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The Treewidth of MDS and Reed-Muller Codes∗

Navin Kashyap† Andrew Thangaraj‡

Abstract

The constraint complexity of a graphical realization of a linear code is the maximum dimension

of the local constraint codes in the realization. The treewidth of a linear code is the least constraint

complexity of any of its cycle-free graphical realizations. This notion provides a useful parametriza-

tion of the maximum-likelihood decoding complexity for linear codes. In this paper, we prove the

surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals

trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complex-

ity) of any of its trellis realizations. From this, we obtain exact expressions for the treewidth of these

codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.

1 Introduction

A (normal) graphical realization of a linear code C consists of an assignment of the coordinates of C
to the vertices of a graph, along with a specification of linear state spaces and linear “local constraint”

codes to be associated with the edges and vertices, respectively, of the graph [4]. Cycle-free graphical

realizations, or simply tree realizations, are those in which the underlying graph is a tree. Tree realiza-

tions of linear codes are interesting because the sum-product algorithm (SPA) on such a realization is an

exact implementation of maximum-likelihood (ML) decoding [16]. The notion of constraint complexity

of a tree realization was introduced by Forney [5] as a measure of the computational complexity of the

corresponding SPA algorithm. It is defined to be the maximum dimension among the local constraint

codes constituting the realization. The treewidth of a linear code is the least constraint complexity of

any of its tree realizations.

The minimal tree complexity measure defined for linear codes by Halford and Chugg [6] is a close

relative of treewidth. There are also closely related notions of treewidth defined for graphs [3] and

matroids [7]; these relationships are discussed in more detail in [10]. Known facts about the treewidth

of graphs and matroids imply that computing the treewidth of a code is NP-hard.

For a length-n linear code over the field Fq, the computational complexity of implementing ML

decoding, via the SPA on an optimal tree realization, is O(nqt), where t is the treewidth of the code

[10]. In particular, ML decoding is fixed-parameter tractable with respect to treewidth, which means

that for codes whose treewidth is bounded by a fixed constant t, ML decoding can be performed in

polynomial time. Thus, treewidth provides a useful parametrization of ML decoding complexity.

Trellis representations (or trellis realizations) of codes are special cases of tree realizations which

have received extensive attention in the literature (see e.g., [14]). In the context of trellis representations,

constraint complexity is usually called branch complexity. We define here the trelliswidth of a code to

be the least branch complexity of any of its trellis representations (optimized over all possible orderings
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of the coordinates of the code). As trellis representations are instances of tree realizations, trelliswidth

is at least as large as treewidth. In fact, it is known that trelliswidth can be much larger than treewidth:

it was shown in [11] that the ratio of trelliswidth to treewidth can grow at most logarithmically with

blocklength, and that there are codes with arbitrarily large blocklengths that achieve this logarithmic

growth rate. The only known code family achieving logarithmic growth rate of this ratio is a family

consisting of cut-set codes of a certain class of graphs. The codes in this family all have treewidth equal

to 2, and rate approximately 1/4, but minimum distance only 4 [10].

It is not known if there are any other code families for which there is a significant advantage to

be gained in going from trellis representations to tree realizations that are topologically more complex.

In the only previous investigation reported on this question, Forney [5] considered the family of Reed-

Muller codes. He showed that for a certain natural tree realization of Reed-Muller codes, obtained

from their well-known recursive |u|u+ v| construction, the constraint complexity is, in general, strictly

larger than the trelliswidth of the code. But this still leaves open the possibility that there may be other

tree realizations whose constraint complexity beats trelliswidth. In particular, it leaves undecided the

question of whether the treewidth of a Reed-Muller code can be strictly less than its trelliswidth.

In this paper, we show that for Reed-Muller codes, treewidth is equal to trelliswidth. The proof of

this makes use of structural properties known for optimal trellis realizations of Reed-Muller codes, and

also relies strongly on a certain separator theorem for trees. A similar proof strategy also works on the

much simpler case of maximum distance separable (MDS) codes, where again we show that treewidth

equals trelliswidth. These results yield the first explicit expressions for the treewidth of classical alge-

braic codes.

The rest of this paper is organized as follows. After providing the necessary definitions and notation

in Section 2, we describe, in Section 3, our proof strategy for showing that treewidth equals trelliswidth

for certain codes. Sections 4 and 5 deal with MDS and Reed-Muller codes, respectively. The technical

details of some of the proofs are given in appendices.

2 Preliminaries and Notation

The notation [n] denotes the set of positive integers from 1 to n; [a, b] denotes the set {i ∈ Z : a ≤
i ≤ b}. An (n, k) linear code is a code of length n and dimension k. The n coordinates of the code are

indexed by the elements of an index set I; unless specified otherwise, I = [n]. Given a linear code C
with index set I , for J = {j1, j2, . . . , js} ⊆ I , the shortening of C to the coordinates in J is denoted CJ
and defined as follows:

CJ = {cj1cj2 . . . cjs : c1c2 . . . cn ∈ C, ci = 0 for i /∈ J}.

The notions of treewidth and trelliswidth are central to this article, and we define these next.

2.1 Treewidth and trelliswidth

For brevity, we provide only the necessary definitions and main results; for details, see [5],[10].

A tree is a connected graph with no cycles. The set of nodes and the set of edges of a tree T are

denoted by V (T ) and E(T ), respectively. Degree-1 nodes in a tree are called leaves, and all other nodes

are called internal nodes. We let L(T ) denote the set of leaves of T . A tree is a path if all its internal

nodes have degree 2; and is a cubic tree if all its internal nodes have degree 3. A path with at least one

edge has exactly two leaves; a cubic tree with n leaves has n− 2 internal nodes.

Let C be an (n, k) linear code with index set I . A tree decomposition of C is a pair (T, ω), where T
is a tree and ω : I → V (T ) is an assignment of coordinates of C to the nodes of T .

