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This study focuses on the development of a computationally efficient algorithm for the offline identification of system

parameters in nonlinear dynamical systems from noisy response measurements. The proposed methodology is built on the

bootstrap particle filter available in the literature for dynamic state estimation. The model and the measurement equations

are formulated in terms of the system parameters to be identified - treated as random variables, with all other parameters

being considered as internal variables. Subsequently, the problem is transformed into a mathematical subspace spanned by

a set of orthogonal basis functions obtained from polynomial chaos expansions of the unknown system parameters. The

bootstrap filtering carried out in the transformed space enables identification of system parameters in a computationally

efficient manner. The efficiency of the proposed algorithm is demonstrated through two numerical examples - a Duffing

oscillator and a fluid structure interaction problem involving an oscillating airfoil in an unsteady flow.
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1 Introduction

Predicting the system response by solving the associated equations of motion, with appropriate initial and boundary con-

ditions, essentially involves the solution of the forward problem and leads to the time history of the system response. In

contrast, identification of the system parameters from the available time history measurements of the system response, is

an inverse problem. The solution of inverse problems is a much more computationally challenging exercise than solving

the forward problem. The difficulties associated with the identification of the system parameters from measurement data

can be attributed to the noise that invariably exist in all measurements, erroneous calibration of the measurement sensors,

incomplete measurement data, imprecise model for the system arising due to insufficient knowledge and lack of under-

standing about the physics associated with the system and incomplete knowledge about the parameters associated with the

system. These difficulties imply that inverse problems are ill-posed, often leading to situations with non-unique solutions

or solutions that are physically unfeasible.

A mathematically rigorous approach to the solution of inverse problems has been to employ the principles of Bayesian

theories to estimate the unknown parameters in a system. The underlying principle of such frameworks is based on treating

the model parameters to be identified as random variables or random fields, with assumed probability density functions.

For a dynamical system expressed in the following general first order differential form

Ẋ(t) = f(X(t), θ(t), t), (1)

θ(t) represents the vector of system parameters to be identified. Here, X(t) is the measurable metric of the dynamical

system, usually defined in terms of the state vector, the vector function f( · ) represents typically a nonlinear function

available either explicitly or in implicit form and t is time. The probability density function (pdf) for θ(t) at time instant

t, is denoted by pθ(θ; t). Here, pθ(θ; t = t0) ≡ pθ(θ) is referred to as the prior density function and takes into account

information available about θ at initial time t = t0. If no information is available, a model for pθ(θ) is assumed such

that its support is defined within a practically feasible domain. The solution of the forward problem enables probabilistic

characterization of the observable metric X at time t. Subsequently, using available measurement data D, the posterior pdf

for θ can be expressed in terms of Baye’s theorem as

p(θ|D) =
p(D|θ)pθ(θ)

∫

p(D|θ)pθ(θ) dθ
. (2)
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Here, the conditional pdf p(D|θ) is the normalized likelihood function. This procedure of updating the pdf of the system

parameters can be carried out recursively for each time step for which measurements are available, with the posteriori

pdf at time step tk taken to be the prior density for time step tk+1. This procedure of Bayesian updating ensures that the

associated variability in the pdf decrease as more measurements are assimilated leading to fairly accurate estimates of the

system parameters with quantifiable confidence bounds.

The development of the equations for estimating the posteriori pdf from available measurements and extracting relevant

information from it constitute the essence of dynamic state estimation techniques. Typically, this involves the evaluation

of multi-dimensional integrals whose dimensions equal the size of the vector θ. Closed form analytical solutions for these

integrals are possible only for a special class of problems leading to the Kalman filter [1]. Methods which are variants of

the Kalman filter, have been developed for parameter identification in problems in a more general setting [2–11]. How-

ever, these methods are usually iterative in nature, lacks universality in application and can be computationally expensive

without a commensurate increase in robustness or accuracy. Alternative methods that rely on obtaining asymptotic approx-

imations for the evaluation of these multi-dimensional integrals [12] or using numerical quadrature rules [13] have also

been discussed.

The advent of cheap computing facilities have ensured the use of Monte Carlo simulations to approximate multi-

dimensional integrals as a viable alternative [14]. This has led to the development of Monte Carlo based Bayesian al-

gorithms [15–25], commonly known as particle filters, for parameter identification from measurements. The primary

advantages of particle filters lie in their general nature and wide applicability for problems even with high degrees of

nonlinearity. These methods have been used for system identification in a wide variety of problems such as, climate mod-

eling [26], geophysics [27, 28], heat transfer [29, 30], diffusive transport [31] and structural health monitoring [32–38].

Particle filters require the solution of the forward problem for a large number of realizations for θ, generated using Monte

Carlo simulations and evaluating their likelihood when compared with the measurement data. This needs to be carried

out for all the available measurements. The drawback of the particle filtering approaches lie in the computational costs

involved in solving the forward problem a large number of times, corresponding to each measurement data set. This be-

comes computationally infeasible for complex problems where a solution of a single forward problem require significant

computational costs.

The focus of this paper is on developing a methodology for reducing computational costs associated with particle filters.

The central challenge lies in accelerating the solution of the forward problem for the set of sample realizations of θ. This

can be achieved by developing surrogate models for the system such that the solution of the forward problem is simple.

Response surface based methods [39, 40] are simple to implement but lack mathematical rigor and are not universally

applicable. An alternative approach built on more rigorous mathematical foundations would be to use stochastic spectral

methods to represent the structure response as a function of the unknown system parameters. This study adopts the latter

approach. Here, the underlying principle lies in projecting the forward problem into a space spanned by orthogonal stochas-

tic functions and carrying out the filtering in this space. The basis stochastic functions are usually polynomial functions

of random variables and are collectively referred to as polynomial chaos (PC) [41]. Typically, the random basis functions

constitute Hermite polynomials of standard Gaussian random variables ξ. The proposed method in this paper essentially

transforms the Bayesian problem of parameter identification from the space spanned by θ to a mathematical subspace

spanned by the random basis functions. This is achieved by projecting the forward problem into the random subspace and

expressing the measurable metric in terms of the polynomial chaos functions. The filtering is subsequently carried out in

the transformed subspace ξ.

This paper is organized as follows: First, the problem of parameter identification of dynamical systems is formulated

mathematically. The mathematical equations underlying the development of the basic equations under Bayesian settings are

presented. A variant of the particle filters - the bootstrap particle filter - is discussed in details, highlighting the difficulties

associated with this approach. The following section reviews the concept of Wiener chaos expansion and discussions are

presented on how the PC can be used to accelerate the identification algorithm. The section on numerical examples presents

two examples to highlight the proposed method. The salient features of this study are summarized in the concluding section.

2 The Particle Filter

The differential equation for the nonlinear dynamical system in Eq. (1) can be recast into the recursive form as

Xk+1 = f̃k(Xk, θk), (3)

where, Xk ∈ ℜn is a n-dimensional vector that denotes the state of the dynamical system, at time step t = tk, f̃k( · ) is the

functional form that relates Xk+1 to Xk and the suffix k represents the time step t = tk. In modeling the physical system

using Eq. (1) or Eq. (3), unknown errors are introduced into the model due to simplifying assumptions and unmodelled
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phenomena arising due to incomplete understanding or ignorance. These errors are incorporated into the model by assuming

them to be modeled as a random process. Thus, Eq. (3) can be recast as

Xk+1 = g̃k(Xk, θk,wk). (4)

Here, wk ∈ ℜm is the discretizedm-dimensional vector of the discretized noise process consisting of a vector of correlated

random variables and g̃k( · ) is typically a nonlinear function, such that, g̃k( · ) : ℜ
n ×ℜm → ℜn.

