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Abstract

We develop a detailed theoretical framework for various types of transcription factor gene oscillators. We further
demonstrate that one can build genetic-oscillators which are tunable and robust against perturbations in the critical control
parameters by coupling two or more independent Goodwin-Griffith oscillators through either -OR- or -AND- type logic.
Most of the coupled oscillators constructed in the literature so far seem to be of -OR- type. When there are transient
perturbations in one of the -OR- type coupled-oscillators, then the overall period of the system remains constant (period-
buffering) whereas in case of -AND- type coupling the overall period of the system moves towards the perturbed oscillator.
Though there is a period-buffering, the amplitudes of oscillators coupled through -OR- type logic are more sensitive to
perturbations in the parameters associated with the promoter state dynamics than -AND- type. Further analysis shows that
the period of -AND- type coupled dual-feedback oscillators can be tuned without conceding on the amplitudes. Using these
results we derive the basic design principles governing the robust and tunable synthetic gene oscillators without
compromising on their amplitudes.
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Introduction

Transcription factors (TFs) regulate the quantitative levels of

several proteins inside a living cell [1–4]. TF networks present

across various organisms ranging from prokaryotes to higher

eukaryotes and consist of fundamental building blocks such as

autoregulatory loops, cascades and single input modules, feed-

forward and feedback loops, dense overlapping regulons and

oscillatory loops [5–7]. Feedback loops act as bistable switches and

feedforward loops have been shown to act as efficient filters for

transient external signals [8], [10–12]. Positive self-regulatory

loops seem to play important roles in the maintenance of cellular

memory [3] and subsequent reprogramming of the cellular states

whereas negative auto regulatory loops have been shown [11] to

speed up the response times against an external stimulus [8–10],

[12]. Oscillatory loops drive the developmental as well as mitotic

cell-cycle dynamics [13] and circadian-rhythms [14], [15]

associated with the intracellular concentration of various types of

proteins, metabolites and other cell-signaling molecules. Under-

standing of the detailed dynamics of oscillatory loops associated

with the TF networks is a central topic in biophysics, synthetic and

systems biology.

The minimalist TF network model that can generate self-

sustained oscillations is the well-known Goodwin-Griffith oscillator

which has a single gene that codes for a TF protein that negatively

auto-regulates its own transcription [16–18]. In this model the TF

protein-product undergoes a one-step modification that yields the

matured or active end-product and subsequently n numbers of this

end-product bind with the cis-regulatory modules (CRMs) of the

associated promoter that in turn results in down-regulation. Here

n is the Hill coefficient associated with the cooperative type

binding. Detailed studies on this minimalist model showed [17]

that the inequality condition n.8 is necessary to generate self-

sustained oscillations in the levels of mRNA and protein. This

result was obtained with the assumptions that the rate constants

associated with the synthesis and decay of the protein and end-

product are equal and the binding-unbinding of the end-product

with the promoter is much faster than the rate of change in the

synthesis and degradation of mRNA, protein and end-product.

Further it was assumed that the decay of mRNA and protein

product follows a first order type reaction.

It was realized later that the inequality condition n.8 is unlikely

[19] under in vivo conditions since the formation of such large

multimeric protein complexes via pure three dimensional diffusion

(3D) limited collisions (Figure 1) is almost an improbable event

and several other modifications over the Goodwin-Griffith model

were proposed to reduce the required value of n. Most of these

modifications were mainly associated with the insertion of (a) a

temporal delay in the negative auto-regulatory loop either

explicitly as a time-delay in between the synthesis and binding of

end-product at the promoter [19], [20] or implicitly via inserting

additional reaction steps [19] in the formation of end-product that

interacts with its own promoter and (b) a non-linear Michaelis-

Menten type kinetics in the decay of mRNA and protein products

despite of the first order type kinetics and (c) additional TF gene

members in the negative feedback loop which again indirectly acts

as temporal delay in the overall negative feedback. The delayed

negative feedback may also be coherently or incoherently

amplified [21–23] via the insertion of a positively regulated

intermediate. Here the temporal delay is connected with the
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overall time that is required for the transport of fully transcribed

mRNAs from nucleus to cytoplasm, post-translational modifica-

tions and subsequent transport of active TF proteins into the

nucleus through 3D diffusion. When the decay of mRNA and

protein product follows a Michaelis-Menten type kinetics then the

Goodwin-Griffith (GG) oscillator seems to produce self-sustained

oscillations [19] even for n = 1. The genetic oscillator module with

three TF genes connected in a cyclic negative feedback loop is

named as repressilator [24]. Though these motifs were shown to

be oscillatory through deterministic and stochastic simulations,

significant fraction of cells containing the constructs of these motifs

were not showing any oscillations under in vivo experimental

conditions. It was argued that it could be partially due to the noisy

nature of intracellular environment [18], [24]. Here one should

note that most of the simulation studies were performed with

constant parameter values which may not be true under in vivo
conditions. In this context it is essential to investigate how the

oscillatory dynamics of these motifs reacts to perturbations in the

system parameter values.

Most of the earlier studies on GG and other oscillator models

assumed a quasi-equilibrium condition for the binding-unbinding

dynamics of the negatively autoregulated TF proteins at their own

promoters. This is mainly to reduce the four or higher dimensional

Jacobian matrix associated with the non-linear system of

differential rate equations into a three dimensional one to ease

further analysis since there is an additional rate equation

corresponding to the promoter state dynamics apart from the

rate equations associated with mRNA, protein and end-product.

However this assumption is valid [8], [9] only when the timescales

associated with the synthesis and degradation of mRNAs and TF

proteins are much slower than the timescales associated with the

binding-unbinding of regulatory TFs at the respective promoters.

Recent studies [8] on feedforward loops suggested that the

binding-unbinding dynamics of TF protein at the promoter can be

ignored only when the cellular volume Vc ( = volume of nucleus in

Figure 1. Goodwin-Griffith genetic oscillator model. The transcription factor (TF) gene A is transcribed and translated into the TF protein
product that in turn is converted to the active end-product. The end-product (or its oligomer as in case of lacI repressor negative-feedback-only
system that was constructed in reference [25]) is the key molecule that locates the respective cis-regulatory elements associated with the promoter of
TF gene A through a combination of one-dimensional (1D) and three-dimensional (3D) routes as that of typical site-specific DNA-protein interactions.
Here either monomers of the end-product directly assemble at the corresponding regulatory elements in a combinatorial manner (I) or the fully-
formed complex of na-mer binds with the respective regulatory sites (II). Assembly of combinatorial TF molecules results in the looping of DNA
segment that is present in between the promoter and cis-regulatory elements. ARPC is the assembled repressor-promoter complex that in turn
results in down-regulation. Our analysis shows that out of these two competing pathways, the pathway I is the most probable one since it takes
shortest time. The corresponding set of differential equations is given in Eqs (4–5). This system is well characterized by parameters of Group I, II and
III. Group I consists of parameters wa,va,eað Þ whereas Group II consists of equilibrium parameters la,mað Þ and Group III consists of ordinary type
perturbation parameters sa,ka,xað Þ. Most of the earlier studies assumed zero values to Group II parameters apart from assuming zero for va that
controls the promoter state dynamics. Blue colored spheres are the dimers of lac repressor. Here a.a denotes amino acids and n.a denotes
nucleotides.
doi:10.1371/journal.pone.0104328.g001
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case of eukaryotes) is comparable with that of the prokaryotes [8]

such as E. coli (Vc ,10218 m3) and the influence of the promoter

state fluctuations on the overall dynamics of feedforward/feedback

loops seems to significantly increase as the nuclear volumes

increases as in eukaryotic cells across yeast to human. Further, the

Michaelis-Menten type degradation kinetics associated with

mRNA and protein is a valid assumption only when the

concentrations of these species are much higher than the

concentration of the corresponding nucleases and proteases.

Nevertheless in most of the in vivo conditions, the intracellular

levels of mRNA and protein of a particular TF gene will be much

lesser than the corresponding levels of the non-specific nucleases

and proteases. When the latter is true then the enzyme mediated

decay of mRNA and protein will eventually follow a first order

type kinetics. In this article, using a combination of theoretical and

simulation tools (a) we develop a generalized theoretical frame-

work of various types of genetic oscillators by explicitly incorpo-

rating the promoter state dynamics and other chemical reaction

balances in detail. Using our detailed model (b) we identify and

classify various critical control parameters and compute their

physiological ranges which are required to generate self-sustained

oscillations in the intracellular levels of mRNAs and transcription

factor proteins and (c) explore various possibilities of coupling

independent gene oscillators and fine-tuning the period of such

coupled system. We further (d) demonstrate that by coupling two

or more independent Goodwin-Griffith oscillators one can design

oscillatory network architectures which are tunable and also robust

against perturbations in system parameters.

Results

Theoretical framework of transcription factor gene
oscillators

The Goodwin-Griffith oscillator consists of a negatively self-

regulated gene (we denote it as TF gene A) which codes for a

transcription factor protein (Figure 2A). We denote the cellular

concentrations (mol/lit, M) of its mRNA as ma, protein as pa, the

transformed end-product as za and the complex of promoter with

the end-product as xa. Here the total cellular concentration of

promoter is dza and the overall promoter state occupancy by the

end-product will be Xa = xa/dza where Xa [ (0, 1). Though there is

only one copy of the promoter by definition, we use a continuous

type probability variable Xa to describe promoter state occupancy

mainly to account for its partially occupied status [8], [9]. The

transcription and translation rates are denoted as kma (Ms21) and

kpa (s21) respectively. The first order decay rate constants

corresponding to mRNA and TF protein are cma (s21) and cpa

(s21) respectively. The first order on- and off-rates associated with

the transformation of protein into the matured end-product are

denoted as laf (s21) and lar (s21) and the corresponding

dimensionless dissociation constant is la~lar

�
laf . The overall

forward and reverse rate constants associated with the binding and

unbinding of na numbers of end-product molecules with the

respective cis-regulatory modules (CRMs) of the promoter of TF

gene A are kaf (M{na s{1) and kar (s21) and the corresponding

dissociation constant is defined as Karf ~kar

�
kaf (Mna ). To

simplify the analysis further we introduce the following scaling

transformations to project the time and concentration variables

into the dimensionless space.

t~cpat; Pa~pa=pas; Ma~ma=mas; Za~za=pas; Xa~xa=daz ð1Þ

In these equations t denotes the dimensionless time that is

measured as the number of lifetimes of the protein product of TF

gene A and Pa, Ma, Za and Xa are respectively the dimensionless

concentrations of protein, mRNA, end-product and promoter

complexes. We also should note that (Pa, Ma, Za and Xa) [ (0, 1) by

definition. Here the steady state values of mRNA and protein in

the absence of negative self-regulation can be defined as follows

[8], [9].

pas~kmakpa

�
cmacpa; mas~kma=cma ð2Þ

We further transform the parameter associated with the

multimerization of end-product and subsequent binding events

as follows.

ma~Karf

�
pna

as ; Karf ~kar

�
kaf ð3Þ

Using the scaling transformations given by Eqs (1–3) one can

write the deterministic rate equations corresponding to the

temporal evolution of dimensionless concentration variables (Xa,

Ma, Pa, and Za) over dimensionless time variable t as follows.

vadXa=dt~Za
na 1{Xað Þ{maXa

wadMa=dt~ 1{Xað Þ{Ma

dPa=dt~Ma{Pa{sa Pa{laZað Þ

eadZa=dt~Pa{ lazkað ÞZa{xa Za
na 1{Xað Þ{maXað Þ

ð4Þ

The initial conditions are Xa,Za,Ma,Pað Þ~0 at t~0. When

(va = 0, sa = 0 and ka = 0), then this system reduces to the usual

GG oscillator model for three concentration variables. Here we

have defined the dimensionless ordinary perturbation parameter

ka~cza

�
laf where cza (s21) is the first order decay rate constant

associated with the protein end-product Za. Since cza&laf will be

true in most of the physiological conditions and ka is an ordinary

perturbation parameter one can assume ka&0. When there is a

dimerization of za (we denote the dimer za-za as ya) as in case of

Lac repressor system that has been constructed and studied in

reference [25] (negative-feedback-only model using lacI gene) then

the first and last equations of Eqs (4) will be modified as follows.

vadXa=dt~Ya
na 1{Xað Þ{maXa

eadZa=dt~Pa{ lazkað ÞZa{sya ZaZa{lyaYa

� �
eyadYa=dt~ZaZa{lyaYa{xya Ya

na 1{Xað Þ{maXað Þ
ð5Þ

Here various parameters associated with the dimerization of

end-product of TF protein A and subsequent assembly of this end-

product at the own promoter are defined as follows.