Given a tree decomposition (T, ω) of C, for each node v of T , we define a quantity κv as follows.

Let E(v) denote the set of edges of T incident on v. For e ∈ E(v), let Te,v denote the component of
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T − e (T with e removed) not containing v. Finally, let Ie,v = ω−1(V (Te,v)) be the set of coordinates

of C that are assigned to nodes in Te,v. Then,

κv = k −
∑

e∈E(v)

dim(CIe,v). (1)

The quantity κv above is the dimension of the local constraint code at node v in the minimal realization

of C on (T, ω), denoted by M(C;T, ω).
Let κ(C;T, ω) = max

v∈V (T )
κv denote the constraint complexity of M(C;T, ω). The treewidth of a

code C, denoted by κ(C), is then defined as

κ(C) = min
(T,ω)

κ(C;T, ω). (2)

It is, in fact, enough to perform the minimization in (2) over cubic trees T with n leaves, and mappings

ω that are bijections between I and L(T ).
The trelliswidth of C, which we will denote by τ(C), can be defined using the above notation as

follows:

τ(C) = min
π

κ(C;P, π), (3)

where P is the path on n nodes, and the minimization is over mappings π that are bijections between I
and V (P ). From (2) and (3), it is clear that κ(C) ≤ τ(C).

Let v1, v2, . . . , vn be the nodes of the path P , listed in order from one leaf to the other. For the

bijection π : I → V (P ) that maps i to vi (1 ≤ i ≤ n), we obtain from (1),

κvi = k − dim(Cπ[1,i−1])− dim(Cπ[i+1,n]), (4)

where π[a, b] = {π(j) : a ≤ j ≤ b}.

2.2 Generalized Hamming weights

The generalized Hamming weights of a linear code, introduced and studied in [15], limit the possible

dimensions of shortened versions of the code. So, they are related to the complexity of tree realizations

in a natural way.

Let C be an (n, k) linear code with index set I . We will use the notation D ⊑ C to say that D is a

subcode of C. For a subcode D ⊑ C, we define its support χ(D) = {i : ∃ c1c2 . . . cn ∈ D s.t. ci 6= 0}.

The p-th generalized Hamming weight of C , denoted dp(C), is the size of the smallest support of a

p-dimensional subcode of C, i.e., dp(C) = min{|χ(D)| : D ⊑ C,dim(D) = p} for 1 ≤ p ≤ k. It is

known that 0 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n. Also, d1(C) is the minimum distance of C.

A closely related definition is that of maximal limited-support subcode dimensions. For 1 ≤ s ≤
n, Us(C) is defined to be the maximum dimension of a subcode of C with support at most s, i.e.,

Us(C) = max{dim(D) : D ⊑ C, |χ(D)| ≤ s}. The maximal limited-support subcode dimensions can

be computed using the generalized Hamming weights as follows:

Us(C) = u such that du(C) ≤ s < du+1(C) (5)

with the convention that d0(C) = 0 and dk+1(C) = n+ 1. We also define U0(C) = 0.

3 The Proof Strategy

From the relevant definitions, treewidth cannot exceed trelliswidth for any code C, i.e., κ(C) ≤ τ(C).
We now describe a general strategy that can be used to show the opposite inequality in certain cases.
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Consider an (n, k) linear code C, with index set I . The idea of using maximal limited-support

subcode dimensions to study the complexity of trellis realizations of C was introduced in [9]. We extend

that idea to tree realizations here. For J ⊆ I , CJ is a subcode of C with support at most |J |. So,

dim(CJ) ≤ U|J |(C). Therefore, given any tree decomposition (T, ω) of C, we obtain from (1) that for

any v ∈ V (T ),

κv ≥ k −
∑

e∈E(v)

U|Ie,v|(C). (6)

Now, recall from the definition of treewidth that it suffices to carry out the minimization in (2) over

tree decompositions (T, ω) in which T is a cubic tree with n leaves, and ω is a bijection between I and

L(T ). For such a (T, ω), we note that |Ie,v| is simply the number of leaves in Te,v, and for an internal

node v ∈ V (T ), the summation in (6) contains exactly three terms.

Let ne,v denote the number of leaves in Te,v, and note that these numbers ne,v are determined purely

by the topology of T . At an internal node v in a cubic tree T with n leaves, we will list the edges in E(v)
in the form of an ordered triple [e1(v) e2(v) e3(v)] such that 1 < ne1(v),v ≤ ne2(v),v ≤ ne3(v),v < n. If

the node v is clear in the context, we will use the simplified notation ni = nei(v),v for i = 1, 2, 3.

Suppose that T is a cubic tree with n leaves having an internal node v such that the numbers

n1, n2, n3 satisfy
∑3

i=1 Uni
(C) ≤ k − τ(C). Then, by (6), for any bijection ω between I and L(T ),

we have κv ≥ τ(C), and hence κ(C;T, ω) ≥ τ(C). Consequently, if every cubic tree with n leaves had

such a node v, then we would have κ(C) ≥ τ(C). Since the opposite inequality is always true, we have

proved the following proposition.

Proposition 1. Let C be an (n, k) linear code with the property that for any cubic tree T with n leaves,

there always exists an internal node v ∈ V (T ) such that
∑3

i=1 Uni
(C) ≤ k−τ(C), where ni = nei(v),v .

Then, κ(C) = τ(C).

A comment on the proof strategy implied by Proposition 1 is in order. To show that κ(C) ≥ τ(C)
(and hence, κ(C) = τ(C)), the obvious strategy would be to show, for each tree decomposition (T, ω)
of C, the existence of a node v ∈ V (T ) for which κv ≥ τ(C), where κv is given by (6). In general, the

node v would depend on the tree T as well as on the coordinate assignment ω. However, in the proof

method based upon Proposition 1, the idea is to find, for a given (T, ω), a node v ∈ V (T ) that depends

only on the topology of T , and thus, is independent of ω, for which κv ≥ τ(C) holds. It is a remarkable

fact that this proof strategy can be made to work for MDS and Reed-Muller codes, as we will see in

Sections 4 and 5.