Usually, Xk is not directly measurable. Instead, sensors measure parameters, Zk, that are calibrated to map the measure-

ments to Xk. Thus, a relationship can be defined between the actual parameters measured and Xk through the measurement

equation

Zk = h̃k(Xk,vk; θk). (5)

Here, Zk ∈ ℜp is a p-dimensional vector of measurements at time tk, vk ∈ ℜr is a r-dimensional vector of a sequence

of random variables which collectively represents the noise in the measurements and calibration errors, and h̃k( · ) : ℜ
n ×

ℜr → ℜp is a typically nonlinear function that relates the measurements Zk to Xk. The process and the measurement

equations given by Eqs. (4-5) are standard forms that are available in the dynamic state estimation literature where the focus

is on estimating Xk. However, in system identification the focus is on estimating θk. Introducing the augmented vector

Yk = [Xk, θk] and rewriting the process and the measurement equations in terms of Yk, the identification algorithms can

be used to estimate Yk. However, such an approach increases the dimension of the identification problem. Alternatively,

the process and measurement equations, given by Eqs. (4-5), can be rewritten only in terms of θk with Xk being considered

as internal variables. This leads to rewriting the process equation as

θk+1 = gk(θk,wk), (6)

and the measurement equation as

Zk = hk(θk,vk). (7)

Rewriting the process and the measurement equations only in terms of θk - the parameters to be identified with Xk being

treated as internal variables, ensures a dimensional reduction in the system identification problem leading to enhancement

of computational efficiency [36]. Here, one must note that the new form of the process equation as defined in Eq.(6) models

the time variation of θk, with wk modelling the errors in modelling this temporal variations, while the measurement

equation in Eq.(7) gives a functional relationship between the measurements of the system response and θk. Since the

system response, Zk, depends on Xk which are treated as internal variables, it is obvious that the relationship between

θk and Xk and defined by Eq.(3) is embedded within the functional relation hk(·) defined in the measurement equation

in Eq.(7). Here, the noise vk collectively models the uncertain errors in modelling the forward problem as well as the

measurement uncertainties. Similarly, the temporal variation of θ with time t depends on the system response and hence,

the model for the forward problem is also embedded in the functional relation gk(·). If it is assumed that the uncertain

errors wk and vk are additive in nature, the process and the measurement equations can be rewritten as

θk+1 = ĝk(θk) +wk (8)

and

Zk = ĥk(θk) + vk. (9)

Note that the functions ĝk(·), gk(·) and g̃k(·) as well as ĥk(·), ĥk(·) and h̃k(·) are all distinct from each other.

Since both θk and Zk are corrupted by unknown errors wk and vk, complete characterization of θk is possible only

in terms of p(θk|Dk), the posterior density function of θk when conditioned on the available measurements Dk =
{Z1,Z2, . . . ,Zk}. Assuming that the prior density at time t = t0 to be given by

p(θ1|D0) ≡ p(θ0), (10)

a prediction for the pdf for θk, conditioned on past measurements Dk−1 can be expressed in terms of a recursive equation

of the form

p(θk|Dk−1) =

∫

p(θk|θk−1)p(θk−1|Dk−1) dθk−1. (11)
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Here, p(θk|θk−1) is the pdf of the evolution of θ at different time instants and is expressed as

p(θk|θk−1) =

∫

p(θk|θk−1,wk−1)p(wk−1) dwk−1. (12)

In writing Eq. (12) it is assumed that wk is independent of θk and thus p(wk−1|θk−1) ≡ p(wk−1). From the process

equation in Eq. (6), it can be shown that

p(θk|θk−1,wk−1) ≡ δ(θk − gk−1(θk−1,wk−1)), (13)

where, δ( · ) is the Dirac-delta equation. Substituting Eqs. (12-13) in Eq. (11) leads to

p(θk|Dk−1) =

∫ ∫

δ(θk − gk−1(θk−1,wk−1))p(wk−1)p(θk−1|Dk−1) dwk−1 dθk−1. (14)

Equation (14) is the recursive form of the prediction equation. Once the measurements Zk are available at time step k, the

prediction can be updated using the Bayesian relation

p(θk|Dk) =
p(Zk|θk)p(θk|Dk−1)

p(Zk|Dk−1)
, (15)

where the normalizing denominator is

p(Zk|Dk−1) =

∫

p(Zk|θk)p(θk|Dk−1) dθk. (16)

Here, p(θk|Dk−1) is available from Eq. (14) and p(Zk|θk) can be obtained from Eq. (7) as

p(Zk|θk) =

∫

p(Zk|θk,vk)p(vk) dvk

=

∫

δ(Zk − hk(θk,vk))p(vk) dvk. (17)

In Eq. (17), p(Zk|θk,vk) is represented as the Dirac-delta function as Zk is known deterministically if θk and vk are

known. In writing the above equation, the underlying assumption is that the measurement noise vk is independent of

θk. Equations (6-17) constitute the formal solution for the Bayesian identification algorithm in the reduced θk-space.

p(θk|Dk−1) and p(θk|Dk) are respectively referred to as the apriori and posteriori probability density functions.

2.1 The Bootstrap Particle Filter

Since the functions gk( · ) and hk( · ) are typically nonlinear, closed form solutions for the multi-dimensional integrals in

Eqs. (6-17) are not possible and one has to resort to approximate methods for evaluating them. Quadrature schemes for

the numerical evaluation of these integrals are not efficient when the dimension of these integrals is large. Instead, Monte

Carlo simulations offer an alternative procedure by which an approximation for these multi-dimensional integrals can be

obtained. However, this requires simulating a large number of sample realizations for θk at every time step where the

Bayesian updating is carried out and solving the forward problem. This forms the essence of particle filters. A set of

samples for θk are simulated according to the prior density function and the forward problem is solved deterministically

for each realization. Subsequently, once the measurements become available, the pdf for θk are updated following Eqs.

(6-17). This predictor-corrector approach is carried out efficiently in a recursive format using the bootstrap particle filter

algorithm [15]. The key steps in the implementation of the bootstrap filtering algorithm is summarized as follows:

1. Consider the k-th time step t = tk. Assume p(θk−1 | Dk−1) is known. For k = 0, this is the prior density function

p(θk−1 | Dk−1) ≡ p(θ0). Simulate N samples of the vector of random samples {θk−1}Ni=1. Similarly, assume a

prior density function for p(wk−1) and generate samples for {wk−1}
N
i=1.

2. Each sample is passed through the system model in Eq. (6) to obtain the predictions for the state at time step k. Thus,

θ
∗(i)
k = gk−1(θ

(i)
k−1,w

(i)
k−1). (18)

3. Once the measurements Zk are available, the likelihood corresponding to each prediction {θ
∗(i)
k }Ni=1 is evaluated as

L(Zk|θ
∗
kj
) = Zk − hk(θ

∗
k).
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4. An approximation for p(Zk|θ
∗
kj
) is obtained by normalizing the likelihood function as

qj =
L(Zk | θ

∗(j)
k )

∑N

j=1L(Zk | θ
∗(j)
k )

, (19)

where L( · ) is the likelihood function.

5. The discrete probability mass function for the next iterate is defined as

P [θkj
= θ∗

k] = qj . (20)

6. From the discrete probability mass function in Eq. (20), a new set of N samples for θk are generated.

7. The mean of the estimates are obtained by averaging across the ensemble, and is expressed as

θ̄k|k =
1

N

N
∑

j=1

θkj
. (21)

The corresponding standard deviation of the estimate is calculated as

σk|k =

√

√

√

√

1

N − 1

N
∑

j=1

(θkj
− θ̄k|k)T (θkj

− θ̄k|k). (22)

8. The above steps are repeated by setting k = k + 1. In this way, the filtering is carried out for the entire available time

history of measurements.

The application of the bootstrap filtering algorithm (BFA) requires N evaluations of the forward problem, defined by

Eq. (4) corresponding to each measurement data. ForM measurement data points, the application of BFA requiresM ×N
evaluations of the forward problem. This can prove to be a major drawback of the approach, especially if each evaluation

of the forward problem involves significant computational time. This is especially true for highly nonlinear dynamical

systems. The crux of making the method computationally less expensive lies in reducing the computational effort required

in solving the forward problem. This study focuses on increasing the computational efficiency of BFA by adopting a

polynomial chaos based approach for solving the forward problem. A brief review of the relevant concepts related to

polynomial chaos expansions is presented in the next section, followed by discussions on how this method can be used in

conjunction with BFA to make the parameter identification problem computationally efficient.

3 The Polynomial Chaos Expansion

The method of polynomial chaos expansion involves projecting a random variable or a random field in an orthogonal

basis subspace spanned by a set of orthogonal polynomials of random variables. This method has its origins in [41] and

can be extremely useful for the solution of stochastic differential equations. In its original form, the expansion employed

Hermite polynomials from the Askey scheme, whose support consisted of a vector of standard Gaussian random variables.