Theory on the Dynamics of Oscillatory Loops
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xya~pna{1
as dazkaf

�
lfya; eya~cpa

�
lfyapas;

lya~lrya

�
paslfya; sya~paslfya

�
lfa

Here we have defined Ya~ya=pas and lfya (M21 s21) is the

forward rate constant associated with the dimerization reaction

and lrya (s21) is the corresponding reverse rate constant. One

should note that for a fully functional Lac repressor system the Hill

coefficient will be na = 4 since an octamer of Lac repressor protein

(which is a dimer) is involved in the overall looping of DNA that

results in strong repression of lacI. The system of Eqs (4) is

completely characterized by the following set of dimensionless

parameters.

va~cpa

�
pna

as kaf ; wa~cpa

�
cma; ea~cpa

�
laf ;

sa~laf

�
cpa; xa~pna{1

as dazkaf

�
laf

Here one should note that the parameters ma,xa,vað Þ are

functions of na that can be simplified by assuming an in vivo
protein level as pas~1. To simplify the analysis further we can

classify these dimensionless control parameters into Group I, II

and III. Group I consists of va,wa,eað Þ which are all singular type

Figure 2. Various types of transcription factor based genetic oscillators. In case of positive regulation the combinatorial transcription
factors bound at cis-regulatory modules enhance the initiation of transcription by strengthening the RNAPII-promoter interactions through their
distal action (positive arrows) whereas in case of negative regulation, the RNAPII-promoter complex will be destabilized by the combinatorial TFs
present at CRMs (negative arrows). A. Goodwin-Griffith oscillator. B1. One-to-one dual feedback oscillator. Here the end-product of TF gene A binds
at the promoter of TF gene B and down-regulates it whereas the end-product of TF gene B binds with the promoter of TF gene A and down-regulates
it. B2. Two independent Goodwin-Griffith oscillators are coupled through -OR- type logic with NN-NN configuration. Here the promoter of TF gene A
will have binding sites for the end-products of both TF gene A and B and so on for TF gene B. B3. GG oscillators are coupled through -AND- type logic
with N-N configuration. B4. GG oscillators are coupled through -OR- type logic with NN-PP configuration. B5. GG oscillators are coupled through -OR-
type logic with NP-NP configuration. B6. Possible robust synthetic gene oscillator. Here K is the booster TF gene that is coupled to N-N type dual
feedback oscillator via –OR- gate. C1. Repressilator that is built with three TF genes by cyclic coupling. C2. Three independent Goodwin-Griffith
modules are coupled through -OR-type logic. Here dashed lines show the fully interconnected network. C3. Three independent Goodwin-Griffith
modules with -AND-type logic. Here dashed lines show the fully interconnected network.
doi:10.1371/journal.pone.0104328.g002
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perturbation parameters since they multiply the first order

derivative terms. One should note that this set of parameters

directly controls the dynamics of changes in the cellular

concentrations of active promoter, mRNA and end-product

respectively. Group II consists of (sa, xa, ka) those are ordinary

type perturbation parameters. In Group II, sa controls the

coupled dynamics associated with the concentrations of TF protein

A and its end-product whereas xa controls the coupled dynamics of

changes in the concentrations of end-product and it’s binding with

the promoter sequence. The lifetime of end-product is controlled

by ka. One should note that almost all the earlier studies assumed

that (sa, xa, ka) = 0. Group III consists of the equilibrium and

promoter affinity parameters (la, ma). In this la controls the

equilibrium associated with the formation of end-product and ma

controls the equilibrium associated with the binding of na

molecules of end-product with CRMs of the promoter of TF

gene A.

Biophysical modeling of promoter state dynamics
The total time required to initiate transcription consists of at

least two different components viz. the time required (proportional

to 1/kaf) for the assembly of na numbers of TFs at the respective

CRMs of promoter and the time required for subsequent looping

of DNA and subsequent distal action of TFs on RNAPII-promoter

complex. The time component associated with the looping and

distal action along with the time required for elongation and

termination steps are included in the definition of transcription

rate (the total time required for transcribing a full length mRNA

will be equal to 1/kma).The kinetics of interaction of na molecules

of end-product with the sequentially located CRMs can occur in

two different possible ways namely binding of the full-fledged

complex of na molecules of end-product (pathway II) or sequential

assembly of the monomers of end-product at the corresponding

cis-regulatory DNA-binding sites similar to that of a combinatorial

binding of TFs with CRMs (pathway I) as in eukaryotic systems

(Figure 1). Though the pathway I resembles a (na+1)th order

reaction it is still an operable one since the length scale of the

genomic DNA is much higher than the combinatorial binding TF

proteins. Binding of na numbers of transcription factors in a

sequential manner or na-mer of end-product leads to looping of

the DNA segment that is present in between promoter and CRMs

of TF gene A that results in the spatial or distal communication

between the end-product present at CRMs and the already formed

RNAPII-promoter complex which in turn activates (positive) or

deactivates (negative) the initiation of transcription depending on

the type of self-regulation [1], [3], [4], [26], [27]. In case of

activation or positive regulation, the combinatorial transcription

factors bound at CRMs enhance the initiation of transcription by

strengthening the RNAPII-promoter interactions through their

distal action (positive arrows in Figure 2) whereas in case of

negative regulation, the RNAPII-promoter complex will be

destabilized by the combinatorial TFs present at CRMs (negative

arrows in Figure 2). Here the destabilization of RNAPII-

promoter complex may be through the formation of stem and

loop structures. In prokaryotes, these types of up and down

regulations generally do not involve recruitment or combinatorial

binding of several TFs and the regulator transcription factor

directly influences the RNAP-promoter interactions as in case of

negatively self-regulated oscillatory motifs constructed with a lac-

repressor gene. Here binding of lac-repressor at the Operator

sequence directly destabilizes RNAP-promoter complex that in

turn lead to the down regulation of transcription [1], [3]. The total

time td,na
required for the formation of a full-fledged na-mer via

3D diffusion-controlled collisions and subsequent binding with the

cis-regulatory sites can be calculated as follows.

td,na~nats,1z
Xna

i~1
td,i~nats,1ztd,1

Xna

i~1
i= 1zið Þ

~nats,1ztd,1 naz1{Y naz2ð Þ{ceð Þ
ð6Þ

In this equation nats,1 is the time required for the searching and

binding of the entire na-mer at the corresponding CRMs on DNA

(for a monomer it will be ts,1) via a combination of 1D and 3D

diffusion, td,1 is the time that is required for the formation of a

dimer of the end-product through 3D diffusion under in vivo
conditions, Y nað Þ~d lnC nað Þ=dna where C nað Þ is Gamma

function and ce~0:5772157: is the Euler-Mascheroni constant.

Here td,1~10{3
�

16pRDT NACZ (s) is the minimum possible 3D

diffusion controlled bimolecular collision time inside the cellular

volume where R is average radius of the monomers of end-

product, CZ (mol/lit) is the concentration of end-product

inside the cellular volume, NA is the Avogadro’s number,

DT~kBT=6pQR ( m2s21) is the 3D diffusion coefficient associated

with the dynamics of monomers of end-product in aqueous

medium where kB is the Boltzmann constant, T is the absolute

temperature (K), Q is the viscosity of the medium. In the

calculation of td,1, we have assumed that the reaction radius

between two monomers is ,2R. Since the overall maximum

radius of the m-mer will be ,mR, we find that td,m!m= 1zmð Þ
and subsequently the total time that is required to form a na-mer

in a sequential manner via 3D diffusion will be given by the sum

td,1

Pna

m~1 m= 1zmð Þ. We should note that this is the maximum

possible search time since we have assumed a maximum possible

radius for the na-mer complex and also we have not considered the

possibility of formation of the final na-mer through non-sequential

and random pathways and the steric factor associated with the

multimerization reaction. The total search-time that is required by

the monomer of end-product to find its cognate site on DNA is

defined as ts,1~N tLztnsð Þ=L where the overall 1D sliding time is

defined as tL~L2
�

6xd [28]. In this calculation we have assumed

that the end-product searches for its binding sites on DNA via a

combination of 1D and 3D diffusion controlled collision routes.

Monomers of the end-product undergo at least N/L numbers of

cycles of 3D diffusion mediated association that is followed by 1D

scanning and dissociation where N is the size of the genomic DNA

(base-pairs, bps) and L (bps) is the average 1D sliding-length

between non-specific 3D association and dissociation. Here tL is

the time that is required by the monomers of end-product to scan

L bps of the genomic DNA via 1D diffusion along the DNA chain,

xd (bps2s21) is the 1D diffusion coefficient associated with the

sliding of monomers on DNA (this will be scaled down to xd=na for

na-mer) and tns is the time that is required for non-specific binding

of end-products with the genomic DNA via 3D collisions under in

vivo conditions. When all the na monomers of end-product search

for their binding sites on DNA in a parallel manner, then the total

time [26] that is required (ts,na
) for all these na monomers to

assemble at the sequentially located cis-acting elements can be

derived from the theory of combinatorial binding of transcription

factors [27–29] with DNA as follows.

ts,na~N tLna
aztns

� ��
L&ts,1na

a ð7Þ

From this equation we find that the 1D scanning time increases

with the number of monomers na in a power law manner as na
a

where typical value of the exponent seems to be a ~2=52=5 [26]. From

Theory on the Dynamics of Oscillatory Loops
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Eqs (6) and (7) one can compute the following ratio.

hna~ td,na=ts,nað Þ~n1{a
a z td,1=ts,1ð Þ naz1{Y naz2ð Þ{ceð Þn{a

a ð8Þ

From the theory of site-specific DNA-protein interactions we

find that td,1=ts,1ð Þ&102 for na = 1 [26–29] which suggests that

hna
§102 for all values of na. Eqs (7) and (8) suggest the pathway

I is more efficient than pathway II. This means that though the

diffusion limited multimerization of the monomers of the end-

product is not a reasonable assumption for large values of na,

direct assembly of the monomers of the end-products of TFs on

the sequentially located cis-regulatory DNA binding sites via a

combination of 1D and 3D diffusion controlled routes can be still a

reasonable assumption even for higher values of na. In this context

we can replace the combinatorial binding of na numbers of TFs

with CRMs of template DNA with a single step (na+1)th order

reaction as given by the first equation in Eqs (4). One should note

that unlike the prokaryotic systems, most of the eukaryotic

promoters are activated through a combinatorial binding of

several TFs at the corresponding CRMs [27]. This observation

suggests that GG oscillator can be still a feasible model that can be

used to generate limit-cycle oscillations in the cellular levels of

negatively self-regulated TF proteins especially in eukaryotic

systems.

Steady-state analysis of Goodwin oscillator
The system of Eqs (4) has a fixed point Pa~ga which is a real

solution of the following polynomial equation of the order (na+1).

ma= maz ga= lazkað Þð Þnað Þ{gaba~0; ba~ 1zsaka= lazkað Þð Þð9Þ

The steady state values of other concentration variables (Za, Ma

and Xa) can be calculated using the fixed point ga as follows.