The hypothesis of Proposition 1 requires the existence of a node in any cubic tree, whose removal

partitions the tree into components with a certain property. The property in this case is that the cor-

responding partition of the number of leaves, n, into n1, n2, n3 satisfies
∑3

i=1 Uni
(C) ≤ k − τ(C).

Structural results of this form are known as separator theorems (see e.g., [13])

A classical separator theorem is a theorem of Jordan [8] that states that any tree on n nodes has

an internal node whose removal leaves behind connected components with at most n/2 nodes each. A

trivial modification of the simple proof of this theorem shows that the two occurrences of “nodes” in the

theorem statement can be replaced by “leaves”. For easy reference, we record this as a proposition for

the special case of cubic trees.

Proposition 2. In any cubic tree with n ≥ 3 leaves, there exists an internal node v such that nei(v),v ≤
n/2 for i = 1, 2, 3.

Another classical (edge) separator theorem is the following result (cf. [13]): every cubic tree T with

n leaves contains an edge e such that both components of T − e have at most 2n/3 leaves. Now, one

of these two components must have at least n/2 leaves; let v be the node incident with e for which this

component is Te,v. Then, for this v, we have n3 ∈ [n/2, 2n/3]. We record this fact below.

Proposition 3. In any cubic tree with n ≥ 3 leaves, there exists an internal node v such that ne3(v),v ∈
[n/2, 2n/3].
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As we will see in the next two sections, Propositions 2 and 3 allow us to deal with MDS and Reed-

Muller codes, respectively. We consider MDS codes first.

4 Treewidth of MDS Codes

MDS codes are (n, k) linear codes for which the minimum distance equals n− k+1. Basic facts about

MDS codes can be found in [12].

Let C be an (n, k) MDS code, with index set I = [n]. The generalized Hamming weights of C were

computed in [15] as follows:

dp(C) = n− k + p, 1 ≤ p ≤ k.

From this, the maximal limited-support subcode dimensions, Us(C) for 1 ≤ s ≤ n, can be determined

using (5). They are given by

Us(C) =

{

0, 1 ≤ s ≤ n− k,

q, s = n− k + q, q = 1, 2, · · · , k.
(7)

Equivalently, Us(C) = max{0, s − (n− k)}. We use this to compute τ(C) next.

Let H be a parity-check matrix for C. For a subset J ⊆ I , the code CJ has dimension equal to

|J | − rank(H|J ), where H|J refers to the restriction of H to the columns indexed by J . As C is MDS,

rank(H|J) = min{|J |, n − k}. Hence, dim(CJ) = max{0, |J | − (n − k)} = U|J |(C). Therefore, for

any permutation π of I , we have for integers 1 ≤ a ≤ b ≤ n, dim(Cπ[a,b]) = Ub−a+1(C). Therefore,

the right-hand-side of (4) is always equal to k − Ui−1(C)− Un−i(C). It follows directly from this that

τ(C) = max
1≤i≤n

(k − Ui−1(C)− Un−i(C)) = k − min
1≤i≤n

(Ui−1(C) + Un−1(C)).

A straightforward computation using (7) yields

min
1≤i≤n

(Ui−1(C) + Un−i(C)) =

{

0, if n− k ≥ k,

2k − n− 1, if n− k < k.

achieved for i = n− k + 1. We thus have the following result.

Proposition 4. The trelliswidth of an (n, k) MDS code C is given by τ(C) = min{k, n − k + 1}.

With this, we have

k − τ(C) = max{0, 2k − n− 1}. (8)

We can now prove that the treewidth of an MDS code equals its trelliswidth.

Theorem 5. For an (n, k) MDS code C, we have

κ(C) = τ(C) = min{k, n − k + 1}.

Proof. The statement is trivial for n = 1, 2, or when k = n, so we assume n ≥ 3 and 1 ≤ n − k. Let

T be a cubic tree with n leaves, and let v be the node guaranteed by Proposition 2. We will show that v
satisfies the hypothesis of Proposition 1.

Set ni = nei(v),v , i = 1, 2, 3, and recall that, by definition, n1 ≤ n2 ≤ n3. By choice of v, we also

have ni ≤ n/2 for i = 1, 2, 3. For convenience, we write Uni
for Uni

(C).

Case 1: n− k ≥ k.

In this case, ni ≤ n/2 ≤ n− k, so that
∑

i Uni
= 0 by (7). Moreover, by (8), k − τ(C) = 0.
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Case 2: 1 ≤ n− k < k.

Now, we have ni ≤ n/2 < k. We must show that
∑

i Uni
≤ 2k − n − 1. If n3 ≤ n − k, then

∑

i Uni
= 0. So, we assume n3 = k−δ, with 1 ≤ δ < 2k−n. Then, Un3

= n3− (n−k) = 2k−n−δ
and n1 + n2 = n− n3 = n− k + δ. So, we have

Un1
+ Un2

+ Un3
= max{0, k − n+ n1}+max{0, k − n+ n2}+ 2k − n− δ

≤ max{0, k − n+ n1, k − n+ n2, 2k − 2n + n1 + n2}+ 2k − n− δ

= max{2k − n− δ, 3k − 2n + n2 − δ, 3k − 2n}

≤ 2k − n− 1,

where the last inequality holds because δ ≥ 1, n2 ≤ n− k + δ − 1 and n− k ≥ 1.

Thus, in both cases, we see that
∑

i Uni
≤ k − τ(C), and so, by Proposition 1, we have κ(C) =

τ(C).