Subsequently, the expansion was formalized through the Cameron-Martin theorem leading to the representation of a second

order stationary random process θ(t) as

θ(t) = a0(t)Ψo +
∞
∑

i1=1

ai1(t)Ψ1(ξi1 ) +
∞
∑

i1=1

∞
∑

i1=1

ai1i2Ψ2(ξi1 , ξi2) + . . . , (23)

where, Ψn(ξi1 , ξi2 , . . . , ξin) are Hermite polynomials of order n in terms of n-dimensional vector ξ = {ξi1 , . . . , ξin} of

standard Gaussian random variables. Equation (23) can be compactly written as

θ(t, ξ) =
∞
∑

j=0

aj(t)Ψj(ξ), (24)
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where, {Ψj(ξ)} constitute a set of orthogonal Hermite polynomials of ξ, aj(t) = E[θ(t, ξ)Ψj(ξ)] are the deterministic

projections of the random process and E[·] is the expectation operator. The first few 1-D Hermite polynomials are given by

Ψ0(ξ) = 1, Ψ1(ξ) = ξ, Ψ2(ξ) = (ξ2 − 1), . . . (25)

and the higher order Hermite polynomials can be generated from the recursive equation

Ψn(ξ) = ξΨn−1(ξ)− (n− 1)Ψn−2(ξ). (26)

For 2-D Hermite polynomials, the first few polynomials according to the Askey scheme are as follows

Ψ0(ξ1, ξ2) = 1, Ψ1(ξ1, ξ2) = ξ1, Ψ2(ξ1, ξ2) = ξ2,

Ψ3(ξ1, ξ2) = ξ21 − 1, Ψ4(ξ1, ξ2) = ξ1ξ2, Ψ5(ξ1, ξ2) = ξ22 − 1, . . . (27)

An approximation for the series expansion in Eq. (24) can be obtained by truncating the series to P terms, where

P =
(n+ np)!

n!np!
− 1, (28)

when n is the dimension of ξ and np is the highest order of the Hermite polynomials. The corresponding truncated

series is referred to as p-order PCE expansion. The condition that θ(t, ξ) is a second order stationary process implies that

E[θ(t, ξ)2] <∞ which in turn, means that the truncated polynomial series converges in L2 to θ(t, ξ).
The spectral representation of a random variable θ ≡ θ(ξ) can also be obtained using Eq. (24) where the projections

aj(t) ≡ aj are no longer functions of t. The spectral representation for a random variable is possible if E[θ(ξ)2] <∞. This

condition, however, places no constraint on the continuity of the function θ(ξ). The polynomial chaos expansion can be

generalized to the space spanned by other orthogonal polynomials from the generalized Askey scheme where the support

constitutes standard non-Gaussian random variables [42].

3.1 Response Analysis using PCE

Polynomial chaos expansions are useful for solving differential equations having random non-homogeneous terms or when

the coefficients of the differential equations constitute random fields or random variables. For a simple nonlinear oscillator

with an unknown time varying parameter θ(t), Eq. (1) can be simplified to

U̇(t) = f(U(t), θ(t), t) (29)

where, f( · ) is an operator and U(t) is the response. A polynomial chaos approach to response characterization requires

decomposing the uncertain input θ(t) along the stochastic dimensions as in Eq. (24), truncated to P terms. This implies

that the response U(t) is also random whose spectral representation is also of the same form as in Eq. (24) but whose

projections along the stochastic dimensions are unknowns. This section reviews the methods for characterization of U(t)
using PCE. The methods discussed in the literature can be classified as intrusive and non-intrusive. Brief descriptions of

these approaches are presented next.

3.2 Galerkin Polynomial Chaos Approach

In Galerkin PC approach, the chaos expansion of the system response is substituted into the governing equations leading

to a set of coupled equations in terms of the chaos coefficients [43]. These coupled deterministic equations typically have

terms, such as, E[Ψi(ξ)Ψj(ξ) . . .Ψk(ξ)] as coefficients. For nonlinear dynamical systems, the form of these coupled

deterministic equations are usually complicated and their solution can be tedious and time consuming. Depending on the

nonlinearity, the number of terms in these expectations could be large. Evaluation of these terms imply multidimensional

integration and need to be carried out prior to the solution of the coupled deterministic equations. As the original differential

equations get substantially modified in terms of the chaos coefficients, the Galerkin’s approach to solving the stochastic

differential equations using PCE is termed as an intrusive approach.

3.3 Non-intrusive Projection Method

The underlying principle of nonintrusive methods is to arrive at an approximation for the projections along the different

random dimensions directly by solving the forward problem deterministically corresponding to the collocation points in

the probability space. Thus, the projections can be directly evaluated as

aj(t) =
E[U(t, ξ)Φj(ξ)]

E[Φ2
j(ξ)]

. (30)

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 7

Note that E[Φj(ξ)Φk(ξ)] = 0 for j 6= k. When ξ are standard normal, assuming Φ(ξ) to be Hermite polynomials leads to

an exponential convergence of the series representation. The collocation points can be chosen as the zeros of the Hermite

polynomials and a Gauss-Hermite quadrature scheme can be used for evaluating the expectations in Eq. (30). This implies

that the problem defined in Eq. (29) need to be solved deterministically corresponding to the collocation points defined

in the probability space. For a differential equation with multiple random coefficients, the collocation grids need to be

constructed using tensor products of the one dimensional grids. This is true even if the differential equation is a function of

a random field as the random field can be assumed to be discretized into a collection of correlated random variables.

4 Particle Filtering and Polynomial Chaos

The principle ideas of polynomial chaos expansion and bootstrap particle filtering can now be integrated to develop a

particle filtering methodology which is computationally cheaper and more efficient. This involves decomposing the system

parameters θk as a polynomial chaos expansion, given by

θ
(i)
k (ξ) =

P
∑

j=0

ajΨj(ξ), (31)

where, θ
(i)
k is the i-th component of θk, {Ψj}

∞
j=0 constitute a set of orthogonal polynomials from the Askey scheme and

are functions of random variables ξ, aj are the corresponding projections along the bases and the series is truncated to P
terms determined from Eq. (28). Note that the dimension of ξ is greater than or equal to the dimension of θk. Next, a

solution to the forward problem in Eq.(3) is obtained as a PCE by decomposing Xk along the same basis functions. This

leads to representing the i-th component of Xk as

X
(i)
k (ξ) =

P
∑

j=0

bjΨj(ξ), (32)

where, the projections bj on the random basis functions can be evaluated using either the stochastic Galerkin’s approxi-

mation or the stochastic collocation method discussed in the previous section. Since the forward problem is embedded in

the functions gk(·) and hk(·) in Eqs. (6-7), expressions for the predictions for the time evolution of the components of θk

as well as predictions for the measurements Zk can also be obtained as a PCE in a similar manner by neglecting the error

terms wk and vk.

Now the particle filter algorithm can be applied using two different approaches.

4.1 Approach 1

The first approach involves the following steps:

1. For k = 0, assuming that the pdf p(θ0) is known, a polynomial chaos expansion for θk is obtained from Eq. (31).

2. For k = 1, the prior predictions θ∗
k and hk(θ

∗
k) need to be calculated. This involves obtaining the PCE for the forward

model represented by Eq. (32), whose projections bj are evaluated using the method of stochastic collocation.

3. The remaining steps are identical to the steps in section 2.1.

The idea in this approach is that once the prior pdf of the parameters are known at a particular time step, the appropriate

orthogonal set of polynomials are chosen from the Askey scheme as well as the corresponding pdf p(ξ) for the support ξ. An

approximation for the solution of the forward problem is obtained as a polynomial chaos expansion whose coefficients are

determined using the method of stochastic collocation. This step requires the solution of the forward problem equal to the

number of collocation points. Drawing samples of {ξi}
N
i=1 from p(ξ) leads to realizations of {θki

}Ni=1. The corresponding

forward problem is computed in an inexpensive manner by substituting {ξi}
N
i=1 in Eq. (32).