Zas~ga= kazlað Þ; Xas~ 1{gabað Þ; Mas~gaba

Using the Jacobian matrix evaluated around the equilibrium

point Pa~ga, the linearized form of the system of Eqs (4) near

this equilibrium point can be written as follows.

d

dt

Xa

Ma

Pa

Za

0
BBB@

1
CCCA&

{g 0 0 Aa=va

{1=wa {1=wa 0 0

0 1 { 1zsað Þ sala

d 0 1=ea {c

0
BBB@

1
CCCA

Xa

Ma

Pa

Za

0
BBB@

1
CCCAð10Þ

Here we have defined various matrix elements as follows.

g~ma=bagava; c~ lazkazxaAað Þ=ea; d~xama=bagaea;

Aa~nama lazkað Þ 1{bagað Þ=ga

The coefficients associated with the characteristic polynomial

Y 4zrY 3zsY 2ztYzu~0 (PI) of the Jacobian matrix defined

in Eqs (10) can be written as follows.

r~gzcz 1zsað Þz1=wa

s~g 1zsað Þzcgzc 1zsað Þz gzcz 1zsað Þð Þ=wa

{sala=ea{Aad=va

t~ 1zsað Þgzcgzc 1zsað Þð Þ=wazcg 1zsað Þ{ Aad 1zsað Þz1=wað Þ=va

{sala gz1=wað Þ=ea

u~Aa=vaeawaz cg 1zsað Þ{Aad 1zsað Þ=vað Þ=wa{salag=waea

From the Routh-Hurwitz criterion for a biquadratic polynomial

[30] we find that the equilibrium point of the system Pa~ga will

be stable only when all the following inequality conditions are true.

In other words there may be limit-cycle oscillations around the

steady state only when any of these inequality conditions is not

true.

rw0; rs{tð Þw0; rs{tð Þt{r2uw0; uw0 ð11Þ

Here the first inequality condition rw0 will be always true since

ga!1=ba and subsequently we find Aaw0. The second inequality

condition rs{tð Þw0 can be reversed only when either s,0 or

rsvt for s.0. When the third inequality in Eqs (11) is not true

then the biquadratic polynomial can have a complex root such

that yRe+iyIm with positive real-part (here yRe§0 yIm§0) that

results in the generation of limit-cycle oscillations of the

concentration of TF protein A and the period of such oscillations

[29–32] will be given by tp~2p=yIm. This means that the period

of GG oscillator can be modified by tuning the lifetime (cpa) of the

protein product of TF gene A (since t~cpat) though the value of

yIm is a function of other Group I parameters (wa, va, ea) which are

in turn linearly depend on cpa. Since the Hill coefficient term na

presents only in the coefficient terms s, t and u, the third inequality

in Eqs (11) can be reversed by increasing the value of na for any

set of Group I, II and III parameters. This means that the

parameter space that is required to generate oscillations can be

expanded by increasing the value of na. Inequality conditions

given by Eqs (11) for a stable motion of the dynamical system of

Eqs (4) can be directly derived from the following Routh table

(RTGG) [30] corresponding to the biquadratic polynomial (PI).

RGG~

1 s u Y 4

r t 0 Y 3

s{t=r u 0 Y 3

t{ru= s{t=rð Þ 0 0 Y

2
6664

3
7775 ð12Þ

When yIm~0 then the steady state solution will be either

asymptotically stable or unstable depending on the values of real-

parts. From Eqs (10–11) we find that the system will be

inconsistent near the fixed point both at very large as well as small

values of Group I type parameters as va,wa,eað Þ?0 or ?. This

means that there exists a critical range of these parameters to

generate limit-cycle oscillations in the cellular levels of TF protein

A. One should note that Group I parameters appear in the

denominator of definitions of various coefficients of the charac-

teristic polynomial (PI) which means that the period of oscillations
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will increase proportionately with respect to an increase in these

parameters since we find yIm!1= va,wa,eað Þ. Contrasting from

Group I, there exist critical or threshold values of Group II type

ordinary perturbation parameters xa,sa,kað Þ below which the

oscillations occur. As in case of Group I type parameters, there

exist a critical range of values of la,mað Þ Group III to generate

limit-cycle oscillations. The critical value of Hill coefficient

na~Cna for a given set of parameters can be iteratively calculated

by numerically solving the third inequality in Eqs (11) at various

values of na. When the dynamics of promoter state occupancy is

much faster than the rate of change in the concentrations of other

variables then one can set va&0 and the system of Eqs (4)
reduces to the following form.

wadMa=dt~ma= mazZa
nað Þ{Ma

dPa=dt~Ma{Pa{sa Pa{laZað Þ

eadZa=dt~Pa{ lazkað ÞZa

ð13Þ

Most of the earlier studies on GG oscillator consider Eqs (13)
as the base model however with the conditions such that

sa,kað Þ~0. Using detailed numerical simulations we will show

later that this assumption is reasonably invalid. The corresponding

Jacobian matrix around the steady state Pa~ga can be written as

follows.

d

dt

Ma

Pa

Za

0
B@

1
CA& {1=wa 0 {A0a

�
wa

1 { 1zsað Þ sala

0 1=ea { lazkað Þ=ea

0
B@

1
CA

Ma

Pa

Za

0
B@

1
CA ð14Þ

Here we have defined A0a~naba 1{bagað Þ lazkað Þ and the

characteristic polynomial associated with this equation is

Y 3zr0Y 2zs0Yzt0~0 (PII) where the coefficients are defined

as follows.

r0~1zsaz lazkað Þ=eaz1=wa

s0~ lazkað Þ waz1ð Þ=waeaz 1zsað Þ=wazkasa=ea

t0~Aa=waeaz lazka 1zsað Þð Þ=waea

ð15Þ

The Routh-Hurwitz [30] condition required by the system of

Eqs (13–14) to generate limit-cycle oscillations will be

r0s0{t0ð Þv0. Upon solving this inequality for the Hill coefficient

na, the expression for the critical value of na that is required to

generate limit cycle oscillations can be obtained as follows.

Cna~ waear0s0{ lazka 1zsað Þð Þð Þ=ba 1{bagað Þ lazkað Þ ð16Þ

Here one should note that the term ga in the right hand side of

this equation is still a function of na and ma and the following

limiting conditions exist.

lim ma?0 ga~ ma lazkað Þna=bað Þ1= naz1ð Þ
;

lim ma?? ga~1=ba; lim na?? ga~1=ba ð17Þ

Eqs (15–17) suggest that strong binding of the end-product

(ma [ 0) at the promoter of TF gene A is required along with the

conditions such as ka, sað Þ~0, and la, wa, eað Þ~1 to decrease

the required critical Hill coefficient towards the minimum possible

value as Cna & 9. When there is an additional dimerization step

as in Eqs (4) and (5) then the resulting characteristic polynomial

of the Jacobian matrix will be of fifth order as

Y 5zrY 4zsY 3ztY 2zuYzm~0 (PIII) and the Routh criteri-

on that is required to generate oscillations can be written as

follows.

K tL{rKð Þ{mL2
v0; K~u{m=r; L~s{t=r

The physiological ranges of various parameters associated with

Goodwin-Griffith oscillators are listed in Table 1.

One-to-one dual feedback oscillators
One can extend these scaling ideas for one-to-one negative

feedback oscillator or toggle switches (Figure 2B1) and repressi-

lator models (Figure 2C1). In case of one-to-one negative

feedback oscillator na number of end-product molecules of TF

gene A bind with the cis-regulatory elements associated with the

promoter of TF gene B and subsequently down-regulates whereas

nb number of end-product molecules of TF gene B down-regulate

the promoter of TF protein A upon binding with the correspond-

ing cis-regulatory elements (Figure 2B1). The set of differential

rate equations associated with the two TFs one-to-one feedback

system can be written in the dimensionless form as follows.

vhdXh=dt~Zq
nq 1{Xhð Þ{mhXh

whdMh=dt~ 1{Xhð Þ{Mh

rhdPh=dt~Mh{Ph{sh Ph{lhZhð Þ

ehdZh=dt~Ph{ lhzkhð ÞZh{xh Zh
nh 1{Xq

� �
{mqXq

� �
ð18Þ

In these equations the subscripts will be such that when h~a,b
then q~b,a where (a, b) denote the TF genes A and B respectively.

One should note that the Hill coefficients associated with the

binding of the end-product of TF A at the promoter of TF B and

end-product of TF gene B at the promoter of TF gene A are na

and nb respectively and in general na=nb. Here we have defined

various other dimensionless variables and parameters as follows.

t~cpat; Ph~ph=phs; Mh~mh=mhs; Zh~zh=phs;

Xh~xh=dhz; h~a,b

vh~cpa

�
p

nq
qs khf ; wh~cpa

�
cmh; eh~cpa

�
lhf ; rh~cpa

�
cph;

sh~lhf

�
cph; xh~p

nh{1

hs dqzkqf

.
lqf
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lh~lhr

�
lhf ; mh~Khrf

�
p

nh
hs ; Khrf ~khr

�
khf ;

bh~1zshkh= lhzkhð Þ; kh~czh

�
lhf

In these definitions for h = a, b one needs to set q = b, a. The

steady state solutions gb,gað Þ to the coupled set of Eqs (18)
corresponding to this two TFs system with respect to the scaled

protein levels can be given as follows.

Pas~ga~ey; Pbs~gb~l
na=nb
a ma 1{bagað Þ=gabað Þ1=nb ð19Þ

The steady state values of other dynamical variables can be

calculated using the steady state values of the protein products ga

and gb as follows.

Zhs~gh= khzlhð Þ; Xhs~ 1{ghbhð Þ; Mhs~ghbh; h~a,b ð20Þ

Here y in Eqs (19) is the real root of

y nanb{1ð Þ{nb lnWz ln malna

a ba
{1 1{baeyð Þ

� �
~0 where we

have defined the function W as,

W~mbl
nb
b bb

{1 1{bbl
na=nb
a ma 1{baeyð Þ=bað Þ1=nb e{y=nb

� �

Eqs (18) have three possible steady state solutions viz. gb~gað Þ,
gbvgað Þ and gbwgað Þ. Under identical values of all the

parameters such as (ma~mb, na~nb and so on) we find the

unstable steady state solution of the two TFs system as gb~ga

where 0ƒ gb~gað Þƒ1. This means that the limit-cycle oscillations

around this unstable steady state can occur only when the values of

all the control parameters and initial conditions are identical with

respect to both the TF genes A and B. Using the eighth order

characteristic polynomial of the Jacobian matrix associated with

the linearized form of Eqs (18) (Methods section) near the steady

state values gb~gað Þ, one can numerically derive the conditions

for the occurrence of oscillations from the Routh-Hurwitz

criterion. When the values of the control parameters are such

that (ma=mb or na=nb and so on) or there is a transient

perturbation in the values of these parameters or initial conditions,

then the oscillating system will be unstable and driven to any one

of the stable steady state solutions as either gbvga or gbwga

through asymptotic spirals. For example when nb&na or mb&ma

then the stable steady-state solution will be (ga&0, gb&1). These

results suggest that contrasting from GG oscillator model the

identical two-TF feedback system cannot generate self-sustained

oscillations in the presence of stochastic noise. One can also

construct one-to-one feedback oscillator via coupling two inde-

pendent GG oscillators. Here these independent TF oscillators A

and B can be coupled via either A-OR-B (Figure 2B2) or A-

AND-B (Figure 2B3) type logics. One can consider various types

of regulatory combinations associated with these network archi-

tectures. The combinations in A-OR-B type coupling can be

denoted as ‘AsAc-BsBc’ where ‘As’ and ‘Bs’ are the types of self-

regulation of TF genes A and B respectively whereas ‘Ac’ and ‘Bc’

are the types of their cross-regulation on each other. Each type of

regulation can be either ‘P’ or ‘N’ where ‘P’ denotes positive type

and ‘N’ denotes the negative type regulation. Using these notations

one can denote the configuration given in Figure 2B2 as NN-NN

type, Figure 2B4 as NN-PP type and Figure 2B5 as NP-NP

type. The configurations given in Figures 2B4 and 2B5 are the

well-studied robust dual-feedback oscillators [25], [33–35]. Sim-

ilarly one can consider various possibilities in A-AND-B type

architectures. Noting the symmetry of regulation we find three

possible types as P-P, N-N and N-P out of which only N-N will be

Table 1. Simulation parameters used to integrate Eqs. (4–5) of Goodwin-Griffith oscillator model as constructed in reference [25]
using lacI system (na = 4) of E. coli.