5 Reed-Muller codes

For a positive integer m and a non-negative integer r with 0 ≤ r ≤ m, the r-th order binary Reed-

Muller code of length 2m, denoted RM(r,m), is defined as follows. Let Pm
r denote the set of all

Boolean polynomials in m variables of degree less than or equal to r. For an integer i, 0 ≤ i ≤ 2m − 1,

with binary expansion i =
∑m−1

j=0 bj(i)2
j , bj(i) ∈ {0, 1}, we let b(i) = (b0(i), b1(i), · · · , bm−1(i)).

For f ∈ Pm
r , let f(b(i)) = f(b0(i), b1(i), · · · , bm−1(i)). The code RM(r,m) is defined as

RM(r,m) = {[f(b(0)) f(b(1)) · · · f(b(2m − 1))] : f ∈ Pm
r }. (9)

The code RM(r,m) has length n = 2m, dimension k(r,m) =
∑r

j=0

(m
j

)

, and minimum distance 2m−r

[12]. In (9), the order of evaluation of the function f is according to the index set I = [0, 2m − 1]. This

is called the standard bit order.

We will denote the treewidth and trelliswidth of RM(r,m) by κ(r,m) and τ(r,m), respectively.

5.1 Trelliswidth of RM(r,m)

Let C be the Reed-Muller code RM(r,m) in the standard bit order, so that I = [0, 2m − 1]. In this

section, we derive an exact expression for the trelliswidth of C.

Let P be the path on n = 2m nodes, with v0, v1, . . . , vn−1 being the nodes of P , listed in order

from one leaf to the other. For any π : I → V (P ), we obtain from (4), in a manner analogous to the

derivation of (6),

κvi ≥ k(r,m)− Ui(C)− Un−1−i(C),

for i = 0, 1, . . . , n− 1. Thus,

κ(C;P, π) ≥ k(r,m) − min
0≤i≤n−1

(Ui(C) + Un−1−i(C)). (10)

Note that the right-hand-side is independent of π, so that by (3),

τ(C) ≥ k(r,m)− min
0≤i≤n−1

(Ui(C) + Un−1−i(C)). (11)

It is shown in [9] that for RM(r,m) in the standard bit order, we have for i = 0, 1, . . . , n − 1,

dim(C[0,i])) = Ui+1(C) and dim(C[i,n−1]) = Un−i(C). (12)

It follows that when π simply maps i to vi for all i ∈ I , then we have equality in (10), and hence, in (11).

To put this another way, the branch complexity of the minimal trellis representation of RM(r,m) in the

standard bit order attains the lower bound on, and thus equals, the trelliswidth of the code. Techniques

from [2] allow us to compute, with very little effort, the branch complexity of this trellis representation.

We give the details of this computation in Appendix A. From this, we obtain the following result.
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Proposition 6. The trelliswidth of the Reed-Muller code RM(r,m) is given by

τ(r,m) =

{

∑r
j=0

(m−2j−1
r−j

)

if m ≥ 2r + 1,

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)

if m < 2r + 1.

Recall that the dimension of the code RM(r,m) is given by k(r,m) =
∑r

j=0

(m
j

)

. We will find

it convenient to define k(r′,m′) to be
∑r′

j=0

(m′

j

)

for all non-negative integers r′,m′, including when

r′ > m′. with the usual conventions that
(0
0

)

= 1 and
(m′

j

)

= 0 for j > m′. Thus, for r′ ≥ m′ ≥ 0,

k(r′,m′) = 2m
′
. Following these conventions, we give an expression for the difference k(r,m) −

τ(r,m).

Proposition 7. For the Reed-Muller code RM(r,m), we have

k(r,m)− τ(r,m) =

min{2(r−1),m−1}
∑

i=0

k(r − 1− ⌈i/2⌉,m − 1− i).

We present the algebraic manipulations required to prove this proposition in Appendix A.

It is instructive to explicitly write out some of the terms of the summation in the last proposition.

When m ≥ 2r, we have

k(r,m) − τ(r,m) = k(r − 1,m− 1) + k(r − 2,m− 2) + k(r − 2,m− 3)

+ k(r − 3,m− 4) + k(r − 3,m− 5)

+ · · ·+ k(0,m − 2r + 2) + k(0,m− 2r + 1), (13)

and when m ≤ 2r − 1, we have

k(r,m) − τ(r,m) = k(r − 1,m− 1) + k(r − 2,m− 2) + k(r − 2,m− 3)

+ k(r − 3,m− 4) + k(r − 3,m− 5)

+ · · ·+ k(r − 1− ⌈m−2
2 ⌉, 1) + k(r − 1− ⌈m−1

2 ⌉, 0). (14)

5.2 Treewidth of RM(r,m)

We state below our main result showing that the treewidth of a Reed-Muller code equals its trelliswidth.

Theorem 8. The treewidth of the Reed-Muller code RM(r,m) is given by

κ(r,m) = τ(r,m) =

{

∑r
j=0

(m−2j−1
r−j

)

if m ≥ 2r + 1,

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)

if m < 2r + 1.

The rest of this section is devoted to a proof of the above result, which follows the strategy outlined

in Section 3. Some of the technical details of the proof are presented in Appendices B and C.

Let RM(r,m) be given. If m ≤ 2, or r = m, then RM(r,m) is an MDS code, which has been dealt

with in Section 4. Henceforth, we will assume m ≥ 3 and r ≤ m− 1.

Let T be a cubic tree with n = 2m leaves, m ≥ 3, and let W = {v ∈ V (T ) : ne3(v),v ∈
[n/2, 2n/3]}. By Proposition 3, W is non-empty. Let v∗ ∈ W be a node that achieves max{ne3(v),v :
v ∈ W}. Write n∗

i = nei(v∗),v∗ , i = 1, 2, 3.