As the pdf of θ is obtained numerically at different time steps while the particle filter algorithm is applied, the chances

are high that the prior density at a particular time step will not be a standard pdf. In such situations, one can use the

arbitrary polynomial chaos expansions as the basis functions [44, 45]. This would ensure a faster convergence of the series

expansion.
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4.2 Approach 2

The approach described in the previous section requires estimating the random projections bj at each time instant where

the filtering is carried out. It is obvious that this approach would be computationally cheaper as long as N > n, where n
is the number of collocation points required for estimating the coefficients bj in Eq. (32). On the other hand, significant

savings in computational effort could be effected if the need for fitting a PCE at each step could be avoided. Noting that

Eqs. (31-32) can be expressed as a function of the same set of random variables ξ, Eq. (6) can be recast in terms of ξ as

the primary variables. This leads to the following form for the process equation

ξk+1 = Gk(

P
∑

j=0

ajΨj(ξk),wk) = Gk(ξk,wk), (33)

and the corresponding measurement equation as

Zk = Hk(

P
∑

j=0

ajΨj(ξk),vk) = Hk(ξk,vk). (34)

Here, θk are now treated as internal variables and do not appear explicitly in the equations. Note that, in general, the

forward problem is embedded in the functions Gk(·) and Hk(·). By expressing the process and the measurement equations

as in Eqs. (33-34), the parameter identification problem is now transformed from the θk-space to ξk-space. However, the

development of the equations for the dynamic state estimation does not get affected in any other way and the filtering is

now carried out in the ξk-space.

Despite transforming the problem to the ξk-space, computational efficiency will not be achieved unless the solution of

the forward problem in Eqs. (33-34) can be bypassed. This is achieved by assuming the noise terms wk and vk to be

additive and expressing the priors ξ∗k+1 and Z∗
k as PCE and representing them as

ξ
∗
k+1 =

P
∑

i=0

ãiΨi(ξk) (35)

and

Z∗
k =

P
∑

i=0

b̃iΨi(ξk) (36)

Here, the coefficients ãi and b̃i are estimated using stochastic collocation only at the start of the filtering and need not be

repeated at each time step. This is a very crucial step in the proposed formulation as once the coefficients in Eqs. (35-36) are

available, the solution of the forward problem is easily obtained by substituting for ξk without the need for the evaluation

of the actual functions Gk(·) or Hk(·). The key steps in this approach are summarized as follows:

1. Assume that the pdf p(θ0) is known for k = 0. Also, assume that the initial pdf for ξ to be a standard pdf (such as

standard normal). Construct the polynomial chaos expansion by finding the coefficients aj , such that

θk =
P
∑

j=0

ajΨ(ξkj
). (37)

Here, the orthogonal polynomial functions {Ψ(ξ)} are selected from the Askey scheme.

2. The projections ãj , b̃j in Eqs. (35-36) are computed using stochastic collocation. This serves as a surrogate for the

forward problem.

3. Simulate N samples of {ξki
}Ni=1.

4. For k = 1, the prior predictions ξ∗k and Z∗
k are calculated from the forward problem by substituting {ξki

}Ni=1 in Eqs.

(35-36).

5. The remaining steps are identical to the steps in section 2.1.
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Approach 2 is computationally cheaper as it avoids construction of PCE at every time step of filtering and uses the chaos

coefficients calculated at the initial time step to bypass the computation of the forward problem. However, there is a need

for caution. The drawback in this approach is that at each time step, the pdf of the primary random variables ξ change.

However, the PCE representations in Eqs. (35-36) use the same set of orthogonal polynomials {Ψi} and the corresponding

projections. Clearly, this leads to a suboptimal situation in terms of convergence and may require a larger number of terms

in the expansion [44]. These difficulties can be overcome by adopting either of the two simple procedures:

(a) The series expansions may be truncated after J >> P terms so that series convergence need not be a serious issue,

(b) A new PCE expansion is carried out after T iterations.

The above two correcting procedures have been implemented together to improve the efficiency of the algorithm without

adversely affecting the computational efficiency too much. The proposed method is demonstrated through two numerical

examples. These are presented in the following section.

5 Numerical Implementation

A set of numerical examples are presented to demonstrate the applicability and performance of the proposed method. First,

the problem of parameter identification in a Duffing oscillator is considered. Subsequently, we consider the parameter

identification problem in an oscillating airfoil in unsteady flow. In both these examples, the measurements have been

synthetically generated by solving the forward problem and adding synthetic noise to the time histories of the response.

This is used as an input for the system identification algorithm. In both these problems, the system response is expressed as

a PCE whose coefficients have been determined using the non-intrusive probabilistic collocation method. This method is

shown to be computationally efficient especially when the nonlinearity is significant such as in the fluid-structure interaction

problem considered in the second example [46]. Once the PCE of the unknown parameters and the solution of the forward

problem have been established, the implementation of the BFA has been carried out in the transformed variable space using

the method outlined in section 4.2.

To demonstrate the efficiency of the proposed method, the numerical results have been presented when (A) BFA is

applied without PCE, and (B) when BFA is applied with PCE. To investigate further avenues for reducing the computational

costs associated with implementation of the algorithm, we have considered the following four methods:

(a) Method 1: This involves implementing the BFA at all available measurement points. Figure 1 shows a schematic of

Method 1. The circles represent data points and the likelihood Li are calculated at each measurement point. Thus,

Fig. 1 Schematic of Method 1.

if M data points are available and filtering is carried out with N particles at each measurement, this method would

require (N ×M) solutions of the forward problem.

(b) Method 2: In this method, the BFA is applied at every K measurement points, resulting in (N ×M)/K solutions of

the forward problem; see Fig. 2 for a schematic. In this method all the information available about the system through

the measurements is not used which effectively implies inefficient usage of available information.

(c) Method 3: As in Method 2, the particle filtering is carried out every K measurement points. However, the likelihood

function for θk is now computed in a different way. For all the measurement data points between tk and tk+K , the

likelihoodLi are computed for θk. A mean likelihood is computed as L̄ =
∑K

i=1 Li, which is used as the prior density

function for resampling of θ at time step tk+K . The method is explained through the schematic shown in Fig. 3. It

must be emphasized here that computation of the likelihoods Li for time steps tk, tk+1, . . . , tk+K can be computed

directly by solving the forward problem for a given realization of θ corresponding to time tk. Thus, even though the

number of solutions of the forward problem is (N ×M)/K , unlike in Method 2, no available information is wasted.

The computational costs involved in computing the likelihoods for all time steps tk, tk+1, . . . , tk+K is marginal.
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Fig. 2 Schematic of Method 2.

Fig. 3 Schematic of Method 3.

(d) Method 4: This is another variant of Method 2 where the filtering is carried out everyK steps. Here, the measurements

yk, yk+1, . . . , yk+K are replaced by its mean value ȳ =
∑K

i=1 yk+i based on which the likelihood Li are calculated

at each K th measurement point. Figure 4 provides a schematic for this method. This method also requires (N ×

Fig. 4 Schematic of Method 4.

M)/K evaluations of the forward problem. However, the computational costs would be less than in Method 2 as the

likelihoods Li are now evaluated only at the filtering points. Clearly, this method would work well as long as the

dynamics of the system do not get appreciably altered within K measurement points and is expected to work well

where noise in the measurements is significant and without bias.

For the sake of simplicity, the model and the measurement noise are assumed to be zero mean, Gaussian white noise

processes. Though white noise models are physically unrealizable, assuming noise to be white is acceptable when the

correlation length of the noise process is negligible in comparison to the correlation length of the system response. This is

usually true if the oscillations in the noise are significantly faster than those exhibited by the dynamical system. Under these

assumptions, the time discretized noise processes wk and vk constitute a sequence of vectors of i.i.d. random variables.

Moreover, in these numerical examples, it is assumed that the system parameters to be identified do not change within the

small period of time when the measurements are being recorded. Since the system parameters remain time invariant, it is

obvious that in the discretized recursive format, θk+1 = θk. However, in writing the process equation, a noise is added

such that the process equation can be written as

θk+1 = θk +wk. (38)

Here, wk is an artificial noise and does not have any physical significance. The reasons for adding wk are numerical and is

explained next.
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In the implementation of the BFA, in subsequent iterations the samples are generated from the normalized likelihood

function. In the absence of noise wk, the population of the samples would be limited to the sample set that have been

generated at k = 0. This leads to the following difficulties:

(a) After a few iterations, all the samples generated for θk+1 would be identical leading to a degenerate condition resulting

in the breakdown of the algorithm, and

(b) the accuracy of the system parameter estimates would depend on the closeness of the initial set of variables generated

at k = 0 to the actual system parameters. Thus, the accuracy of the method is left to chance.

