dependency of the overall bimolecular collision rate associated with
renaturation on the length of c-ssDNA mainly originates from the entropic component of free
energy barrier. However in this model the reaction coordinate and origin of free energy barrier
associated with the nucleation and zipping are not clearly defined. Further the exact mecha-
nism of formation of nucleation sites is not clearly explained. On the other hand as correctly
pointed out by them, one cannot explain all the experimental observations related to the entire
process of renaturation of c-ssDNA molecules with purely diffusion-controlled formalism or
transition state theoretical framework. From our model we can conclude that the nonspecific
contact formation step is a pure three dimensional diffusion controlled collision rate processes
whereas both nucleation and zipping steps involve a sequence of several microscopic crossings
of free-energy barriers as well as one dimensional diffusion type slithering dynamics on a linear
lattice.

Effects of Conformational State of DNA on the Renaturation Rate
Condensed conformational state of c-ssDNA polymers is one more cause for the breakdown of
the scaling of renaturation rate on the length of c-ssDNA that is given in Eq 16. When the col-
liding c-ssDNA molecules are in condensed conformational state then the rate constant associ-
ated with the nonspecific-contact formation step will be independent of the length of c-ssDNA
when L = l. Under such conditions the overall second order rate constant associated with the
renaturation of repetitive c-ssDNA chains will be inversely proportional to the sequence com-
plexity. Here one should note that while deducing these facts we have not considered the
condensation of both c-ssDNAmolecules together which is known to enhance the overall rena-
turation rate over several orders of magnitude as in case of renaturation in the phenol-water
interface [45]. Under such co-condensation of both strands of c-ssDNA the rate of nonspe-
cific-contact formation is very large and the dissociation rate will be very small and the rate
limiting steps are the nucleation and zipping ones.

Conclusions
Renaturation (or hybridization) of complementary single strands of DNA is an important phe-
nomenon in molecular biology and biological physics. Understanding the kinetic mechanism
of renaturation is very much useful to further understand the winding-unwinding dynamics of
double stranded DNA under both in vitro and in vivo conditions. Here we have developed a
stochastic dynamics based model on the DNA renaturation phenomenon to explain various
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scaling behaviours of renaturation rate. According to our model there are at least three steps in
the renaturation process viz. nonspecific-contact formation, stochastic nucleation and zipping.
Most of the earlier two-state models combined nucleation with nonspecific-contact formation
step. We argue that it is considerably meaningful when we combine the nucleation with the
zipping since nucleation is the initial step of zipping. Nonspecific-contact formation step is a
pure three-dimensional diffusion controlled collision process. On the other hand nucleation
involves several rounds of one-dimensional slithering dynamics of one single strand of DNA
on the other complementary strand in the process of searching for the correct-contact and ini-
tiate nucleation. Upon nucleation, the stochastic zipping follows to generate a fully renatured
double stranded DNA.

It seems that the square-root dependency of the overall renaturation rate constant on the
length of reacting single strands originates mainly from the geometric constraints in the diffu-
sion controlled nonspecific-contact formation step. On the other hand the inverse scaling of
the renaturation rate with the sequence complexity originates from the stochastic zipping
which involves several rounds of crossing of free-energy barrier at microscopic level. When the
sequence of renaturing single strands of DNA is repetitive with less complexity then the coop-
erative effects will not be noticeable since the parallel zipping will be a dominating enhance-
ment factor. However for DNA strand with high sequence complexity and length one needs to
consider the cooperative effects both at microscopic and macroscopic levels to explain various
scaling and kinetic behaviours of the overall renaturation rate.

Appendix

A. Nucleation via 1D Diffusion over Linear Lattice
The searching of the non-specifically bound cn-ssDNA strands for the correct-contacts on
each other can be modelled as 1D random walk on a linear lattice. The stochastic differential
equation associated with such an unbiased random walk on a linear lattice can be written as fol-
lows [36–38].

dx=dt ¼ ffiffiffiffiffiffiffiffi
2Do

p
Gt; x 2 ð0; nÞ; hGti ¼ 0; hGtGt0 i ¼ dðt � t0Þ ðA1Þ

Here x is the position of the random walker on the linear lattice, Do is the one dimensional
diffusion coefficient associated with the dynamics of the random walker, Γt is the Gaussian
white noise with mean and variance as given in Eq A1. The probability density function associ-
ated with the dynamics of such random walker obeys the following forward Fokker-Planck
equation (FPE) with initial condition.