Lemma 9. We have n/6 < n∗
2 < n/3.
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...

. . .

...

...

v∗ v

n∗
1

n∗
2

n∗
3

Figure 1: For v, we have n3 = n∗
1 + n∗

3.

Proof. If n∗
2 < n/6, then from the fact that n∗

1 ≤ n∗
2, we obtain n∗

1 + n∗
2 < n/3, so that n∗

3 > 2n/3, a

contradiction. So, n2 ≥ n/6. However, n/6 is not an integer for n = 2m, and so, n∗
2 > n/6.

If n∗
2 ≥ n/3, then n∗

1 + n∗
3 ≤ 2n/3. Let v be the neighbour of v∗ incident with edge e2(v

∗). Then,

setting n3 = ne3(v),v , we see that n3 = n∗
1 + n∗

3; see Figure 1. But this means that n∗
3 < n3 ≤ 2n/3,

which contradicts our choice of v∗.

We will show that
∑3

i=1 Un∗
i
≤ k(r,m)− τ(r,m), which will prove Theorem 8 by virtue of Propo-

sition 1. Here, and in all that follows, we use Uh as shorthand for Uh(RM(r,m)),
Denote by α(m) and β(m) the largest integers in [0, 2n/3] and [0, n/3], respectively. Explicitly,

α(m) =

{

2
3 · 2

m − 1
3 if m is odd ,

2
3 · 2

m − 2
3 if m is even,

(15)

and

β(m) =

{

1
3 · 2

m − 2
3 if m is odd ,

1
3 · 2

m − 1
3 if m is even.

(16)

Equivalently, in binary form,

b(α(m)) =

{

(1, 0, 1, 0, 1, · · · , 0, 1) if m is odd,

(0, 1, 0, 1, · · · , 0, 1) if m is even,
(17)

and

b(β(m)) =

{

(0, 1, 0, 1, 0, · · · , 1, 0) if m is odd,

(1, 0, 1, 0, · · · , 1, 0) if m is even.
(18)

When there is no ambiguity, we will drop the superscripts from α(m) and β(m) for notational ease.

Now, what we know is that n∗
3 ∈ [2m−1, α] and n∗

2 ∈ [⌈16 2
m⌉, β]. In fact, it can be directly verified

from the expression for α that ⌈16 2
m⌉ = α − 2m−1 + 1. We wish to show that

∑

Un∗
i
≤ k(r,m) −

τ(r,m). We will do this in two steps: first, we show in Lemma 10 below that
∑

Un∗
i
≤ Uα +Uβ +U1,

and then, we prove in Lemma 11 that Uα + Uβ + U1 = k(r,m) − τ(r,m).
Write n∗

3 = α− i and n∗
2 = β−j, so that n∗

1 = 2m−(n∗
3+n∗

2) = i+j+1, where i ∈ [0, α−2m−1]
and j ∈ [0, β − (α− 2m−1 + 1)]. The following lemma shows that

∑

Un∗
i
≤ Uα + Uβ + U1.
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Lemma 10. For i ∈ [0, α − 2m−1], and j ∈ [0, β − (α− 2m−1 + 1)], we have

(Uα − Uα−i) + (Uβ − Uβ−j) ≥ Ui+j+1 − U1.

Proof. See Appendix B.

Lemma 11. Uα + Uβ + U1 = k(r,m) − τ(r,m).

Proof. The minimum distance of RM(r,m) is 2m−r . Since we have assumed r ≤ m− 1, the minimum

distance is at least 2, and hence, U1 = 0. In Appendix C, we show the following: when m ≥ 2r,

Us =

{

∑r−1
i=0 k(r − 1− i,m− 1− 2i) if s = α,

∑r−1
i=1 k(r − 1− i,m− 2i) if s = β.

(19)

Examining the above summations term-by-term, it may be verified that the alternate terms on the right-

hand side of (13), beginning with k(r − 1,m − 1), sum to Uα, while the remaining terms sum to Uβ .

Hence, when m ≥ 2r, the statement of the lemma holds.

When m < 2r, we show in Appendix C that

Uα =







∑

m−1

2

i=0 k(r − 1− i,m− 1− 2i) if m is odd,
∑

m−2

2

i=0 k(r − 1− i,m− 1− 2i) if m is even.
(20)

and

Uβ =







∑

m−1

2

i=1 k(r − 1− i,m− 2i) if m is odd,
∑

m
2

i=1 k(r − 1− i,m− 2i) if m is even.
(21)

This time, it can be seen that the alternate terms on the right-hand side of (14), beginning with k(r −
1,m−1), sum to Uα, while the remaining terms sum to Uβ . This completes the proof of the lemma.

With this, the proof of Theorem 8 is complete.

6 Concluding Remarks

In this paper, we proved the surprising fact that for the families of MDS and Reed-Muller codes, if we

use the maximum dimension of local constraint codes to measure the complexity of a graphical realiza-

tion, then there is no advantage to be gained in going from trellis realizations to cycle-free realizations

on more complex tree topologies. This is particularly surprising for Reed-Muller codes, given that they

have a natural binary-tree structure arising from the recursive |u|u + v| construction (see e.g. [5]). Of

course, the situation could be different if we used some other measure for the complexity of a graphical

realization, for example, the sum of the local constraint dimensions.

It is also quite remarkable that the proof strategy outlined in Section 3 – namely, identifying in any

cubic tree T a node v ∈ V (T ) such that κv ≥ τ(C) for every tree decomposition of the code C on

T — succeeds for MDS and Reed-Muller codes. As noted in that section, this strategy ignores the

role played by the coordinate assignment ω in determining the local constraint code dimension, κv. It

seems unlikely that this method of proof would succeed for other code families. It would of course

be interesting to devise a set of tools that could be used to compute treewidth, or simply to determine

whether or not treewidth can be strictly less than trelliswidth, for other families of algebraic codes.
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Appendix A: Proofs of Propositions 6 and 7

In this appendix, we compute the branch complexity of the minimal trellis representation of RM(r,m)
in the standard bit order, from which the expressions in Proposition 6 and 7 are obtained. We refer the

reader to the survey by Vardy [14] for the necessary background on the theory of trellis representations.