Parameter Definition Physiological values in E. coli Remarks

va cpa

�
pna

as kaf ,0.0001 promoter state dynamics

wa cpa

�
cma ,0.5 relative mRNA-protein lifetimes

ea cpa

�
laf ,1 end-product formation dynamics

ma Karf

�
pna

as
,0.00002 binding of end-product at promoter

la lar

�
laf ,1 end-product equilibrium dynamics

sa laf

�
cpa ,1 connects protein and end-product formation

xa pna{1
as dazkaf

�
laf ,1 connects end-product and promoter state

dynamics

ka cza

�
laf ,0.01 describes end-product decay dynamics

sya paslfya

�
laf ,0.1

eya cpa

�
lfyapas ,0.5

lya lrya

�
paslfya ,1

xya pna{1
as dazkaf

�
lfya ,1

daz 1 molecules

pas kmakpa

�
cmacpa ,10000 molecules

mas kma=cma ,100 molecules

doi:10.1371/journal.pone.0104328.t001
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a robust oscillator. The configuration given in Figure 2B3 is an

N-N type. When the coupling is via A-OR-B type logic then both

the promoters of TF genes A and B will be independently down-

regulated upon binding of protein end-products of both the TF

genes A and B at the respective cis-regulatory elements associated

with each promoter and the first and last equations in Eqs (18)
will be modified as follows.

vhqdXhq

�
dt~Zq

nhq 1{Xhð Þ{mhqXhq; Xh~
X

m~a,b
Xhm;

h,q~a,b

ehdZh=dt~Ph{ lhzkhð ÞZh{xhq Zh
nhq 1{Xq

� �
{mhqXhq

� �
{xhh Zh

nhh 1{Xhð Þ{mhhXhhð Þ

ð21Þ

In these equations for each value of subscript ‘h’ the subscript ‘q’

will take a, b and there are totally four equations associated with

the overall promoter state dynamics. Various modified parameters

in Eqs (21) are defined as follows.

mhq~Khqrf

.
p

nhq
hs ; Khqrf ~khqr

�
khqf ; vhq~cpa

.
p

nhq
hs khqf ;

xhq~p
nhq{1

qs dqzkhqf

.
lhf

The steady state solutions corresponding to the modified

equations can be obtained by numerically solving the following

set of coupled polynomial equations.

mhhmhq

�
mhhmhqzmhhZqs

nhqzmhqZhs
nhh

� �
{bhgh~0; h~a,b; q~b,c ð22Þ

Here Zhs is defined as in Eqs (20). When mhq~�mm and bh~1

then we can calculate the steady state protein levels from the set of

polynomial Eqs (22) as gh~ lhzkhð Þey where y is the real root of

y naz1ð Þ{ ln �mm 1{eyð Þ{ey nbz1ð Þ� �
~0. When the GG oscillators

A and B are coupled through A-AND-B type logic then the dimer

(yd) of both end-products (za-zb) will be the key regulating molecule

that binds at the cis-acting elements associated with the promoters

of both TF genes A and B however with different Hill coefficients

(nh) and subsequently down-regulate them. The respective

modified differential rate equations corresponding to the dimer-

ization and binding of dimer at the promoters of TF genes A and B

can be written as follows.

eddYd=dt~ZaZb{wd Yd{
X

h~a,b
xh Yd

nh 1{Xhð Þ{mhXhð Þ

vhdXh=dt~Yd
nh 1{Xhð Þ{mhXh; h~a,b

ehdZh=dt~Ph{ lhzkhð ÞZh{xdh ZaZb{wdYdð Þ

ð23Þ

The modified and new parameters and variables in Eqs (23)
are defined as follows.

Yd~yd=pas; ed~cpa

�
pbsldf ; xdh~ldf pqs

�
lhf ;

wd~ldr

�
ldf pbs; xh~p

nh{1

hs dhzkhf

.
lhf pqs

In the definition of xh for h = a, b one needs to substitute q = b, a.

Here ldf (M21s21) and ldr (s21) are the forward and reverse rate

constants associated with the diffusion limited dimerization

reaction between the protein end-products of TF gene A and B.

The corresponding steady state solutions to Eqs (24) can be

written as follows.

Yds~ZhsZqs

�
lhq; Zhs~Phs= lhzkhð Þ;

Xhs~Yds
nh= mhzYds

nhð Þ; Phs~gh ð24Þ

Here gh is the solution to the set of following polynomial

equations.

mh

�
mhz ghgq

�
lhzkhð Þ lqzkq

� �� ��
wd

� �nh
� �

{bhgh~0;

h~a,b; q~b,a ð25Þ

In this set of equations we need to set q = b for h = a and for

h = b we need to set q = a. The parameters associated with dual

feedback oscillators are summarized in Table 2.

Three gene repressilator type oscillators
Similar to Eqs (18) one can write the set of differential rate

equations associated with the three TFs repressilator model as

follows (Figure 2C1).

vhdXh=dt~Zs
ns 1{Xhð Þ{mhXh

whdMh=dt~ 1{Xhð Þ{Mh

rhdPh=dt~Mh{Ph{sh Ph{lhZhð Þ

ehdZh=dt~Ph{ lhzkhð ÞZh{xh Zh
nh 1{Xq

� �
{mqXq

� �
ð26Þ

Here the subscripts will be such that

h~a,b,c; s~c,a,b; q~b,c,að Þ where (a, b, c) denotes respectively

TF gene A, B and C in a cyclic (h, s, q) manner and the variables as

well as various control parameters are defined as in case of Eqs
(18) and generally na=nb=nc. Similar to Eqs (19) one can

derive the steady state solutions with respect to the scaled protein

levels for three TFs system as follows.

Pas~ga~ey

Pbs~gb

~gamclnc
c ba 1{bc malna

a 1{bagað Þ=gaba

� �1=nc
� �.

malna
a 1{bagað Þbc

� �1=ncnb

Pcs~gc~ malna
a 1{bagað Þ=gaba

� �1=nc

In this equations y is the real root of

y nanbncz1ð Þ{ncnb lnDznc ln w{ ln y~0 where we have de-

fined various other terms as,
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D~mbl
nb
b bb

{1 1{bbe wnc{yzyð Þ=ncnb

� �
; y~malna

a ba
{1 1{baeyð Þ;

w~mclnc
c bc

{1 1{bce{y=nc y1=nc
� �

:

Using these steady state values of protein products gh, one can

write the steady state solutions to other dynamical variables can be

written similar to Eqs (20) as follows.

Zhs~gh= khzlhð Þ; Xhs~ 1{ghbhð Þ; Mhs~ghbh; h~a,b,c ð28Þ

Under identical values of all the control parameters such as

(ma~mb~mc, na~nb~nc and so on), the system reaches the steady

state as ga~gb~gcð Þ which is an unstable fixed point since even a

small perturbation in the parameter values or initial conditions will

drive the system towards a stable limit-cycle. As depicted in

Figures 2C2 and 2C3 one can also construct the repressilator

type model by cyclically coupling three independent GG

oscillators A/B/C through -AND- or -OR- type logical gates as

we have constructed in Figures 2B2-3. When the type of

interaction is through -AND- type logic, then the za-zb dimer

down-regulates TF gene B, zb-zc dimer down-regulates TF gene C

and the zc-za dimer down-regulates TF gene A. The set of

modified differential equations corresponding to the configuration

that is given in Figure 2C3 can be written as follows.

ehkdYhk=dt~ZhZk{lhkYhk{Qhk Y
nk
hk 1{Xkð Þ{mkXk

� �
;

Yhk~yhk=phs; h~a,b,c; k~b,c,a

vhdXh=dt~Y
nh
kh 1{Xhð Þ{mhXh; h~a,b,c; k~c,a,b

ehdZh=dt~Ph{ lhzkhð ÞZh

{xhk ZhZk{lhkYhkð Þ{xhq ZhZq{lhqYhq

� �
;

k~b,c,a; q~c,a,b

ð29Þ

The steady state solutions can be obtained by numerical

methods from the following set of algebraic equations.

Yhks~ZhZk=lhk; Xhs~Y
nh
khs

�
mhzY

nh
khs

� �
;

mh= mhz ZhsZks=lhkð Þnhð Þ{bhgh~0 ð30Þ

In these equations for h = a, b, c one needs to set k = c, a, b and

various new and modified parameters are defined as follows.

Table 2. Various parameters associated with dual-feedback A-OR-B and A-AND-B type oscillators and their definitions.

Parameter Definition Remarks

vh cpa

�
p

nq
qs khf Describes promoter state dynamics of TD gene ‘h’, for

h = a, b, q = b, a

wh cph

�
cmh relative mRNA-protein lifetimes of TF gene ‘h’, h = a, b

eh cpa

�
lhf end-product formation dynamics of TF gene ‘h’, h = a,

b

mh Khrf

�
pna

hs
binding of end-product of TF gene A/B at promoter,
h = a, b

lh lhr

�
lhf end-product equilibrium dynamics, h = a, b

sh lhf

�
cph connects protein and end-product formation, h = a, b

kh czh

�
lhf describes end-product decay dynamics

bh 1zshkh= lhzkhð Þ
ed cpa

�
pbsldf Describes dimerization reaction between TF proteins

A and B

Yd yd=pas Scaled concentration of za-zb dimer.

xdh ldf pqs

�
lhf

wd ldr

�
ldf pbs Described dimerization equilibrium

xh pnh{1
hs dhzkhf

.
lhf pqs

mhq Khqrf

�
p

nhq

hs
mh splits into four types of mhq in A-OR-B type coupled

oscillator

vhq cpa

�
p

nhq

hs khqf vh splits into four types of vhq in A-OR-B type coupled

oscillator

xhq p
nhq{1
qs dqzkhqf

.
lhf

Khqrf khqr

�
khqf Describes binding of end-product of TF gene ‘q’ at

the promoter of TF gene ‘h’

lh lhr

�
lhf Describes end-product formation equilibrium of TF

gene ‘h’

Note: subscript a denotes TF gene A and b denotes TF gene B.
doi:10.1371/journal.pone.0104328.t002
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lhk~lhkr

�
lhkf pks; Qhk~khkf dzkp

nk{1

h

.
lhkf pks;

ehk~cpa

�
pkskhkf ; xhk=q~lhk=qf pk=qs

�
lhf

When the type of interaction is through -OR- type logic as

depicted in Figure 2C2 then the end products of both TF genes

A and B can independently down-regulate TF gene B and the end

products of TF genes B and C can independently down-regulate

TF gene C and so on. The set of modified differential equations

associated with such system will be similar to that of Eqs (21–23)
where the indices will be extended for three TF genes A/B/C.

One can also consider a fully interconnected network of TF genes

A/B/C. In these configurations the self-regulated promoters of

each TF gene A/B/C will be negatively regulated by the end-

products of the remaining two other TF genes. Here the mode of

overall combinatorial interactions among these regulating end-

products and the corresponding promoters can be either through -

AND- or -OR- type logics as represented by the dashed lines in

Figures 2C2-3. In case of -OR- type logical gate, the negatively

self-regulated promoter of TF gene A will also have cis-regulatory

binding sites for the end-products of both TF genes B and C and

so on. One can write the modified set of differential equations

associated with such fully interconnected configuration (Fig-
ure 2C2) as follows.

vhqdXhq

�
dt~Z

nhq
q 1{Xhð Þ{mhqXhq; Xh~

X
m~a,b,c

Xhm; h,q,k~a,b,cehdZh=dt

~
Ph{ lhzkhð ÞZh{xhq Z

nhq
h 1{Xq

� �
{mhqXhq

� �
{xhh Z

nhh
h 1{Xhð Þ{mhhXhh

� �
{xhk Z

nhk
h 1{Xkð Þ{mhkXhk

� �
8<
:

9=
;
ð31Þ

In the first one of Eqs (31), there will be three equations for

each promoter and there are totally nine equations associated with

the overall promoter state dynamics. In the second set of three

equations as well as in the associated parameters for each value the

subscript ‘h’ from the set (a, b, c), the subscripts q and k will take

the remaining values. This means that when h = a then q = b and

k = c and so on. Various modified parameters in Eqs (31) are

defined as follows.

mhq~Khqrf

.
p

nhq
hs ; Khqrf ~khqr

�
khqf ; vhq~cph

.
p

nhq
hs khqf

xhh~p
nhh{1

hs dhzkhhf

.
lhf ; xhq~p

nhq{1

qs dqzkhqf

.
lhf ;

xhk~p
nhk{1

ks dkzkhkf

.
lhf

The steady state solution to Eqs (31) needs to be obtained by

numerically solving the following set of equations.