To prevent such degeneracies, the artificial process noise wk is added to the posterior estimates of θk, at each iteration.

This leads to a jittering of the samples in the population and ensures that the samples are different from the set of samples

at the preceding iteration step. It is reasonable to assume that wk is independent of time as well as θk and vk. Usually, a

Gaussian model for p(wk) can be assumed with zero mean and a small variance. The variance should be small so that the

population of samples generated from the probability mass function are slightly different from the samples that have been

identified as having higher likelihoods. Also, this enables generation of a larger number of samples around the most likely

sample, leading to the possibility of achieving greater accuracy levels.

5.1 Example 1: Harmonically excited Duffing oscillator

A Duffing oscillator subjected to harmonic loading is considered. The governing equation of motion is given by

mẍ+ cẋ+ kx+ k1x
3 = γ cos(ωt), (39)

where, the parameters are assumed to have the following nunerical values: m = 10, c = 25, k = 100, k1 = 100, γ = 100
and ω = π rad/s. The measurements are synthetically generated by numerically integrating Eq. (39) and adding a Gaussian

noise with 1% variance. The sampling rate of the measurements is assumed to be 100 s−1. Figure 5 shows the time history

of the response and the synthetically generated noisy measurements.

5.1.1 Case A: Only one unknown parameter

Initially, it is assumed that only the nonlinear stiffness k1 is unknown. The prior density for k1 is assumed to be Gaussian

∼ N (90, 10). As has been already mentioned in Eq.(38), ĝk(θk) = θk. Assuming that the displacements are directly

measurable, h̃k(θk) is represented in terms of Eq.(39) when expressed in the first order discrete form. First, a PCE

representation of the response is constructed where P is taken to be 2, n is 1 and np is 2. A comparison of the mean

response obtained from PCE and that obtained from Monte-Carlo simulations (MCS) are shown in Fig. 6. An exact

match is observed indicating the acceptability of the PCE representation. The number of forward evaluations required for

constructing the PCE is 4.

In the application of BFA, N = 200 particles are considered at each iteration. Figures 7-10 illustrate the predictions

obtained using Methods 1-4. In applying Methods 2-4, K is taken to be 25. A summary of the performance of the

four methods in terms of computational costs is presented in Table 1. It is seen that while BFA without PCE requires

1001× 200 solutions of the forward problem, combining PCE with the filter requires only 4 calls to the forward problem.

The computational costs when PCE is used, reduces significantly ranging from 10 times to 40 times for Methods 1-4. For

more complicated problems where the solution of a single forward problem is time consuming, the savings in computational

costs can be even more considerable. The accuracy levels observed for Methods 2-4 are similar to that obtained from

Method 1.

5.1.2 Case B: Two unknown parameters

Next, the problem is repeated when the nonlinear stiffness k1 and damping c are assumed to be unknown. With n = 2 and

assuming 3rd order polynomials in the PC expansion, the value of P is 9. However, since the focus is on representing the

response only for about 40 s, with about 20 cycles, it was found that a good match with MCS was obtained even when P
was taken to be 6. In this study, we have considered P = 6 so as to keep the number of random variables to as low a value

as possible. The comparison of the mean response obtained from MCS with the PCE containing 6 terms is shown in Fig.

11, indicating a good match. The time histories of the first few random modes of the response are plotted in Figs. 12-13.

The zeroth order mode, a0, is the mean, which has the most significant contribution to the final solution. a1, a2, a3 are the

higher order random modes. It is clear from Figs. 12-13, that a decrease in P does not affect the response calculations

significantly.
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Fig. 5 Time history of response seeded with noise
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Fig. 7 Example 1 A: Estimates of stiffness using Method 1.

0 2 4 6 8 10
85

90

95

100

105

110

Time, s

k
1

 

 

 BFA

Actual value

PCBFA

METHOD 2

Fig. 8 Example 1 A: Estimates of stiffness using Method 2.
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Fig. 9 Example 1 A: Estimates of stiffness using Method 3.
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Fig. 10 Example 1 A: Estimates of stiffness using Method 4.

Methods 1 -4 are used to estimate the two unknown parameters. In application of the filter,N = 500 particles have been

used. The results of the predictions for k1 and c are shown in Figs. 14-17 and Figs. 18-21 respectively. Table 2 provides a

comparison of the predictions and the associated computational costs.

In method 1, as seen from Table 2, the PCE based approach involves 64 number of structural analyses, while ordinary

BFA requires 4001× 500 solutions of the forward problem. It can be seen that the PCE based approach is nearly 13 times

faster than the ordinary BFA for the same level of accuracy in both the estimates. In methods 2-4, the algorithm is processed

at every 50 time steps. As expected, the approach of implementing BFA at regular intervals in these three methods yielded

much faster estimates in comparison to method 1. The PCE based approaches are found to be roughly 12 times faster

than ordinary BFA. Despite yielding faster estimates in these three methods, the estimates obtained through PCE based
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Method A B C D E F

Method 1 PCBFA 1001 4 99.78 -0.22 24.67

BFA 1001 200200 99.81 -0.19 1003.1

Method 2 PCBFA 40 4 100.15 0.15 2.68

BFA 40 8000 99.879 -0.121 46.04

Method 3 PCBFA 40 4 99.52 -0.48 6.11

BFA 40 8000 100.4 0.40 45.90

Method 4 PCBFA 40 4 100.35 0.35 3.13

BFA 40 8000 99.366 -0.634 45.83

Table 1 Example 1 A: Comparison of performance; A = Methodology; B = Number of filtering iterations; C = Number of solutions of

the forward problem; D = Mean of the estimate; E = % Error; F = CPU time in seconds.
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Fig. 11 Comparison of response using PCE and MCS
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Fig. 12 Time history response of the first two random modes.
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Fig. 13 Time history response of the 3rd and 4th random modes.

approaches are still found to be in good agreement with the actual values of the two unknown parameters. This proves the

effectiveness of the algorithm in identifying multiple system parameters with reasonable accuracies.

5.2 Example 2: Oscillating Airfoil in an Unsteady Flow

We next consider a highly nonlinear fluid-structure interaction problem of an oscillating airfoil in an unsteady flow. The

airfoil is modeled as a 2D system having degrees of freedom along the pitching and heaving directions; see Fig. 22 for

a schematic diagram of the system. Assuming that the plunging deflection is denoted by h, positive in the downward

direction, and the pitching angle by α, taken to be positive with nose up, the aero-elastic equations are given by the

following coupled integro-differential equations [47]

ǫ′′ + xαα
′′ + 2ζǫ

ω

U
ǫ′ + (

ω

U
)2(ǫ + βǫǫ

3) = −
1

πµ
CL(τ), (40)
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Fig. 14 Example 1 B: Estimates of stiffness using Method 1.
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Fig. 15 Example 1 B: Estimates of stiffness using Method 2.
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Fig. 16 Example 1 B: Estimates of stiffness using Method 3.
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Fig. 17 Example 1 B: Estimates of stiffness using Method 4.
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Fig. 18 Example 1 B: Estimates of damping using Method 1.
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Fig. 19 Example 1 B: Estimates of damping using Method 2.

xα
rα2

ǫ′′ + α′′ + 2
ζ

U
α′ +

1

U2
(α+ βαα

3) =
2

πµrα2
CM (τ). (41)

Here, ǫ = h/b is the non-dimensional plunge displacement of the elastic axis, βǫ and βα are the nonlinear spring constants,

rα is the radius of gyration about the elastic axis, ahb denotes the distance of the elastic axis from the mid chord and xαb is

the distance of the mass center from the elastic axis, ζǫ and ζα are the damping ratios in plunge and pitch respectively, U is

the non-dimensional stream velocity given by U = v/(bωα), ω = (ωǫ/ωα), where, ωǫ and ωα are respectively the natural

frequencies of the uncoupled plunging and pitching modes and τ = vt/b is the non-dimensional time. The exponent ( · )
′

denotes differentiation with respect to non-dimensional time τ . For incompressible, inviscid unsteady flow, the lift and
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Fig. 20 Example 1 B: Estimates of damping using Method 3.

0 5 10 15 20 25 30 35 40
18

20

22

24

26

28

30

Time, s

c

 

 

PCBFA

Actual value

BFA

METHOD 4

Fig. 21 Example 1 B: Estimates of damping using Method 4.