Let τ(r,m) and σ(r,m) denote, respectively, the branch complexity and state complexity of the

minimal trellis representation of RM(r,m) in the standard bit order. Berger and Be’ery [1] gave an

explicit expression for σ(r,m):

σ(r,m) =

min{r,m−r−1}
∑

j=0

(

m− 2j − 1

r − j

)

.

A different derivation of the above was given by Blackmore and Norton [2]. We rely heavily on tools

from [2] to prove the following result, which is equivalent to Proposition 6.

Proposition 12.

τ(r,m) =

{

σ(r,m) if m ≥ 2r + 1,

σ(r,m) + 1 if m < 2r + 1.

We introduce some terminology and notation that will be needed in the proof of the proposition. Let

C be the code RM(r,m) in the standard bit order, and let n = 2m. Let T be the minimal trellis of C. For

i = 0, 1, . . . , n, the dimension of the state space at depth i in T is denoted σi. Thus, σ(r,m) = maxi σi.
For i = 0, 1, . . . , n − 1, we denote by τi the dimension of the branch space between the state spaces at

depths i and i+ 1; then, τ(r,m) = maxi τi.
The following definitions were made in [2] for 0 ≤ i ≤ n− 1:

(a) if dim(C[i+1,n−1]) = dim(C[i−1,n−1])− 1, then i is called a point of gain of C; and

(b) if dim(C[0,i]) = dim(C[0,i−1]) + 1, then i is called a point of fall of C.

As per our notation from Section 5, b(i) denotes the m-bit binary representation of i, 0 ≤ i ≤ n−1.

Let |b(i)|0 and |b(i)|1 denote the number of 0s and 1s, respectively, in b(i).

Lemma 13 ([2], Proposition 2.2). For 0 ≤ i ≤ n− 1,

(a) i is a point of gain of C iff |b(i)|1 ≤ r;

(b) i is a point of fall of C iff |b(i)|0 ≤ r.

Proof of Proposition 12. It is a fact that for any minimal trellis representation, branch complexity

either is equal to the state complexity or is exactly one more than the state complexity. In particular,

σ(r,m) ≤ τ(r,m) ≤ σ(r,m) + 1. So, to prove Proposition 12, it suffices to show that

τ(r,m) = σ(r,m) + 1 iff m ≤ 2r. (22)

Suppose that τ(r,m) = τi for some i ∈ [0, n − 1]. From the local behaviour of T described in [2,

p. 44], it follows that we can have τi = σ(r,m) + 1 iff σi = σ(r,m) and i+1 is a point of gain as well

as a point of fall of C.

Thus, if τi = σ(r,m) + 1, then by Lemma 13, m = |b(i+1)|1 + |b(i+1)|0 ≤ 2r. This proves the

“only if” direction of (22).

Conversely, suppose m ≤ 2r. The proposition is clearly true if m = r, since RM(m,m) =
{0, 1}2

m

, and we have σ(m,m) = 0 and τ(m,m) = 1. So, we may assume m ≥ r + 1. Take i to be

10



such that b(i) = (0, 0 . . . , 0, 1, 0, 1, 0, . . . , 1, 0), with |b(i)|1 = m− r − 1. Then, by Theorem 2.11 in

[2], σi = σ(r,m). Also, b(i+1) = (1, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0), with |b(i+1)|1 = m− r ≤ r and

|b(i+1)|0 = m− (m− r) = r. Hence, by Lemma 13, i+ 1 is a point of gain as well as a point of fall

of C. Hence, τi = σ(r,m) + 1, which completes the proof of (22), and hence, of Proposition 12.

We next present the algebraic manipulations needed to prove Proposition 7.

Proof of Proposition 7. We divide the proof into three cases.

Case 1: m ≥ 2r + 1. We have

k(r,m) − τ(r,m) =

r
∑

j=0

(

m

j

)

−
r

∑

j=0

(

m− 2j − 1

r − j

)

=

r
∑

j=0

(

m

j

)

−
r

∑

j=0

(

m− 2(r − j)− 1

j

)

=
r

∑

j=1

[(

m

j

)

−

(

m− 2(r − j)− 1

j

)]

(a)
=

r
∑

j=1

2(r−j)
∑

i=0

(

m− 1− i

j − 1

)

(b)
=

2(r−1)
∑

i=0

r−⌈i/2⌉
∑

j=1

(

m− 1− i

j − 1

)

=

2(r−1)
∑

i=0

k(r − 1− ⌈i/2⌉,m− 1− i).

In the above chain of equalities, equality (a) uses the fact that for integers a < b and j ≥ 1, we

have
(

b
j

)

−
(

a
j

)

=
∑b−1

q=a

(

q
j−1

)

; this is just repeated application of the identity
(

b
j

)

=
(

b−1
j−1

)

+
(

b−1
j

)

.

Equality (b) is obtained by exchanging the order of the summations in i and j.