mhhmhqmhk

.
mhhmhqmhkzmhhmhqZ

nhk
ks zmhhmhkZ

nhq
qs zmhqmhkZ

nhh
hs

� �
{bhgh~0; Zhs~gh= lhzkhð Þ

In case of fully interconnected configuration through -AND-

type logic that is depicted in Figure 2C3 (with dashed lines), the

complex za-zb-zc will be the key regulating molecule that binds with

the promoters of all the three TF genes A/B/C and down-regulate

them. Similar to Eqs (23) one can write the modified set of

differential equations corresponding to repressilator configuration

that is fully interconnected through -AND- type logic as follows.

ed dYd=dt~ZaZbZc{wdYd{
X

k~a,b,c
xk Yd

nk 1{Xkð Þ{mkXkð Þ

vhdXh=dt~Yd
nh 1{Xhð Þ{mhXh; h~a,b,c

ehdZh=dt~Ph{ lhzkhð ÞZh{xdh ZaZbZc{ldYdð Þ

ð32Þ

Here we have defined Yd~yd=pas. The steady state solutions to

this equation can be obtained by solving the following set of

polynomial equations.

mh

�
mhz ZhsZqsZks

�
ld

� �nh
� �

{bhgh~0; Zms~gm= lmzkmð Þð33Þ

Here various modified and new parameters are defined as

follows.

ed~cpa

�
pcspbsldf ; xdh~ldf pqspks

�
lhf ; wd~ldr

�
ldf pcspbs;

xh~p
nk{1
as dhzkhf

.
ldf pbspcs

In these equations similar to Eqs (31) for each value the

subscript ‘h’ from the set (a, b, c), the subscripts q and k will take

the remaining values. This means that when h = a then q = b and

k = c and so on for other values.

Perturbation-responses of various gene oscillators
Sample trajectories and phase portraits of GG oscillator for

va~ 0,2|10{4
� �

are shown in Figures 3A1-3 and 4A1-3.

Irrespective of the type of initial conditions and magnitude of

the control parameters, the trajectories always start with an

overshoot of protein production that is followed by asymptotic

spirals towards a stable limit cycle. This seems to be an inherent

property of negatively self-regulated loops [9]. Figures 3B1-4
and 4B1-4 suggest that there exists an optimum range of Group I

parameters va~ 4{12ð Þ|10{4 and wa,eað Þ [ 0:2,1:8ð Þ at which

the critical Hill coefficient (Cna) that is required to generate self-

sustained oscillations is a minimum which is in turn strongly

dependent on the promoter state occupancy parameter ma. This

optimum range is also dependent on the values of other Group II

and III parameters. The optimum range of the conversion

parameter seems to be la [ 0:6{1:4ð Þ. Results suggest that strong

binding conditions ma
~22|10{4 (va=0) and mav10{12 (va~0) are

required to minimize the value of critical Hill coefficient with

respect to changes in Group I type parameters. The minimum

achievable values of critical Hill coefficients seems to be Cna~6
(va=0) and Cna~9 (va~0). When there is an additional

dimerization step as described in Eqs (4–5) corresponding to

the negative-feedback-only (NFO) model considered in reference

[25], the minimum achievable critical Hill coefficient seems to be

Cna~3. One should note that in the Lac I oscillatory system the

effective Hill coefficient is na~4 since four dimers of lac I end-

products involved in the overall negative feedback. Numerical

analysis of this NFO model system using the physiological range of

parameters as given in Table 1 suggests that the period of

oscillator can be well tuned by changing the promoter state affinity

ma of the repressor without compromising the amplitude much as

shown in Figure 3C1.
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Figure 4B4 shows the strong influence of sa on the critical Cna

which means that the approximation (sa~0) as in case of most of

the earlier studies on various genetic oscillators is not a valid one.

At the critical Hill coefficient, the period as well as amplitude of

oscillations are strongly dependent on the Group I parameters as

shown in Figures 5A1-3. These results also demonstrate how the

oscillator responds to temporal perturbations is Group I param-

eters. As we have shown in the theory section, the period of

oscillations increases with increase in the Group I parameters

whereas the amplitude seems to decrease as the value of Group I

parameters increase. One should note that square of period of

oscillation is inversely proportional to the total energy of an

oscillator whereas the total energy is directly proportional to the

square of amplitude. This means that the total energy of a GG

oscillator can be fine-tuned by perturbing the Group I parameters.

The Goodwin-Griffith oscillator seems to abruptly enter into the

modified limit-cycle orbit upon introducing the perturbation and

relax back much faster upon removal of perturbation in the

parameter va~0 rather than perturbations in other parameters

wa,eað Þ. In the latter cases, as shown in Figures 5A2-3 the

relaxation of oscillator to the original orbit upon removal of

perturbation seems to be through slow asymptotic spirals.

Figure 5B1 suggest that the period of oscillations increases

monotonically with respect to increase in the value of Group I

parameters as we have predicted in the theory section. When

va=0 then there exists a range of wa [ 0:3,1ð Þ at which the period

of limit cycle oscillations and the required Cna are almost

independent of changes in wa. Figure 5B2 shows that when

va=0 then the period of oscillations linearly increases as sa

increases whereas it linearly decreases with increase in sa when

va~0.

The dual feedback motif (Figures 2B1-3) is an adaptable one

that can act as a toggle switch as well as an oscillator depending on

the type of configuration. As we have shown in the theory section,

the configuration depicted in Figure 2B1 requires identical

values of all the control parameters as well as initial conditions

to generate coupled as well as synchronized oscillations. Particu-

larly this configuration can efficiently act as a toggle switch since

the fixed point ga~gb is an unstable one and even small

perturbations in the parameters or initial conditions is enough

for the system to exit from the synchronized limit cycle oscillations

around this unstable fixed point and subsequently move towards

any one of the two stable steady states. The configurations given in

Figures 2B2-3 can act as coupled oscillators. Sample trajectories

and phase portraits of one-to-one coupled oscillators correspond-

ing to the configuration given in Figure 2B1 are shown in

Figures 6A1-6. The minimum achievable value of the critical

Hill coefficient that is required to generate self-sustained oscilla-

tions around the unstable fixed point (ga~gb) of dual feedback

oscillator seems to be Cnh = 5 that is closer (Cnh = 6) to the critical

value corresponding to GG oscillator. Variations of critical Hill

coefficient with respect to changes in combination of different

groups of control parameters are shown in Figures 6B1-8.

Results suggest that the minimum value of critical Hill coefficient

that is required to generate self-sustained oscillations can be

achieved only when mhƒ2|10{4 and wh,ehð Þ [ 0:5,2ð Þ. Fig-

ure 6B1 also suggests that the inequality condition vhw4|10{6

is required for oscillations. From Figure 6B2 we find that Cnh is

also independent on the changes in the ordinary perturbation

parameter xh. However it is strongly dependent on sh and the

condition shƒ0:3 is required to achieve the minimum value of

critical Cnh. Results suggested that when there are identical

perturbations in the given control parameter, then the one-to-one

coupled oscillator (Figure 2B1) behaves similar to that of GG

oscillator. That is to say the period of oscillations increases and

amplitude decreases with an increase in Group I parameters. Here

the identical perturbations are such that for the parameter wh we

have wh [ whzdwh where wa~wb prior to perturbation and the

magnitude of perturbation is such that dwa
~dwb

. When any of

these two conditions fails, then the system will be driven towards

the corresponding stable steady state.

Upon receiving a transient pulse of perturbation or imbalance

in the control parameters the dual feedback oscillator exits from

the limit-cycle orbit with a time-delay (tdel) and subsequently

reaches one of the stable steady-states via asymptotic spirals. Here

the target steady state is dependent on the type of disproportion in

the parameter values among TF genes A and B. For example

when the perturbation is from ma~mb towards mavmb then the

target steady-state will be gawgb since the binding of TF end-

product B at the promoter of TF gene A is stronger than the

binding of end-product A at the promoter of TF gene B. It seems

that the value of this time-delay is dependent on the extent of

disproportion (pk, where the subscript ‘k’ denotes the control

parameter under consideration such as mh) as well as duration of

the perturbation (tw) in control parameters or initial conditions

associated with the TF genes A and B. Here the percentage of

disproportion or imbalance with respect to the parameter kb that is

associated with TF gene B is defined as pk~100Dka{kbD=kb.

Figure 6C shows the variation of the time-delay with respect to

changes in the extent of disproportion (pm) in the control

parameter mh and duration of perturbation tw. It seems that tdel

approaches zero independently upon increase in both tw and pk.

Further simulation results suggest that the time-delay tdel is

independent on the time (tpulse) at which the perturbation in the

control parameter is introduced into the system.

Contrasting from the configuration given in Figure 2B1, the

limit-cycle orbits of the coupled oscillators depicted in Figur-
es 2B2-3 are robust against transient imbalances in the control

parameters. The minimum achievable value of the critical Hill

coefficient seems to be Cnh = 4 for the oscillator with A-OR-B type

logic (Figure 2B2) whereas Cnh = 2 for the coupled oscillators

with A-AND-B type logic (Figure 2B3). Results suggest that the

limit cycle orbit of coupled oscillators with A-AND-B and A-OR-B

type logics are stable one. When there are temporal perturbations

in Group I parameters associated with one of the Goodwin

oscillators (TF gene A/B) then the other unperturbed oscillator

responds to the changes in the behavior of the perturbed oscillator

depending on the type of logical coupling between them. As shown

in Figures 7A1-2, B1-2 and C1-2 in case of A-OR-B coupling

an increase in the magnitude of Group I parameters associated

with one of the oscillators A/B does not change the period of the

entire system of oscillators (period-buffering) though there is a

decrease in the amplitude of the oscillator that is perturbed in

wh,ehð Þ. The decrease in the amplitude might be partially owing to

the period-buffering effect. In case of A-AND-B type logical

coupling, increase in the magnitude of Group I parameters wh,ehð Þ
increases the period of oscillations and decreases the amplitude of

the entire system of oscillators that includes both TF genes A/B.

Figures 8A1-4 suggest that an increase in the parameter vh of

one of the oscillators initially increases the amplitude of other

oscillator to a maximum which then decreases later. Perturbations

in Group I parameters wh,vhð Þ associated with one of the

oscillators A/B also results in a phase-shift in cases of both A-

AND-B and A-OR-B type logical couplings as shown in

Figures 7-8A1-2 and B1-2. Whereas perturbation in eh affects

only the amplitude and does not affect the phases of the coupled

oscillators A and B as shown in Figures 7-8C1-2. Here one

should note that in case of A-OR-B type coupling the parameter vh
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will be split into vh [ vhh,vhkð Þ where we have the indices

h,kð Þ~a,b as given in Eqs (21). Above results corresponding to

A-OR-B type logical coupling with respect to changes in the

parameter vh are valid only when the temporal perturbations are

the same for a given promoter of TF gene A/B. This means that

for TF gene A (here we have subscript k~a) the extent of

perturbation should be the same for both vaa and vab while the set

of parameters associated with the TF gene B (k~b) remains

unperturbed. Here one should note that vhh controls the dynamics

associated with the binding of end-product of TF gene ‘H’ at its

own promoter whereas vhk controls the dynamics associated with

the binding of end-product of TF gene ‘K’ at the promoter of TF

gene ‘H’ as we have shown in Eqs (21). When there are

perturbations in only one of these two split parameters (as

va[ vaa,vabð Þ) then the coupled system of oscillators seems to be

dynamically unstable and also produces modulated beats as shown

in Figures 7A3-4. The period of such beats increases as the

imbalance in the set of split parameters vhk increases as shown in

Figures 7A5-6. These dynamical instabilities as well as beats

abruptly disappear once the perturbations in vhk are removed.

Whereas the system of coupled oscillators relaxes back to the initial

unperturbed limit-cycle orbit through asymptotic spirals upon

removal of perturbations in case of Group I control parameters

wh,ehð Þ. Results from Figures 7 and 8 suggest that coupled

oscillators with -AND- type logic are more robust against

promoter state perturbations than the -OR- type coupling. Period

of a network of oscillators can be easily fine-tuned by manipulating

merely one of the oscillators when the mode of coupling is via -

AND- type.