Method A B C D E F G H

Method 1 PCBFA 4001 64 102.4 2.4 19.95 -0.25 884.2

BFA 4001 2000500 101.62 1.62 19.91 -0.45 11142

Method 2 PCBFA 80 64 100.43 0.43 19.93 -0.35 21.09

BFA 80 40000 100.6 0.6 20.1 0.5 263.4

Method 3 PCBFA 80 64 99.57 -0.43 20.02 0.1 120.7

BFA 80 40000 99.14 -0.86 20.07 0.35 271.17

Method 4 PCBFA 80 64 99.63 -0.37 19.93 -0.35 22.42

BFA 80 40000 99.9 -0.10 20.12 0.6 265.16

Table 2 Example 1 B: Comparison of the performance; A = Methodology; B = Number of times BFA is implemented; C = Number of

solutions for forward problem; D = Mean of the estimate,k1; E = % Error in k1; F = Mean of the estimate,c; G = % Error in c; H = CPU

time in seconds.

0.5b
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K
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Ka

Zb
x ba

Z

a

Za bh

Zb

Fig. 22 Schematic diagram of a 2-D airfoil.

pitching moment coefficients are expressed as CL(τ) and CM (τ) in Eqs. (40-41) and are given by [48]

CL(τ) = π(ǫ′′ − ahα
′′ + α′) + 2π{α(0) + ǫ′(0) + [

1

2
− ah]α

′(0)}φ(τ)

+2π

∫ T

0

φ(τ − σ)[α′(σ)ǫ′′(σ) + [
1

2
− ah]α

′′(σ)]dσ, (42)Copyright line will be provided by the publisher
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CM (τ) = π[
1

2
+ ah]× {α(0) + ǫ′(0) + [

1

2
− ah]α

′(0)}φ(τ)

+π[
1

2
+ ah]×

∫ T

0

φ(τ − σ){α′(σ) + ǫ′′(σ) + [
1

2
− ah]α

′′(σ)}dσ

+
π

2
ah(ǫ

′′ − ahα
′′)− [

1

2
− ah]

π

2
α′ −

π

16
α′′. (43)

Here, ǫ(0), ǫ
′

(0), α(0) and α
′

(0) respectively denote the initial conditions, φ(τ) is the Wagner function expressed as

φ(τ) = 1− ψ1e
−ǫ1τ − ψ2e

−ǫ2τ (44)

and the constants ψ1 = 0.165, ψ2 = 0.355, ǫ1 = 0.0455 and ǫ2 = 0.3 are as reported in [47]. Equations (40-43)

collectively represents the governing equations for the oscillating airfoil and represents a highly nonlinear fluid structure

interaction problem. The nonlinearity in these equations arise not only due to the structural nonlinearities but also on

account of the fluid-structure interaction effects. The numerical solution of this forward problem is available in [47] and is

not repeated here.

We now assume that the nonlinear stiffness coefficients, βǫ and βα to be the parameters that are to be identified from

measurements of the response. Both these parameters were assumed to have Gaussian prior densities N (4, 0.5). The

numerical values of the remaining parameters were assumed to be as follows: µ = 100, ω = 0.2, ah = −0.5, xα = 0.25,

ζα = 0, ζǫ = 0, rα = 0.5. To synthetically generate the measurements, the unknown parameters βα and βǫ were both

assumed to be 3.5. The analysis is performed assuming U = 6.8. Time histories of the pitching and the heaving motions

were obtained from numerical integration of Eqs. (40-41). The time history of the pitching response was assumed to be

the measurements which serve as the input to the filtering algorithm. To synthesize the measurements, the computed time

history, obtained for 600 dimensionless time units, was added with a zero mean Gaussian noise of 1% variance.

In application of PCBFA, a PCE for the response needs to be constructed. The process equation is expressed as Eq.(38).

As in the previous example, assuming that the pitch displacements are directly measurable from the sensors, h̃k(·) in Eq.(9)

is expressed as the discrete form of Eqs.(40-43) when written in the first order form. Using the probabilistic collocation

technique, a 9 term expansion has been constructed for the response. A comparison of the time history of the mean response

obtained by numerical integration(MCS) and PCE is shown in Fig. 23. Some degeneracy in the PCE response is observed

from 300 s. However, this is not significant; more discussions on this is available later in the paper. A representative pdf

of the response calculated at t = 190, is shown in Fig. 24. Both the figures show a reasonable good match for the results

obtained from PCE and MCS, indicating satisfactory PCE construction of the system.

The application of the filtering algorithm was considered with 500 particles at each iterate. As in the previous example,

the results were obtained using Methods 1-4. In application of Methods 2-4, K was taken to be 25. The results of the

predictions for βα and βǫ are shown in Figs. 25-32. The summary of the analysis by all the four methods has been shown

in Table 3.
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Fig. 23 Example 2: Comparison of response using PCE and MCS
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Fig. 24 Example 2: Comparison of pdf of response using PCE and

MCS

A comparison of the errors in the estimates of the unknown parameters reveal that consistently, the proposed method

PCBFA leads to marginally better estimates in comparison to BFA. More importantly, the number of forward evaluations

required is only a small fraction in comparison to BFA. The consequent acceleration in the application of the filtering

algorithm is evident from the computational times required in the two approaches. It is also worth noting that the proposed

method, PCBFA, is significantly faster when Methods 2-4 are employed where one does not make use of all the available

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 17

0 100 200 300 400 500 600
3

3.5

4

4.5

Time

β
α

 

 

PCBFA	

Actual value

BFA

METHOD 1

Fig. 25 Example 2: Estimates of βα using Method 1.
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Fig. 26 Example 2: Estimates of βα using Method 2.
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Fig. 27 Example 2: Estimates of βα using Method 3.
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Fig. 28 Example 2: Estimates of βα using Method 4.
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Fig. 29 Example 2: Estimates of βǫ using Method 1.
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Fig. 30 Example 2: Estimates of βǫ using Method 2.

measurements. When a comparison is made between Methods 3 and 4, it is surprising to observe that the errors in Methods

3 and 4 are of the same order. However, if K is taken to be large, it is expected that the performance of Method 4 would

deteriorate. Interestingly, even though the number of solutions of the forward problem are the same in the Methods 2-4,

the computational effort in Method 3 is higher by about 50% due to the additional computations required in estimating the

likelihoods at all the measurement data points. This has been observed consistently in all the numerical problems.

6 Discussions

The use of PCE within Bayesian frameworks for parameter estimation in inverse problems is of recent vintage; see for

example, [31,49–56]. These studies use PCE to analyse the propagation of uncertainty through a system where the unknown
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Fig. 31 Example 2: Estimates of βǫ using Method 3.
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Fig. 32 Example 2: Estimates of βǫ using Method 4.

Method A B C D E F G H

Method 1 PCBFA 2401 100 3.6 2.85 3.48 -0.57 210.3

BFA 2401 1200000 3.56 1.71 3.40 -2.85 6856.4

Method 2 PCBFA 96 100 3.49 -0.28 3.45 -1.42 11.95

BFA 96 48000 3.39 -3.14 3.42 -2.28 281.19

Method 3 PCBFA 96 100 3.48 -0.57 3.46 -1.14 40.3

BFA 96 48000 3.56 1.71 3.61 3.14 289.17

Method 4 PCBFA 96 100 3.55 1.42 3.63 3.71 16.8

BFA 96 48000 3.38 -3.42 3.42 -2.28 288.5

Table 3 Example 2: Comparison of the performance of Methods 1-4; A = Methodology; B = Number of times BFA is implemented; C

= Number of structural analyses; D = Mean of the estimate,βα; E = % Error in βα; F = Mean of the estimate,βǫ; G = % Error in βǫ; H =

CPU time in seconds.

parameters have been modelled as random variables/random fields. Subsequently, estimates of the unknowns have been

obtained from the posterior probability density functions which, in most studies, have been approximated by minimising

the covariance. Thus, these methods are based on the principles of Kalman filter and its variants [50–56] and involve

linearizations or other forms of local approximations. In contrast, this paper proposes a particle filter based methodology

and is more generally applicable irrespective of the nonlinearity in the problem. In this aspect, the present work has

similarities with [31,49] where a surrogate model for the forward problem is built using PCE and Monte Carlo simulations

are used for solving the multidimensional integrals. Nevertheless the basic similarities, there are certain differences and

originality in the present approach which are enumerated here:

(a) The methodology proposed in [31] uses an algorithm that requires the prior density function of the parameters at

the time instant t at which these need to be evaluated and the corresponding measurements Z(t). This implies that

information in the form of continuous measurements in a span [t0, t] is not used. On the other hand, the methodology

proposed in this paper is built on a recursive algorithm, which updates the prior and the posterior density functions

at each time step when measurements are available. Hence, no information in the form of continuous measurements

are discarded. The proposed method of considering all available information from continuous measurements would

be particularly useful in identifying parameters that have temporal changes over the duration when measurements are

being acquired.