@pðx; tjx0; t0Þ=@t ¼ Do@
2pðx; tjx0; t0Þ=@x2; pðx; t0jx0; t0Þ ¼ dðx � x0Þ ðA2Þ

The boundary conditions associated with Eq A2 are p(0,t|x0,t0) = p(n,t|x0,t0) = 0. Here
p(x,t|x0,0) is the probability of observing the random walker at position x at time t with the con-
dition that the random walker was at position x0 at t = t0. Settings t0 = 0, the general solution to
Eq A2 for the appropriate initial and boundary conditions can be obtained by the method of
Eigen function expansion using biorthogonal set as follows [36–38].

pðx; tjx0; 0Þ ¼ ð2=nÞ
X1

k¼0
expð�k2p2Dot=n

2Þsinðkpx0=nÞsinðkpx=nÞ ðA3Þ

The mean first passage time (MFPT) associated with the escape of a random walker obeying
Eq A3 from the interval x 2(0, n) starting from an arbitrary lattice point x inside the interval
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obeys the following backward type Fokker-Planck equation.

Doðd2tx=dx
2Þ ¼ �1; t0 ¼ tn ¼ 0; tx ¼ ðn2 � x2Þ=2Do; �tc ¼ ð1=nÞ

ðn

0

txdx ’ n2=12Do ðA4Þ

Since the random walker can enter initially anywhere in interval x 2(0, n) of linear lattice
with equal probabilities one needs to average the computed MFPT τx over all the values of ini-
tial positions x. As in Eq A4 we find the initial position averaged value as �tc ’ n2=12Do. This is
approximately the time that is required by a random walker to visit all the sites of a linear lat-
tice confined inside the interval x 2(0, n) starting from anywhere inside the interval. This is evi-
dent from the following arguments. When we introduce reflecting boundaries at x = 0 as well
as x = n then [@xp(x,t|x0,0)]x = 0 = [@xp(n,t|x0,0)]x = n = 0 are the corresponding boundary con-
ditions. The probability density function associated with the dynamics of such a random
walker confined inside those reflecting boundaries can be given as follows.

pðx; tjx0; 0Þ ¼ 1=nþ ð2=nÞ
X1

k¼1
expð�k2p2Dot=n

2Þcosðkpx0=nÞcosðkpx=nÞ ðA5Þ

From this equation one can conclude that p(x,t|x0,0)’ 1/n whenever t� (n2/π2Do) which is
close to the initial position averaged mean first passage time �tc. In other words in the presence
of reflecting boundaries at both the ends of the linear lattice, the probability of observing the
random walker anywhere within those boundaries will be equal when t > �tc.

B. Zipping of Repetitive c-ssDNA Sequences
The zipping of cc-ssDNA strands will also be a stochastic process which can be described by
the following birth-death master equation.

@tPðu; tÞ ¼ kþPðu� 1; tÞ þ k�Pðuþ 1; tÞ � ðkþ þ k�ÞPðu; tÞ ðB1Þ

Here P(u, t) = P(u,t|u0,t0) is the probability of finding the cc-ssDNA with u numbers of cor-
rect contacts at time t starting from the nucleation at t = t0 with u = u0, k+ (s

-1) and k- (s
-1) are

the respective average forward and reverse rate constants associated with the microscopic zip-
ping reaction. Here the initial and boundary conditions corresponding to Eq B1 can be written
as follows.

Pðu; t0Þ ¼ Pðu; t0ju0; t0Þ ¼ dðu� u0Þ; k�Pð1; tÞ ¼ kþPð0; tÞ; Pðbþ 1; tÞ ¼ 0 ðB2Þ

The mean first passage time associated with the complete zipping of cc-ssDNA strands
obeys the following backward type master equation with similar boundary conditions.

kþUðuÞ � k�Uðu� 1Þ ¼ �1; UðuÞ ¼ tðuþ 1Þ � tðuÞ; tðbþ 1Þ ¼ 0; tð�1Þ ¼ tð0Þ ðB3Þ

Here u = 1 is a reflecting boundary and u = β is the absorbing boundary. One can solve the
difference equation Eq B2 as follows. By defining equilibrium constant as KZ = (k−/k+), Eq B2
can be rewritten in the following form.

kþu�ðuÞ½OðuÞ � Oðu� 1Þ� ¼ �1; �ðuÞ ¼
Yu

w¼2
KZ; OðuÞ ¼ UðuÞ=�ðuÞ ðB4Þ

Upon solving [36–38] this difference equation for the boundary conditions given in Eq B3
we find the following expression for the overall mean first passage time associated with com-
plete zipping of β correct contacts (u = β) of cc-ssDNA starting from the number of correct
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contacts u = 1.

tZ ¼
Xb

u¼1
�ðuÞ

Xu

w¼1
ðkþ�ðwÞÞ

�1

¼ ðKbþ1
Z � KZðbþ 1Þ þ bÞ=kþð1� KZÞ2 ðB5Þ

C. Cooperative Effects on Non-Repetitive c-ssDNA Sequences
In the presence of cooperative effects the probability of formation of an additional correct con-
tact in cc-ssDNA will be directly proportional to the already exiting number of correct contacts.
Similarly the probability associated with the breaking of a correct contact will be directly pro-
portional to the already exiting single stranded overhangs of cc-ssDNA. In the background the
birth-death master equation described by Eq B1 can be rewritten to include the cooperative
effects for the renaturation of a nonrepetitive single cc-ssDNA as follows.