Sample trajectories and phase portraits of a repressilator

configuration given by Figure 2C1 are shown in the Figures
S1A1-5 in File S1. The minimum achievable value of the critical

Hill coefficient for the repressilator seems to be Cnh = 2 similar to

that of a one-to-one feedback oscillator with A-AND-B type logical

coupling. As we have shown in the theory section, the steady state

fixed point is more stable when the parameters and initial

conditions are identical for all the TF genes A/B/C. When there is

a transient perturbation in the control parameters then the system

leaves the steady state and enters into a stable limit-cycle orbit

through asymptotic spirals with a time delay tdel as shown in

Figure S1A4 in File S1. Here the magnitude of this time delay

seems to be directly proportional to the extent of imbalance or

disproportions in the parameter values as shown in Figure S1A4
in File S1. Perturbation in the control parameter vh associated

with any one of the TF genes A/B/C results in the decrease of

amplitude of the perturbed as well as the one that regulates it.

However perturbation in vh does not affect the period of

oscillations of the entire system of TF genes as shown in Figures
S1B1-2 in File S1. This means that when va is increased then the

amplitudes of oscillations of TF genes A and C decrease whereas

the amplitude of B is not affected. Perturbation in the control

parameters wh,ehð Þ associated with any one of the TF genes A/B/

C decreases the amplitude of oscillations of the TF gene that is

regulated by the end-product of the perturbed TF gene and

increases the amplitude as well as width of oscillations of the TF

gene that is regulating the perturbed gene. This means that when

wa,eað Þ increases then the amplitude of oscillations of TF genes A

and B decreases whereas the width and amplitude of TF gene C

increases. Further results show that an increase in wh,ehð Þ of any

one of the oscillators increases the period of oscillations of the

entire system of oscillators as shown in the supplementary

information Figures S1B3-4 in File S1.

Sample trajectories and phase plane portraits associated with

the configuration given in Figure 2C2 are shown in Figures
S2A1-3 and SB1-4 in File S1. Contrasting from three TF genes

repressilator model (Figure 2C1) the configurations given in

Figures 2C2-3 do not require any asymmetry in the values of

control parameters or initial conditions to trigger the stable

oscillations. When the mode of coupling of TF genes A/B/C of

GG oscillators is through -OR- type logic then in the presence of

identical values of all the sets of control parameters the TF genes

A/B/C oscillate in a synchronized manner with respect to period

and amplitude. When there is a perturbation in set of the control

parameters vhq (here vh will be split into vhh,vhq

� �
for each

promoter) associated with any one of the TF genes A/B/C then

there are at least three different phases of responses. In the first

phase, as shown in Figures S2B1-2 in File S1 the system tries to

resist the perturbation by keeping the synchronized limit-cycle

orbit intact whereas in the second phase the system becomes

unstable and chaotic whose magnitude depends on the extent of

perturbation. Upon removal of perturbation, in the third phase the

system enters into new asynchronous limit-cycle orbit with stable

phase differences among the TF gene oscillators. When there is a

perturbation in one of the split parameters vhh,vhq

� �
, then as

shown in Figure S2B1 in File S1 the second phase will have

several repeating elements of resistance and instability. Perturba-

tion in the control parameters wh,ehð Þ seems to have similar effects

which are evident from Figures S2B3-4 in File S1. Contrasting

from these results, the oscillator depicted in Figure 2C3 seems to

be more robust against changes in the Group I control parameters

and also they return back to the initial coherent type limit-cycle

orbit upon removal of perturbations as shown in Figures S2C1-2
in File S1. Sample trajectories of fully interconnected configu-

rations given in Figures 2C2-3 (with dashed lines) are shown in

Figures S3A1-3 and SB1-3 in File S1. These results suggests

that the fully interconnected three TF genetic oscillator will be

more stable against perturbations in the critical control parameters

when the mode of coupling is through -AND- type logic than the -

OR- type logic.

Tuning capabilities of A-AND-B (Figure 2B3) and A-OR-B

(Figure 2B2) type coupled dual feedback oscillators are demon-

strated in Figures S4A-D and S4A-D in File S1. These results

Figure 3. Dynamical aspects of generalized Goodwin-Griffith oscillator. A1. Phase portraits of Goodwin-Griffith oscillator as described by
Eqs (4). One needs to substitute Q = M (scaled concentration of mRNA) for red line, Q = X (promoter occupancy) for blue line and Q = Z (end-
product) for pink line. Simulation settings are ma~2|10{4 , va~10{3 , sa,ka,xað Þ~0 and we set ea,la,wað Þ~1 which required a critical Hill coefficient
of Cna = 6 to generate oscillations. Total simulation time is 100 (measured in terms of number of lifetimes of the protein product of TF gene A) and
integration step is Dt~10{5 . A2. Trajectories corresponding to the settings in A1. A3. Roots of the (biquadratic) characteristic polynomial (PI)
associated with the Jacobian matrix for settings in A1. B1. Variation of critical Hill coefficient with the parameter set ma,vað Þ. Minimum of this critical
value seems to be achieved at ma*10{4 , and va*10{3 . B2. Variation of critical Hill coefficient with the parameter set ma,eað Þ. With the optimized
settings in B1, the system seems to be robust when ea [ 0:2,2ð Þ. B3. Variation of critical Hill coefficient with the parameter set ma,wað Þ. With the
optimized settings in B1, the system seems to be robust when wa [ 0:2,2ð Þ. B4. Variation of critical Hill coefficient with the parameter set ma,lað Þ.
Default values of other parameters in B1-4 are as in A1. C1. Variation of period and amplitude of the negative-feedback-only model considered in
reference [25] with respect changes in the promoter affinity parameter ma . Simulation settings are given in Table 1. Red solid line in the period and
blue solid line is amplitude of the oscillator.
doi:10.1371/journal.pone.0104328.g003

(35)
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show that A-AND-B type coupled oscillators can be tuned by

changing the promoter state binding parameter mh efficiently

without conceding on the amplitude of oscillations. Increase in mh

monotonically decreases the amplitude (and increases the period)

of A-OR-B type coupled oscillators. Whereas A-AND-B type

oscillator shows two distinct regions of responses with respect to

changes in mh namely a responsive region and nonresponsive

region. For the settings in Figure S4B in File S1, the A-AND-B

Figure 4. Dynamical aspects of standard Goodwin-Griffith oscillator. A1. Phase portraits of the regular Goodwin oscillator as described by
Eqs (13). Q = M for red line and Q = Z for pink line. Simulation settings are sa,kað Þ~0, mae10{12and ea,la,wað Þ~1 which require a critical Hill
coefficient of Cna = 9. Total simulation time is 100 (measured in terms of number of lifetimes of the protein product of TF gene A) and integration
scaled-time step is Dt~10{5 . A2. Trajectories corresponding to the settings in A1. A3. Roots of the (cubic) characteristic polynomial (PII) associated
with the Jacobian matrix for settings in A1. B1. Variation of critical Hill coefficient with the parameter set ma,wað Þ. With the optimized settings in B1,
the system seems to be robust when wa [ 0:3,2:5ð Þ. B2. Variation of critical Hill coefficient with the parameter set ma,eað Þ. With the optimized settings
in B1, the system seems to be robust when ea [ 0:5,1:5ð Þ. B3. Variation of critical Hill coefficient with the parameter set ma,lað Þ. B4. Variation of
critical Hill coefficient with the parameter set ka,sað Þ. Default values of other parameters in B1-4 are as in A1.
doi:10.1371/journal.pone.0104328.g004
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system responds to the perturbations in mh when mh,1025. When

mh.1025 then changes in mh will not affect the period of

oscillations much. On the other hand the amplitude (measured

in terms of Ph/Phs) of A-AND-B oscillator is $1 in a wide range of

mh as well as wh values. Further A-OR-B type coupled oscillators

behaves similar to that of single GG oscillator with respect to

changes in the perturbation of Group I parameter wh. In case of

both types of coupled oscillators the amplitude seems to be

inversely proportional to the critical Cnh rather than the period of

oscillations as it is apparent from Figures S4C and D in File S1
and there exists an optimum value of Group I parameter wh at

which the amplitude of oscillations is a maximum. Figures S5A-
D in File S1 shows that increase in Group I parameter vh

increases the period of oscillations and decreases the critical Cnh in

both -AND- and -OR- type coupled oscillators. However the

period of -AND- type oscillator seems to be more robust against

changes in vh than -OR- type coupled dual feedback oscillator.

Contrasting from these there exist a cutoff value of eh,2 (for the

simulation settings in Figure S5 in File S1) beyond which the

amplitude of oscillations is practically zero in both types of coupled

oscillators that is apparent from Figures S5C and D in File S1.

The discontinuities in plots depicted in Figures S4 and S5 in
File S1 mainly originate from the fact that each data point

belongs to different values of critical Hill coefficients. For example

upon iterating the perturbation parameter, we first find out the

critical Hill value for the perturbed values and then obtain its

amplitude and period of the perturbed system with newly

calculated hill coefficient. This means that each data point in

those plots comes from altogether different dynamical systems

since the Hill coefficients are different. Therefore we may not

expect continuous type plots either.

Discussion

Transcription factor gene oscillators play critical roles in driving

cell-cycle to circadian rhythms. Here we have identified the critical

control parameters associated with self-sustained oscillations of

such oscillators and classified them into Groups I, II and III

depending on their functionality. Group I parameters control the

intracellular dynamics of synthesis and degradation of various

molecules associated with regulated TF gene (Figure 1). The

parameter wh of Group I describes the strength of coupling

between the rate of degradation of mRNAs and the rate of

degradation of corresponding TF proteins. We should note that

transcription and translation of various TF genes of prokaryotes

are simultaneously taking place well within the cytoplasm whereas

in case of eukaryotes the transcription is taking place inside the

nucleus and the synthesized pre-mRNA transcripts need to be

spliced within the nucleus and then transported to cytoplasm after

other post-transcriptional modifications through nuclear pores for

translation. These differences in the cellular architecture demands

higher lifetimes (1/cmh) for eukaryotic mRNAs than the prokary-

otic ones which results in the general observation that the values of

wh associated with various genes in prokaryotes are lower than

eukaryotes genes [36], [37]. It seems that in case of yeast, the

genome-wide values of wh varies from 0.1 to 1 with a median of

,0.3 [36]. These observations suggest that the naturally occurring

or synthetic oscillatory motifs in the transcription networks should

operate well within this range of wh [ 0:1,1ð Þ with different

median values depending on the type of organism. For most of the

bacterial genes we find that wh e 0:1 [8], [9]. The parameter va

describes the dynamics of binding-unbinding of the end-product

molecule with the promoter of TF gene A. Large values of va

indicate slower changes in the residence state of promoters

whereas small values indicate the faster dynamics of the promoter

state towards the equilibrium. Earlier studies suggested [8], [9] a

typical physiological value of va as va e 10{4 for a prokaryotic self-

regulatory systems (na = 1) such as the one in E. coli. Whereas in

case of eukaryotic systems such as yeast and human its value will

be scaled up respectively to va e 10{3 and va e 10{2 owing to

dilution in the local concentrations of various molecules upon

increase in the nuclear volumes. One should note that yeast

nucleus is ,101 times higher than E. coli cell whereas human cell

nucleus is ,102 times higher than E. coli cell. The parameter ea

describes the dynamics associated with of conversion of the protein

product to end-product towards the equilibrium. This conversion

reaction can be either a first-order conformational transition or

pseudo first-order chemical modification of the protein product via

an additional catalyst. Here ea also acts as an indirect delay

parameter that in turn relates the protein decay rate with the

conversion rate. One should note that the binding-parameter ma is

the central one that connects the entire Group I type singular

perturbation parameters. By definition ma is inversely proportional

to the affinity of the end-product towards the promoter sequence.

Along with ma the ordinary parameters sa,la,kað Þ decide the

steady state value of TF protein. Further one should note that ma

(or mh in general) is the only parameter that can be externally

modified in a working model and all the others are fixed system

parameters which can be modified only at the time of designing

the oscillatory module. In case of Lac based oscillators ma can be

modified through changing the concentration of IPTG [25] which

is a gratuitous inducer of lacI gene.