(b) Even if [31] is used recursively for each instant of time when measurements are available, this would require construc-

tion of the PCE surrogate model at each time step. In the method proposed in this paper, this requirement is bypassed

which leads to further reductions in computational costs.

(c) The sampling for the evaluation of the posterior density function in [31] uses MCMC for enhancing the sampling

efficiency. They also suggest the use of importance sampling to further increase the efficiency. However, the authors

themselves point out that the improvement in efficiency in sampling due to MCMC is tempered by the fact that

the samples are rendered inexpensive by the PC formulation. The present paper instead proposes bootstrapping for

sampling. This implies that the posterior density function at time step tk−1 is used as the prior density function

for time step tk. This leads to more samples being generated from regions which have higher probability content.
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Additionally, as the number of samples remains constant at each step of filtering, it implies that the memory and the

computational demands remain invariant at each step. This is particularly useful in the recursive implementation of

the algorithm.

(d) The algorithm proposed in [31] uses the stochastic Galerkin’s method to develop the PCE surrogate model for the

forward problem. The stochastic Galerkin’s method is intrusive and can lead to unwieldy equations and is considerably

more difficult to code. On the other hand, the proposed method suggests the use of the non-intrusive method of

stochastic collocation to develop the PCE surrogate model. This is considerably easier to code.

It must be emphasised here that the limits to the dimensionality of the vector of parameters, θ, to be identified remains an

open question. This is particularly relevant for system identification in the context of structural health monitoring where the

dimension of θ is usually large [57]. In the direct application of particle filtering for identification of system parameters, the

dimension of θ has been reported to be of the order of 50− 60; see [36,37]. In replacing the forward problem using a PCE

surrogate, each unknown parameter is expressed in terms of a PCE whose component projections are unknowns, thereby

increasing the dimensionality of the problem. However, when the identification algorithm is transformed to the ξ-space,

the dimensionality of the problem is restricted to the dimension of ξ. The questions on the limits of dimensionality of the

unknown vector would therefore be identical to the problem of state estimation using the bootstrap particle filter in [15].

More investigations need to be carried out in this context.

A possible approach to parameter identification in large scale engineering structures would be to consider the problem

in multiple stages. Initially, one can start with a simple mathematical model for the entire structure with few unknown

parameters. As more information about the system is gained, one can progressively build more complex models for the

structure and in combination of sub-structuring concepts and reduced order models, one can identify the system parameters

with desired accuracy levels. Studies along these lines however need to be carried out to explore the robustness of these

algorithms in such situations.

7 Concluding Remarks

A numerical algorithm has been developed for identifying the system parameters in a nonlinear dynamical system from

noisy measurements of the response. The proposed algorithm is based on the bootstrap particle filter algorithm available in

the literature. This involves recursively updating the prior density of the system parameters as more measurements become

available using Bayesian principles and an estimate of the parameters is obtained by computing the first moment. A major

drawback of the bootstrap particle filter algorithm is the requirement of solving the forward problem a large number of

times as this places severe constraints on the computational costs, especially for complicated dynamical systems with large

nonlinearities. The developments proposed in this paper can be used to accelerate the filtering algorithm by reducing the

number of times the forward problem needs to be solved. The salient features arising from this study can be summarized

as follows:

1. A polynomial chaos based approach has been integrated with the bootstrap particle filter algorithm. This involves

constructing the PCE for the response of the dynamical system, which is subsequently used in particle filtering.

2. The PCE for the response is constructed at the initial time step and the problem of system identification is subsequently

formulated in the space of the random variables spanned by the orthogonal polynomials used in PCE. This implies a

transformation of the system identification problem to the space spanned by these random variables and eliminates the

need for construction of PCE for the response at each time step.

3. Issues related to the convergence of the PCE due to changes in the probability density function of the random variables

which form the support of the orthogonal polynomials can be bypassed by considering a larger number of terms in the

PC expansion. To illustrate this, a PC expansion with 20 terms was constructed in the airfoil problem. A comparison

of the mean response obtained from PCE and MCS is shown in Fig. 33. Here, the convergence in the PCE response

is significantly better than when 9 terms had been used (see Fig. 23); the degeneracy appears only after 500 s. On

performing the identification using the 20 term PCE response, similar level of accuracy in the estimates was seen; see

Fig. 34. A comparison of the corresponding parameter identification as shown in Fig. 27 reveals that the convergence

in the identification of the parameter is faster when higher number of PCE terms are considered. However, the accuracy

levels of the identified parameters remain comparable.

4. A reduction in the dimension of the size of the variables on which the system identification is carried out is achieved

by rewriting the process and the measurement equations in a form different from the convention. This has earlier been

proposed in [36]. The proposed developments in the bootstrap filter algorithm in conjunction with PCE maintains this

dimension reduction.
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5. Secondary measures of reduction in computational effort has been investigated. Three such methods, which bypass the

need for application of the filter algorithm at all measurement points have been studied. Methods which do not ignore

completely all the measurements have been observed to be more accurate but at a marginally greater computational

cost.

6. The methods developed in this paper have been implemented to identify the parameters of a nonlinear oscillator and

in a highly nonlinear fluid-structure interaction problem. The proposed method has been observed to lead to fairly

accurate estimates of the parameters at a fraction of the computational costs in comparison to the bootstrap particle

filter available in the literature. This holds promise that the method can be used for system identification in large scale

dynamical systems.

7. Since the focus of the studies carried out in this paper has been on developing strategies for accelerating the particle

filter and observing its efficiency, no efforts have been made to use strategies such as sequential importance sampling

for achieving faster convergence as this can be separately applied to both BFA and PCBFA. For similar reasons, no

effort has been made to use smoothening techniques to reduce the statistical fluctuations in the estimates of the mean

for the parameters being identified.

8. Identification of system parameters using the proposed method for nonlinear dynamical systems exhibiting chaos may

not be feasible. More studies need to be undertaken before one can comment on this issue.

Finally, it must be emphasized here that particle filtering has been traditionally used in the literature for real time dynamic

state estimation. However, this is not a necessary constraint. Here, it is proposed to use particle filtering for system

identification from vibration measurements in structural systems but not in real time. System identification is the first step

in any structural health monitoring strategies where damage indicators are first identified and a prognosis is made about

their progress which are subsequently monitored.

Acknowledgement

This work was partially supported from the project sponsored under the National Program on Micro and Smart Systems

(NPMASS), Aeronautical Development Agency, Government of India.

References

[1] R.E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering D ASME, 82, 35-45

(1960).

[2] L. Ljung, Asymptotic behavior of the extended Kalman filter as a parameter estimation for linear systems, Proceedings IEEE AC,

24, 36-50 (1979).

[3] M. Hoshiya and E. Saito, Structural identification by extended Kalman filter, Journal of Engineering Mechanics ASCE, 110,

1757-1770 (1984).

[4] M. Shinozuka, C.B. Yum and H. Imai, Identification of structural dynamic systems, Journal of Engineering Mechanics Division

ASCE, 108, 1371-1390 (1982) .

[5] R. Ghanem and M. Shinozuka, Structural system identifcation I: Theory, Journal of Engineering Mechanics ASCE, 121(2), 255-

264 .

[6] J. Li and J.B. Roberts, Stochastic structural system identification, Computational Mechanics, 24, 206-(1999) .

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 21

[7] D. Wang and A. Haldar, System identification with limited observations and without input, Journal of Engineering Mechanics

ASCE, 123(5), 504-511 (1997) .

[8] E.A. Wan and R V.D. Merwe, The unscented Kalman filter for nonlinear estimation, Adaptive Systems for Signal Processing,

Communications and Control Symposium IEEE, 153-158 (2000).

[9] Y. Chen and D. Zhang, Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Advances in Water

Resources, 29, 1107-1122 (2006).