Case 2: m = 2r. Here,

k(r,m) − τ(r,m) =
r

∑

j=0

(

m

j

)

− 1−
r−1
∑

j=0

(

m− 2j − 1

r − j

)

=

r
∑

j=1

(

m

j

)

−
r

∑

j=1

(

m− 2(r − j)− 1

j

)

=

r
∑

j=1

[(

m

j

)

−

(

m− 2(r − j)− 1

j

)]

,

and now we carry on from equality (a) of Case 1.
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Case 3: m ≤ 2r − 1. This is the most tedious case. We start with

k(r,m)− τ(r,m) =
r

∑

j=0

(

m

j

)

− 1−
m−r−1
∑

j=0

(

m− 2j − 1

r − j

)

=

r
∑

j=1

(

m

j

)

−
r

∑

j=2r−m+1

(

m− 2(r − j)− 1

j

)

=

2r−m
∑

j=1

(

m

j

)

+

r
∑

j=2r−m+1

[(

m

j

)

−

(

m− 2(r − j)− 1

j

)]

=
2r−m
∑

j=1

(

m

j

)

+
r

∑

j=2r−m+1

2(r−j)
∑

i=0

(

m− 1− i

j − 1

)

=

2r−m
∑

j=1

(

m

j

)

+

2(m−r−1)
∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m− 1− i

j − 1

)

. (23)

Now, for j ≥ 1, write
(m
j

)

=
(m
j

)

−
(0
j

)

=
∑m−1

i=0

(m−1−i
j−1

)

. Hence,

2r−m
∑

j=1

(

m

j

)

=

m−1
∑

i=0

2r−m
∑

j=1

(

m− 1− i

j − 1

)

. (24)

Also,
2(m−r−1)

∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m− 1− i

j − 1

)

=

m−1
∑

i=0

r−⌈i/2⌉
∑

j=2r−m+1

(

m− 1− i

j − 1

)

, (25)

as when i ≥ 2(m− r− 1) + 1, we have r−⌈i/2⌉ ≤ 2r−m, so that the inner summation
∑r−⌈i/2⌉

j=2r−m+1

is empty. Plugging (24) and (25) into (23), we find that

k(r,m) − τ(r,m) =

m−1
∑

i=0

r−⌈i/2⌉
∑

j=1

(

m− 1− i

j − 1

)

=

m−1
∑

i=0

k(r − 1− ⌈i/2⌉,m− 1− i).

This completes the proof of Proposition 7.

Appendix B: Proof of Lemma 10

We recast the statement of Lemma 10 into an equivalent statement about binary representations of

integers. From (12) and the notion of points of fall from [2] (see Appendix A), we see that for 1 ≤
s ≤ 2m, Us is equal to the number of points of fall of RM(r,m) within the interval [0, s − 1]. Thus, by

Lemma 13, Us is equal to the number of integers in [0, s − 1] whose m-bit binary representations have

at least m− r 1s.

For an integer j ∈ [0, 2m − 1], let wt(j) denote the Hamming weight of (i.e., the number of 1s in)

the binary representation b(j). For a subset S ⊆ [0, 2m − 1], let wi(S) denote the number of integers

j ∈ S with wt(j) ≥ i. We set wi(∅) = 0. Then, Lemma 10 is equivalent to the following assertion: for

i ∈ [0, α − 2m−1] and j ∈ [0, β − (α− 2m−1 + 1)], we have

wm−r([α− i, α− 1]) + wm−r([β − j, β − 1]) ≥ wm−r([1, i + j]). (26)

Since Lemma 10 needs to be shown for any RM(r,m) with 0 ≤ r ≤ m − 1, we see that (26) must be

shown for any m− r ∈ {1, 2, . . . ,m}. With this in mind, we define for S ⊆ [0, 2m − 1],

w
(m)(S) = [w1(S) w2(S) · · · wm(S)].
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As usual, we will drop the superscript (m) when it can be gleaned unambiguously from the context.

Proposition 14. For m ≥ 2 and 0 ≤ i, j ≤ α(m) − 2m−1, we have

w
(m)([α(m) − i, α(m) − 1]) +w

(m)([β(m) − j, β(m) − 1]) ≥ w
(m)([1, i + j]), (27)

with the inequality above holding componentwise.

Observe that this proposition is slightly stronger than Lemma 10, since the latter only requires

0 ≤ j ≤ β(m)− (α(m)−2m−1+1). It is easy to verify that β(m)− (α(m)−2m−1+1) ≤ α(m)−2m−1.

The remainder of this appendix is devoted to a proof of Proposition 14. The proof is by induction on

m, which is why we have taken care to include the superscripts on α and β in the statement of the

proposition. The main ingredients in the inductive proof are the simple facts that for a non-negative

integer j, wt(2j) = wt(j) and wt(2j + 1) = wt(j) + 1. The rest is merely careful bookkeeping.

Let P (m)(i, j) denote the inequality in (27). The induction argument is built upon certain implica-

tions among the P (m)(i, j), as stated in the series of lemmas below. We introduce here some notation

that we will use in the proofs of these lemmas. For a set of integers S, we write 2S and 2S + 1 to mean

the sets {2j : j ∈ S} and {2j + 1 : j ∈ S}, respectively. By 1
(m)
[a,b], with 1 ≤ a ≤ b ≤ m, we mean

the vector [z1 z2 . . . zm], with zi = 1 for a ≤ i ≤ b, and zi = 0 otherwise. Again, we will drop the

superscript (m) when there is no ambiguity.

Lemma 15. For even m, P (m)(i, j) implies P (m+1)(2i + 1, 2j). For odd m, P (m)(i, j) implies

P (m+1)(2i, 2j + 1).