Understanding the design principles associated with the genetic

oscillator is one of the central topics in synthetic and systems

biology. An efficient synthetic oscillator should be robust against

transient perturbations in the control parameters and fluctuations

in the promoter state occupancies. The period of oscillators should

be easily tunable without compromising the amplitude. Stricker

et.al in reference [25] suggested that the robustness of the dual-

feedback oscillators depicted in Figures 2B4-5 can be further

increased by the explicit delay owing to the oligomerization steps

associated with the end-products of TF genes A/B (here gene A

can be lacI and gene B can be araC). Further studies by Tsai et.al

Figure 5. Perturbation responses of Goodwin-Griffith oscillator. A1. Effects of perturbations in va on the limit-cycle orbit of GG oscillator. The
default simulation settings are ma~2|10{5 and va~5|10{5 , sa,ka,xað Þ~0, ea,la,wað Þ~1 which required a critical Hill coefficient of Cna = 6.
Perturbation introduced in the interval from time 30 to 100 by abruptly raising the value to va~10|10{5 . Increase in va increases the period and
reduce the amplitude of oscillations. Total simulation time is 200 (measured in terms of number of lifetimes of the protein product of TF gene A) and
integration step is Dt~10{5 . A2. Effects of perturbations in wa. The default simulation settings are as in A1. Perturbation introduced in the interval
from time 30 to 100 by abruptly raising the value to wa~2. Increase in wa increases the period and reduce the amplitude. A3. Effects of perturbations
in ea . The default simulation settings are as in A1. Perturbation introduced in the interval from time 30 to 100 by abruptly raising the value to ea~2.
Increase in wa increases the period and reduce the amplitude. B1. Effects of variation of wa on the period and critical Hill coefficient that is required to
generate oscillations. With the current default settings, there exists a range of wa [ 0:5,2ð Þ at which the critical Hill coefficient is minimum. B2. Effects
of variation of sa on the period and critical Hill coefficient. Both period of oscillations and critical Hill coefficient are linearly dependent on sa and one
cannot assume sa~0 as in cases of several earlier studies.
doi:10.1371/journal.pone.0104328.g005
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Figure 6. Dynamics of one-to-one cross feedback oscillator. A1-2. Phase portraits of TF genes A and B which are coupled through one-to-one
cross feedback loops. Simulation settings are sh,kh,xhð Þ~0, eh,lh,wh,rhð Þ~1, mh~10{5 and vh~5|10{5 which required a critical Hill coefficient of

Cna = 6. Total simulation time is 100 (measured in terms of number of lifetimes of the protein product of TF gene A) and integration step is Dt~10{5 .
A3-4. Trajectories of TF genes A and B. Perturbation in ma was introduced at tpulse~20 by abruptly raising ma to maz10{8 for a period of tw~10{3 .

This corresponds to a disproportion of pm~10{1 (%). The system quits the limit-cycle orbit with a delay of tdel&50. Other default simulations settings
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in reference [35] suggested that unlike pure negative feedback

systems, inclusion of a positive feedback loop within the negative

feedback oscillators (Figure 2B4-5) can increase the robustness

and tunable nature of the original oscillator without compromising

on the overall amplitude. Here the positively auto regulated TF

gene acts as a booster for the overall protein level of the negatively

self-regulated oscillatory TF protein. In this context one can also

consider a positive coupling of a positively auto-regulated TF

protein K (booster) with N-N or NN-NN type dual feedback

oscillators as depicted in Figure 2B6. Upon analyzing various

classes of oscillators depicted in Figure 2 one can conclude that

the effects of perturbations in the control parameters and

promoter state fluctuations will be minimum when the mode of

coupling among network of oscillators is through -AND- logic.

From Figures S4 and S5 in File S1 we find that the A-AND-B

coupled dual feedback oscillator can be externally tuned by

modifying the promoter state binding mh without conceding on the

amplitude of oscillations. The inherent chaotic response of the -

OR- type coupled oscillators could be one of the reasons why the

oscillations of most of the synthetic oscillators disappeared after

certain period of time [18], [24] under in vivo conditions.

Nevertheless the overall period of network of oscillators coupled

through -OR- type logic are more resistant (period-buffering) to

perturbations in the control parameters than the oscillators

coupled through -AND- type logic. One should note that the

temporal perturbations in the system parameters ultimately result

in perturbations in the intra cellular concentrations of protein end-

products of coupled TF genes that in turn are looped back into the

system. In this context the -OR- type coupled genes respond to

perturbations in an additive way whereas those genes coupled

through -AND- type logic respond in a multiplicative way. This

could be the reason why the period of oscillations of -OR- type

coupled oscillators are more resistant to perturbations than -AND-

type coupled oscillators. This means that the period of network of

oscillators coupled through -AND- type logic can be more easily

tuned by perturbing any one of the coupled oscillators. Depending

on the circuit functionality one can also chose a combination of

both the types of coupling. So far we have assumed a copy number

of TF genes as one (dhz = 1). This may not be true in the bacterial

based synthetic circuits constructed on plasmids since the plasmid

copy number will be more than one in most of the times which can

lead to further complexity. For example, a plasmid copy number

of two for a NFO model that was constructed in reference [25] can

mimic a combination of oscillators depicted in Figure 2B2 and

2B3 with TF gene A = B since it can mimic both -AND- as well

as -OR- type coupled GG oscillators. This could be one of the

possible reasons for observing stable and robust oscillations with

such constructs [25] over several bacterial generations.

In summary, in this paper we have considered various types of

transcription factor oscillators by explicitly incorporating the

promoter state dynamics and other chemical reaction balances in

detail. Using our detailed model we have identified and classified

various critical control parameters and numerically obtained their

physiological and optimum ranges to generate self-sustained

oscillations in the intracellular levels of mRNAs and transcription

factor proteins. We further derived the basic design principles

associated with robust and tunable gene oscillators. We have

further demonstrated that by coupling two or more independent

Goodwin-Griffith oscillators via -OR- or -AND- type logics one

can construct genetic-oscillators which are fine-tunable and also

robust against perturbations in the system parameters. When there

is a perturbation in one of the -OR- type coupled oscillators, then

the overall period of the system remains constant whereas in case

of -AND- type of coupling the overall period of the system moves

towards the perturbed oscillator. Though there is a period-

buffering, the oscillators coupled through -OR- type logic seems to

be more sensitive to perturbations in the parameters associated

with the promoter state dynamics than -AND- type.

Materials and Methods

We use Euler type numerical scheme [8], [9], [38] to integrate

the set of differential rate equations corresponding to various types

of oscillatory loops. For example in case of Eqs (4) which describe

the Goodwin-Griffith model, the numerical integration scheme

can be written as follows.

Xa,iz1~Xa,iz Za,i
na 1{Xa,ið Þ{maXa,ið ÞDt=va

Ma,iz1~Ma,iz 1{Xa,ið Þ{Ma,ið ÞDt=wa

Pa,iz1~Pa,iz Ma,i{Pa,i{sa Pa,i{laZa,ið Þð ÞDt

Za,iz1~

Za,iz Pa,i{ lazkað ÞZa,i{xa Za,i
na 1{Xa,ið Þ{maXa,ið Þð ÞDt=ea

ð34Þ

Initial and boundary conditions are Xa,Ma,Pa,Zað Þ~0 and

Xa,Ma,Pa,Zað Þƒ1 respectively. The scaled time step Dt should

be chosen such that it captures the dynamics of all the variables

including the dynamics of promoter state occupancies (first one in

Eqs (34)). We divide the total scaled simulation time T into N
equal intervals such that Dt = T/N. For simulation purpose we set

Dt = 1025 and the corresponding Dt = 0.03 s for a lifetime 1/

cpa,60 mins. We use Newton’s method [38] to find the fixed point

solutions to steady state equations. Here to obtain the solution to a

nonlinear algebraic equation f xð Þ~0 one uses the iterative

scheme xiz1~xi{f xið Þ=f 0 xið Þ. For example, the iterative

numerical scheme to obtain the fixed point solution Pa~ga to

Eqs (9) particularly for naw4 can be written as follows.

ga,iz1

~ga,iz ma{baga,i mazyagna
a,i

� �� �.
maz naz1ð Þgna

a,iya

� �
;

ya~ lazkað Þ{na

In this numerical scheme we set the initial guess value of the

fixed point solution as ga,i~0~0 and the tolerance limit for

stopping iteration as Dga,i{ga,iz1Dƒ10{5. We can use the

following computational workflow. For example, in case of one-

to-one dual feedback oscillator one needs to construct the eighth

dimensional Jacobian matrix associated with Eqs (18) as follows.

are as in A1-2. Q = X for red line, Q = M for green line and Q = P for blue line. A5. Phase portraits of TF genes A and B. Q = P for red line, Q = M for
blue line and Q = X for green line. A6. Roots of the eighth dimensional characteristic polynomial derived from the Jacobian matrix associated with
Eqs (18) for the parameter settings given in A1-2. B1-8. Variation of critical Hill coefficient that is required to generate oscillations with respect to
changes in various control parameters. Default settings of other parameters are as in A1-2. C. Variation of tdel with respect changes in percentage of
disproportion pm and pulse width tw.
doi:10.1371/journal.pone.0104328.g006

(35)
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JOTO~

{ga=va 0 0 0 0 0 0 Aa=va

{1=wa {1=wa 0 0 0 0 0 0

0 1=ra { 1zsað Þ=ra sala 0 0 0 0

0 0 1=ea {ca=ea xagb=ea 0 0 0

0 0 0 Ab=vb {gb=vb 0 0 0

0 0 0 0 {1=wb {1=wb 0 0

0 0 0 0 0 {1=rb { 1zsbð Þ=rb sblb

{ga=eb 0 0 0 0 0 1=eb {cb=eb

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Here subscripts (a, b) denotes the TF genes A and B respectively.

Various matrix elements are defined as follows.

Ah~mh kkzlkð Þ 1{bhghð Þnk=gk; gh~mh=bhgh;

ch~khzlhzxhAk

In these definitions for h = a, b one needs to substitute k = b, a.

To obtain the critical value of the Hill coefficient (Cna) one need to

first solve the steady state equations. Upon substituting the steady

state protein values into to the corresponding Jacobian matrix one

can construct the characteristic polynomial and the Routh table.

The corresponding inequality conditions for oscillations will be

derived from this table. This procedure need to be carried out at

various values of na from na = 1 in an iterative way. We set the

default initial value of promoter state variable as Xh~5|10{2 for

any one of the TF genes A/B/C to trigger the limit-cycle

oscillations in case of repressilator so that the effect of other Group

I control parameters on the initial delay in oscillations can be

studied. One should note that this initial delay is still a function of

the disproportion in the initial conditions. We measure the

concentrations of various molecules in terms of number of

molecules inside the cell. Considering a typical E. coli bacterial

cell (volume ,10218 m3) [39] we set dhz~1, mhs,102 molecules

and phs,104 molecules [8], [9] where h = a, b and c respectively

denotes TF genes A, B and C. Concentration of a single TF

molecule inside a bacterial cell will be ,2 nM [40–42]. We

assume a lifetime of TF protein as ,2 min and mRNA lifetime as

,0.2 min for E. coli that gives a decay rate of cpa e 10{2s{1 so

that wa = 0.1 and we measure the time in terms of number of

protein lifetimes. Since the dynamics of binding-unbinding of a

single transcription factor protein (na = 1) with its cis-regulatory

site on DNA is a typical diffusion-controlled site-specific DNA-

protein interaction, under in vivo conditions of a bacterial cell we

find that khf e 10{7 molecules21 (cp) that will be scaled down to

the interaction of nh number of TF molecules with sequentially

located combinatorial binding sites as khf [ khf

�
nh

� �
molecules{na s{1 [26], [27]. The time associated with the

unbinding reaction will be closer to that of the protein lifetime.