[10] R. Tipireddy, H.A. Nasrellah and C.S. Manohar, A Kalman filter based strategy for linear structural system identification based on

multiple static and dynamic test data, Probabilistic Engineering Mechanics, 24, 60-74 (2009).

[11] F. Abid, G. Chevallier, J.L. Blanchard, J.L. Dion and N. Dauchez, System identification using Kalman filters, Proceedings of the

31st IMAC 7 561-573 (2014).

[12] M. Evans and T. Swartz, Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems,

Statistical Science, 10(3), 254-272 (1995) .

[13] R. Cools and P. Dellaportas, The role of embedded integration rules in Bayesian statistics, Statistics and Computing, 6, 245-260

(1996).

[14] M. Evans and T. Swartz, Approximating integrals via Monte Carlo and deterministic methods, (Oxford University Press, 2000).

[15] N.J. Gordon, D.J. Salmond and A.F.M. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Pro-

ceeding F, 140(2), 107-113 (1993).

[16] W.R. Gilks, S. Richardson and D.J. Spiegelhalter, Markov chain Monte Carlo in practice, (Chapman & Hall, 1996).

[17] G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, Journal of Computational Graphics

and Statistics, 5, 1-25 ( 1996).

[18] H. Tanizaki, Nonlinear filters: estimation and applications, (Springer, Berlin, 1996).

[19] A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo methods in practice, (Springer, New York, 2001).

[20] B. Ristic, S. Arulampallam and N. Gordon, Beyond the Kalman filter: Particle filters for tracking applications, (Artech House,

Boston, 2004).

[21] N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference, The Annals of

Statistics, 32(4), 2385-2411 (2004).

[22] C.S. Manohar, D. Roy, Monte Carlo filters for identification of nonlinear systems, Sadhana, 31(4), 99-427 (2006).

[23] S. Ghosh, C.S. Manohar and D. Roy, Sequential importance sampling filters with a new proposal distribution for parameter

identification of structural systems, Proceedings of Royal Society of London A 464, 25-47 (2008).

[24] R. Sajeeb, C.S. Manohar and D. Roy, Control of nonlinear structural dynamical systems with noise using particle filters, Journal

of Sound and Vibration, 306(25), 111-135 (2007) .

[25] J.H. Park, N.S. Namachchivaya and H.C. Yeong, Particle filters in a multiscale environment:Homogenized hybrid particle filter,

Journal of Applied Mechanics, 78, 061001 (2011).

[26] C. Jackson, M.K. Sen and P.L. Stoffa, An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation

for climate model predictions, Journal of Climate, 306(25), 2828-2841 (2004).

[27] W.P. Gouveia and J.A. Scales, Resolution of seismic waveform inversion: Bayes versus Ocean, Inverse Problems, 13, 323-349

(1997).

[28] A. Malinverno, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophysical

Journal International, 151, 675-688 (2002) .

[29] J. Wang and N. Zabaras, Hierarchial Bayesian models for inverse problems in heat conduction, Inverse Problems, 21, 183-206

(2005).

[30] J. Wang and N. Zabaras, Using Bayesian statistics in the estimation of heat source in radiation, International Journal of Heat and

Mass Transfer, 48, 15-29 (2005) .

[31] Y.M. Marzouk, H.N. Najm, L.A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal

of Computational Physics, 224,560-586 (2007).

[32] J. Ching, J.L. Beck and K.A. Porter, Bayesian state and parameter estimation of uncertain dynamical systems, Probabilistic

Engineering Mechanics, 21, 81-96 (2006) .

[33] V. Namdeo and C.S. Manohar, Nonlinear structural dynamical system identification using adaptive particle filters, Journal of

Sound and Vibration, 306, 524-563 (2007) .

[34] B. Radhika and C.S. Manohar, Reliability models for existing structures based on dynamic state estimation and data based asymp-

totic extreme value analysis, Probabilistic Engineering Mechanics, 25, 393-405 (2010) .

[35] H.A. Nasrellah and C.S. Manohar, A particle filtering approach for structural system identification in vehicle-structure interaction

problems, Journal of Sound and Vibration, 329(9), 1289-1309 (2010).

[36] H.A. Nasrellah and C.S. Manohar, Particle filters for structural system identification using multiple test and sensor data: a com-

bined computational and experimental study, Structural Control and Health Monitoring, 18, 99-120 (2011).

[37] H.A. Nasrellah and C.S. Manohar, Finite element method based Monte Carlo filters for structural system identification, Proba-

bilistic Engineering Mechanics, 26, 294-307 (2011).

[38] B. Pokale and S. Gupta, Damage estimation in vibrating beams from time domain experimental measurements, Archive of Applied

Mechanics, submitted in revised form (2014) .

[39] A.I. Khuri and J.A. Cornell, Response surfaces: design and analysis, (Marcel and Dekker, New York, 1997).

[40] S. Gupta and C.S. Manohar, An improved response surface method for the determination of failure probability and importance

measures, Structural Safety, 26, 123-139 (2004) .

[41] N. Wiener, The homogeneous chaos, American Journal of Mathematics, 60, 897-936 (1938) .

Copyright line will be provided by the publisher



22 Rangaraj P, Abhijit Chaudhuri, and Sayan Gupta: PCE in particle filtering

[42] D. Xiu and G.E. Karniadakis, The Weiner-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scien-

tific Computing, 24, 619-644 (2002).

[43] R. Ghanem, P.D. Spanos, Stochastic finite element: a spectral approach, Springer-Verlag, Berlin (1991).

[44] D. Xiu, D. Lucor, C.H. Su and G. Karniadakis, Stochastic modeling of flow-structure interaction using generalized polynomial

chaos, Journal of Fluids Engineering, ASME, 124, 51-59 (2002) .

[45] J.A.S. Witteven, S. Sarkar and H. Bijl, Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of

turbine blades using arbitrary polynomial chaos, Computers and Structures, 85, 866-878 (2007) .

[46] A. Desai and S. Sarkar, Analysis of a nonlinear aeroelastic system with parametric uncertainties using polynomial chaos expansion,

Mathematical Problems in Engineering, doi:10.1155/2010/379472 (2010).

[47] B.H.K. Lee, L. Jiang and Y.S. Wong, Flutter of an airfoil with a cubic nonlinear restoring force, AIAA 98-1725, 237-257 (1998).

[48] Y.C. Fung, An Introduction to the Theory of Aeroelasticity, (JohnWiley and Sons, New York, 1955).

[49] Y.M. Marzouk, H.N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse prob-

lems, Journal of Computational Physics, 228, 1862-1902 (2009).

[50] E Blanchard, A. Sandu, C. Sandu, Parameter estimation for mechanical systems via an explicit representation of uncertainty,

Engineering Computations, 26(5), 541-569.

[51] E Blanchard, A. Sandu, C. Sandu, Polynomial chaos based parameter estimation methods applied to a vehicle system, Journal of

Multi-body Dynamics, 224, 59-81 (2010).

[52] G.A. Saad, R.G. Ghanem, Robust structural health monitoring using a polynomial chaos based sequential data assimilation tech-

nique, III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering,

Corfu, (2011).

[53] J. Kolansky, C. Sandu, Generalized polynomial chaos based extended Kalman filter: improvement and expansion, 9th Internatioanl

Conference on Multibody Systems, Nonlinear Dynamics and Control, Portland, 7A, V07AT10A019, (2013).

[54] P. Dutta, R. Bhattacharya, Nonlinear estimation of hypersonic state trajectories in Bayesian framework with polynomial chaos,

Journal of Guidance Control and Dynamics, 33(6), 1765-1768 (2010).

[55] B.V. Rosic, A Litvinenko, O. Pajonk, H.G. Matthies, Sampling free linear Bayesian update of polynomial chaos representations,

Journal of Computational Physics, 231(17), 5761-5787 (2012).

[56] R. Madankan, P. Singla, T. Singh, P.D.Scott, Polynomial chaos based Bayesian approach for state and parameter estimations,

Journal of Guidance, Control and Dynamics, 36(4), 1058-1074 (2013).

[57] E. Ntosios, C. Papadimitriou, P. Panetsos, G. Karaiskos, K. Perros, P.C. Perdikaris, Bridge health monitoring system based on

vibration measurements, Bulletin of Earthquake Engineering, 7, 469-483 (2009).

Copyright line will be provided by the publisher