@tPðu; tÞ ¼ kþðu� 1ÞPðu� 1; tÞ þ k�ðb� u� 1ÞPðuþ 1; tÞ � ðkþuþ k�ðb� uÞÞPðu; tÞ ðC1Þ

The mean first passage time τ(u) associated with evolution of the system from correct-con-
tact u = 1 to complete dsDNA form with correct-contacts u = β can be written as follows where
U(u) and other boundary conditions are defined as in Eq B3.

kþuUðuÞ � k�ðb� uÞUðu� 1Þ ¼ �1; kþu�ðuÞ½OðuÞ � Oðu� 1Þ� ¼ �1 ðC2Þ

Here O(u) = U(u)/ϕ(u) and the function ϕ(u) is defined as follows.

�ðuÞ ¼
Yu

w¼1
KZðb� wÞ=w ¼ ð�KZÞuGðuþ 1� bÞ=Gðuþ 1ÞGð1� bÞ; KZ ¼ k�=kþ ðC3Þ

Upon solving the difference equation Eq C2 for appropriate boundary conditions one
obtains the following expression for the overall zipping time that is required for the formation
of u = β numbers of correct-contacts starting from u = 1 in the presence of cooperative effects.

tZ ¼
Xb

u¼1
Ku

Zðx2F1ð½1; 1�; ½2� b�;�K�1
Z Þ þ �2F1ð½1; uþ 1�; ½uþ 2� b�;�K�1

Z ÞÞ ðC4Þ

Here 2F1 is the hypergeometric function and we have defined various parameters as follows.

x ¼ ð�1ÞuGðuþ 1� bÞ=k�Gðuþ 1ÞGð1� bÞðb� 1Þ;
�¼Gðuþ 1� bÞ=Kuþ1

Z kþGðuþ 2� bÞ ðC5Þ

The hypergeometric function of type 2F1 is defined as follows.

2F1ð½a; b�; g; zÞ ¼
X1

m¼0
zmðaÞmðbÞm=m!ðgÞm; ðhÞq ¼ Gðhþ qÞ=GðhÞ ðC6Þ

To simplify the complicated expression for τZ in Eq C3 particularly for sufficiently large val-
ues of β one can approximate Eq C3 by the following continuous type Fokker-Planck equation
(FPE) [36–38].

@tPðu; tÞ ¼ �@uðAðuÞPðu; tÞÞ þ @2
uðBðuÞPðu; tÞÞ=2 ðC7Þ

Here the drift and diffusion coefficients can be written as follows.

AðuÞ ¼ kþu� k�ðb� uÞ; BðuÞ ¼ kþuþ k�ðb� uÞ ðC8Þ

Eqs C7 and C8 suggest that in the presence of cooperative effects the phenomenological dif-
fusion coefficient associated with the zipping dynamics (D±) will be dependent on the number
of correct-contacts. Using the backward type FPE corresponding to Eq C7 one can obtain the
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mean first passage time associated with the evolution of the system starting from u = 1 to u = β
as follows.

tZ ’ ð2=kþÞ
ðb

1

ðΗðyÞ=FðyÞÞdy;ΗðyÞ ¼
ðy

1

ðFðwÞ=ðwþ KZðb� wÞÞÞdw ðC9Þ

In this equation various functions and parameters are defined as follows.

FðqÞ ¼ expð2
ðq

1

pðwÞdwÞ; pðwÞ ¼ AðwÞ=BðwÞ ¼ ðw� KZðb� wÞÞ=ðwþ KZðb� wÞÞ ðC10Þ

Computational analysis of Eqs C7 and C9 suggests that in the limit as KZ tends towards
zero, the overall zipping time τZ approximately scales with β as 1-e-2β. Upon defining the limit
as limKZ!0tZ ¼ ~tZ one can derive the following expression for the overall zipping time.

~tZ ¼ ð2=kþÞ
ðb

1

e�2yðEið1;�2Þ � Eið1;�2yÞÞdy; Eiða; zÞ ¼
ð1

1

e�mzm�adm ðC11Þ

This equation suggests that for a sufficiently large value of β, in the presence of cooperative
effects the overall zipping time will be almost independent of β since limb!1@b~tZ ¼ 0.
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