Here we have assumed an in vivo 3D diffusion controlled collision

rate ,104 M21s21. In case of nucleus of yeast cell khf e 10{8

molecules21 cp
21 and in case of nucleus of human cell we find

khf e 10{9 molecules21 cp
21. Since va,1024 for a typical

bacterial promoter [8], [9] we assume cph

�
pna

askhf

� � e 10{4 for

an arbitrary Hill coefficient na. Using these values one can

estimate the physiological ranges of various groups of control

parameters as given in Table 1. With these settings for a bacterial

lacI (na = 4) system (Eqs. (4–5)) the values of parameters will be

vav10{4 and ma e 10{5. For simplification purpose we can

assume identical values for similar group of parameters nh = nhq,

mh~mhq and so on for other family of parameters such as xh and

eh.

Supporting Information

File S1 This file contains Figure S1-Figure S5. Figure S1.
Three gene repressilator model. A1-4. Phase portraits and

trajectories of TF genes A, B and C of a repressilator. Simulation

settings are sh,kh,xhð Þ~0, eh,lh,wh,rhð Þ~1, mh~10{4 and

vh~10{4 which required a critical Hill coefficient of Cna = 2.

Total simulation time is 200 (number of lifetimes of the protein

product of TF gene A) and integration step is Dt~10{5. To

trigger the oscillations, we have introduced the asymmetry in the

initial condition for the promoter state occupancy of TF gene A as

Xa~5|10{2. Oscillations starts with a time delay tdel whose

value depends of the magnitude of this disproportion in the

parameter values. A5. Roots of the twelfth degree characteristic

polynomial associated with the Jacobian matrix of Eqs (26) for

settings given in A1. B1-2. Effects of perturbation in va that is

raised to va~10{3 (va~10{2 in B2) in the time interval from 0 to

100. Increase in va increases the period of oscillations of the entire

system from tp*23 to 24.5 and reduces the amplitudes of TF

genes A and C. The amplitudes of TF genes A/B/C are such that

A,C,B. B3-4. Effects of perturbation in wa,eað Þ which are raised

to wa~3 in the time interval from 0 to 100. Increase in wa

increases the period of oscillation of the entire system from tp*23

to 30 and reduces the amplitudes of TF genes A and B and

increases the amplitude of C and the amplitudes of TF genes are

such that B,A,C (B3). Increase in ea increases the period of

oscillation of the entire system as in B3 where the amplitudes of TF

Figure 7. Dynamics of dual feedback Goodwin-Griffith oscillators coupled through OR gate. A1-2. Trajectories of protein-products of TF
genes A and B which are two independent GG oscillators coupled through A-OR-B type logic as given in Figure 2B2. Simulation settings are
sh,kh,xhq

� �
~0, eh,lh,wh,rhð Þ~1, mh~10{5and vh~10{5which required a critical Hill coefficient of Cna = 8. Total simulation time is 200 (number of

lifetimes of the protein product of TF gene A) and integration step is Dt~10{5 . For each promoter A/B the parameter vh will be split into
vh[ vhh,vhq

� �
where vhh corresponds to self-regulation and vhq corresponds to cross regulation. Under identical values of all the parameters the

system generates synchronized oscillations with a period of tp*4:5. Upon introduction of perturbation in va from scaled time 0 to 100 (where

va~15|10{5), the amplitude of TF gene A is reduced with a phase shift and the period of entire system that includes both TF genes A and B remains
the same. A2 is a magnification of certain range of A1. A3-4. Effect of perturbation in only one of the split parameters vhh,vhq

� �
associated with TF

gens A/B. Here vaa is perturbed to vaa~15|10{5 . The system seems to be unstable and generates beats. A4 is a magnification of certain range of A3.
A5-6. Here vaa is perturbed to vaa~30|10{5 . Period of beats seems to increase as the disproportion among the split parameters increases. A6 is a
magnification of certain range of A5. B1-2. Effect of perturbation in the parameter wa which is raised to wa~1:5 from the default value in the interval
from 0 to 100. Increase in wa reduces the amplitude of both the TF genes A and B with a phase shift and the period of oscillations of the entire system
remains the same as in A1-2. B2 is a magnification of certain range of B1. C1-2. Effect of perturbations in the parameter ea which is raised to ea~1:2
from the default value in the time interval from 0 to 100. Increase in ea reduces the amplitude of both the TF genes A and B without a phase shift and
the period of oscillations of the entire system remains the same as in A1-2. C2 is a magnification of certain range of C1.
doi:10.1371/journal.pone.0104328.g007

Theory on the Dynamics of Oscillatory Loops

PLOS ONE | www.plosone.org 21 August 2014 | Volume 9 | Issue 8 | e104328



Figure 8. Dynamics of dual feedback Goodwin-Griffith oscillators coupled through AND gate. A1-4. Trajectories of protein-products of
TF genes A, B which are two independent GG oscillators coupled through A-AND-B type logic as given in Figure 2B3. Simulation settings are
sh,kh,xhq

� �
~0, eh,lh,wh,wd ,rhð Þ~1, mh~10{5and vh~10{5 which required Cna = 2 (here we have set nh = 4 for clarity of results). Total simulation

time is 200 (number of lifetimes of the protein product of TF gene A) and integration step is Dt~10{5 . Under identical values of all the parameters
the system generates synchronized oscillations with a period of tp*9. Upon introduction of perturbation in va from scaled time 0 to 100 (where
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genes A/B/C are such that B,A,C (B4). Figure S2.
Dynamics of three independent Goodwin-Griffith oscil-
lators cyclically coupled. A1-3. Phase portraits of TF genes A/

B/C which are three independent GG oscillators cyclically

coupled through -OR- type logic as given in Figure 2C2 (without

dashed lines). Simulation settings are sh,kh,xhð Þ~0,

eh,lh,wh,rhð Þ~1, mh~10{5 and vh~10{4 which required a

critical Hill coefficient of Cna = 5 (we have set this to 6 for clarity of

results). Total simulation time is 500 (number of lifetimes of the

protein product of TF gene A) and integration step is Dt~10{5.

In this configuration the end-products of TF gene A and C will

regulate TF genes A through A-OR-C type logic whereas the

promoter of TF gene B will be regulated by the end-products of

TF genes A and B through A-OR-B type logic and so on. Under

identical values of all the parameters the system generates

synchronized oscillations with a period of tp*7. B1-2. Effects of

perturbation in vh. Upon introduction of perturbation in vaa from

scaled time 100 to 400 (where va~6|10{4) there three phases of

responses. In the first phase, the system tries to resist the

perturbation whereas the second phase consists of repeating

elements of resistance and chaos. Upon removal of perturbation

the system enters into new limit-cycle orbit in the third phase. In

B2 both vaa and vac are perturbed as in B1. B3-4. Effects of

perturbation in wa,eað Þ which are raised to ea,wað Þ~2 in the time

interval from 100 to 400. System responds to the perturbation as

in B1-2. C1-2. Trajectories of TF genes A/B/C which are three

independent GG oscillators cyclically coupled through -AND- type

logic as given in Figure 2C3 (without dashed lines) and their

responses to perturbations in Group I control parameters.

Simulation settings are sh,kh,xhð Þ~0, eh,lh,wh,wd ,rhð Þ~1,

mh~10{5 and vh~10{4 which required Cna = 2. Total simulation

time is 500 and integration step is Dt~10{5. Identical values of all

the parameters of the system generate synchronized oscillations.

Introduction of perturbation in va from scaled time 100 to 400

(where va~3|10{4, C1) affects only TF gene A whereas the

orbit of other TF genes B/C seems to be stable and upon removal

of the perturbation the system returns back to initial limit-cycle

orbit. In C2 the parameter wa is perturbed to wa~2 as in C1.

Figure S3. Dynamics of three Goodwin-Griffith oscilla-
tors which are fully interconnected. A1-3. Phase portraits of

TF genes A/B/C which are three independent GG oscillators

which are fully interconnected with -OR- type logic as given in

Figure 2C2 (with dashed lines). Simulation settings are

sh,kh,xhð Þ~0, eh,lh,wh,rhð Þ~1, mh~10{5 and vh~10{4 which

required a critical Hill coefficient of Cna = 6. Total simulation time

is 500 (number of lifetimes of the protein product of TF gene A)

and integration step is Dt~10{5. In this configuration all the end-

products of TF gene A/B/C will regulate all the three TFs

through A-OR-B-OR-C type logic. Identical values of all the

parameters of the system generate synchronized oscillations.

Perturbation in va from scaled time 100 to 300 (where

va~5|10{5, A1) seems to make the system unstable. In A2 wa

is perturbed to wa~3 as in A1 and in A3 ea is perturbed to ea~3
as in A1. B1-3. Phase portraits of TF genes A/B/C which are

three independent GG oscillators fully interconnected with -AND-

type logic as given in Figure 2C3 (with dashed lines). Simulation

settings are sh,kh,xdhð Þ~0, eh,lh,wh,rhð Þ~1, mh~10{5 and

vh~10{5 which required a critical Hill coefficient of Cna = 2.

Total simulation time is 500 (number of lifetimes of the protein

product of TF gene A) and integration step is Dt~10{5. In this

configuration all the end-products of TF gene A/B/C will be

regulated by their complex. Identical values of all the parameters

of the system generate synchronized oscillations. Introduction of

perturbation in va from scaled time 100 to 300 (where va~10{4 in

B1) seems to make the system unstable. In B2 wa is perturbed to

wa~3 as in B1. In B3 ea is perturbed to ea~3 as in B1. Figure
S4. Tuning dynamics of A-OR-B and A-AND-B types of
coupled oscillators with respect to perturbations in m
and w. A, C. Tuning capability of GG oscillators coupled

through A-OR-B type logic as given in Figure 2B2. Default

Simulation settings are sh,kh,xhq

� �
~0, eh,lh,wh,rhð Þ~1 and

vh~10{5. B, D. Tuning capability of GG oscillators coupled

through A-AND-B type logic as given in Figure 2B3. Default

Simulation settings are sh,kh,xhq

� �
~0, eh,lh,wh,wd ,rhð Þ~1 and

vh~10{5. Plots A and B show the variation of period, critical Cnh

and amplitude with respect to changes in mh (iterated from

561027 to 1023 with wh = 1) whereas plots C and D show the

variation of these quantities with respect to changes in wh (iterated

from 0.1 to 10 with mh~10{5). Here period of oscillator is

measured in the number of lifetimes of TF protein A (1/ca) and

amplitude is measured in terms of number of Ph/Phs. Figure S5.
Tuning dynamics of A-OR-B and A-AND-B types of
coupled oscillators with respect to perturbations in v
and e. A, C. Tuning capability of GG oscillators coupled through

A-OR-B type logic as given in Figure 2B2. Default Simulation

settings are sh,kh,xhq

� �
~0, eh,lh,wh,rhð Þ~1 and mh~10{5. B,

D. Tuning capability of GG oscillators coupled through A-AND-B

type logic as given in Figure 2B3. Default Simulation settings are

sh,kh,xhq

� �
~0, eh,lh,wh,wd ,rhð Þ~1 and mh~10{5. Plots A and B

show the variation of period, critical Cnh and amplitude with

respect to changes in vh (iterated from 561027 to 1024 with eh = 1)

whereas plots C and D show the variation of these quantities with

respect to changes in eh (iterated from 0.7 to 8 with vh~10{5).

Here period of oscillator is measured in the number of lifetimes of

TF protein A (1/ca) and amplitude is measured in terms of

number of Ph/Phs.
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va~15|10{5 in A1, va~30|10{5 in A3), the amplitude of TF gene A is reduced with a phase shift and the period of entire system (both TF genes A
and B) increases to tp*10 in A1. A2 and A4 are magnifications of certain range of A1 and A3. B1-2. Effect of perturbation in the parameter wa which
is raised to wa~2 from the default value in the time interval from 0 to 100. Increase in wa increases the period of oscillations of the entire system to
tp*9:5 as in A1-2 and reduces the amplitude of TF genes A with a phase shift. B2 is a magnification of certain range of B1. C1-2. Effect of
perturbations in the parameter ea which is raised to ea~10 from the default value in the time interval from 0 to 100. Increase in ea increases the
period of oscillations of the entire system to tp*9:5 as in A1-2 and reduces the amplitude of both TF genes A and B without a phase shift. C2 is a
magnification of certain range of C1.
doi:10.1371/journal.pone.0104328.g008
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