Proof. For even m, we have α(m+1) = 2α(m) + 1, and β(m+1) = 2β(m). Set S = [α(m) − i, α(m) − 1]
and T = [β(m) − j, β(m) − 1]. Now, P (m)(i, j) implies

w
(m+1)(2S) +w

(m+1)(2T ) ≥ w
(m+1)(2[1, i + j]) (28)

w
(m+1)(2S + 1) +w

(m+1)(2T + 1) ≥ w
(m+1)(2[1, i + j] + 1) (29)

since wt(2j) = wt(j) and wt(2j + 1) = wt(j) + 1 for any non-negative integer j. Henceforth, all the

w’s in this proof are w
(m+1)’s. Combining (28) and (29), we have

w([2α(m) − 2i, 2α(m) − 1]) +w([2β(m) − 2j, 2β(m) − 1]) ≥ w([2, 2i + 2j + 1]),

which is the same as

w([α(m+1) − 2i− 1, α(m+1) − 2]) +w([β(m+1) − 2j, β(m+1) − 1]) ≥ w([2, 2i + 2j + 1]). (30)

Now, w([1, 2i+2j + 1]) = w([2, 2i+ 2j + 1]) + 1
(m+1)
[1,1] . Also, w([α(m+1) − 2i− 1, α(m+1) − 1]) =

w([α(m+1) − 2i− 1, α(m+1) − 2])+1
(m+1)
[1,m/2], since wt(α(m+1) − 1) = wt(2α(m)) = wt(α(m)) = m/2,

by (17). Therefore,

w([a(m+1) − 2i− 1, a(m+1) − 1]) +w([b(m+1) − 2j, b(m+1) − 1]) ≥ w([1, 2i + 2j + 1]), (31)

which is P (m+1)(2i+ 1, 2j).
The proof for odd m is along similar lines.

Lemma 16. (a) When α(m) − i is even, the two inequalities P (m)(i, j) and P (m)(i + 2, j) together

imply P (m)(i+ 1, j).

(b) When β(m)−j is even, the two inequalities P (m)(i, j) and P (m)(i, j+2) together imply P (m)(i, j+
1).
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Proof. We only prove (a), as the proof of (b) is completely analogous. In this proof, all omitted super-

scripts are to be taken to be (m).
Let x = wt(α−i−1) and y = wt(i+j+1). We have w([α−i−1, α−1]) = w([α−i, α−1])+1[1,x],

and w([1, i + j + 1]) = w([1, i + j]) + 1[1,y]. We want to show P (m)(i+ 1, j):

w([α− i, α − 1]) + 1[1,x] +w([β − j, β − 1]) ≥ w([1, i + j]) + 1[1,y]. (32)

If x ≥ y, then P (m)(i, j) clearly implies (32). So, suppose x < y. Then, (32) becomes

w([α − i, α− 1]) +w([β − j, β − 1]) ≥ w([1, i + j]) + 1[x+1,y],

or equivalently,

wl([α− i, α − 1]) + wl([β − j, β − 1]) ≥

{

wl([1, i + j]) + 1 if x+ 1 ≤ l ≤ y

wl([1, i + j]) otherwise.
(33)

Let x′ = wt(α − i − 2) and y′ = wt(i + j + 2). Since α − i is even, we see that x′ + 1 = x or

x′ < x. Now, we have

w([α − i− 2, α− 1]) = w([α− i, α − 1]) + 1[1,x] + 1[1,x′] (34)

w([1, i + j + 2]) = w([1, i + j]) + 1[1,y] + 1[1,y′] (35)

Thus, P (m)(i+ 2, j) is equivalent to

w([α− i, α − 1]) + 1[1,x′] +w([β − j, β − 1]) ≥ w([1, i + j]) + 1[x+1,y] + 1[1,y′]. (36)

Using the fact that x′ < x, (36) implies that for x+ 1 ≤ l ≤ y,

wl([α− i, α− 1]) + wl([β − j, β − 1]) ≥ wl([1, i + j]) + 1.

Since P (m)(i, j) clearly implies the “otherwise” part of (33), we have shown that P (m)(i, j) and P (m)(i+
2, j) together imply (33), i.e., P (m)(i+ 1, j).

Lemma 17. For even m, the following implications hold:

(a) P (m)(i, j) =⇒ P (m+1)(2i+ 1, 2j);

(b) P (m)(i− 1, j) ∧ P (m)(i, j) =⇒ P (m+1)(2i, 2j);

(c) P (m)(i, j) ∧ P (m)(i, j + 1) =⇒ P (m+1)(2i+ 1, 2j + 1);

(d) P (m)(i− 1, j) ∧ P (m)(i, j) ∧ P (m)(i− 1, j + 1) ∧ P (m)(i, j + 1) =⇒ P (m+1)(2i, 2j + 1).

Proof. (a) follows directly from Lemma 15.

(b): If P (m)(i− 1, j) and P (m)(i, j) are true, then by Lemma 15, we have P (m+1)(2i − 1, 2j) and

P (m+1)(2i + 1, 2j) being true. Since m + 1 is odd, α(m+1) is odd (see (17)). It now follows from

Lemma 16(a) that P (m+1)(2i, 2j) holds.

(c): This follows by an argument similar to part (b), except that Lemma 16(b) is applied.

(d): By part (b), P (m+1)(2i, 2j) and P (m+1)(2i, 2j+2) hold. Therefore, by Lemma 16(b), P (m+1)(2i, 2j+
1) holds.

Arguments similar to those used in the above proof show the next result.
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Lemma 18. For odd m, the following implications hold:

(a) P (m)(i, j) =⇒ P (m+1)(2i, 2j + 1);

(b) P (m)(i, j − 1) ∧ P (m)(i, j) =⇒ P (m+1)(2i, 2j);

(c) P (m)(i, j) ∧ P (m)(i+ 1, j) =⇒ P (m+1)(2i+ 1, 2j + 1);

(d) P (m)(i, j − 1) ∧ P (m)(i, j) ∧ P (m)(i+ 1, j − 1) ∧ P (m)(i+ 1, j) =⇒ P (m+1)(2i+ 1, 2j).

We are now in a position to prove Proposition 14.

Proof of Proposition 14. Set ℓ(m) = α(m) − 2m−1. We wish to show that for m ≥ 2, P (m)(i, j) holds

for 0 ≤ i, j ≤ ℓ(m). It is easy to verify this directly for m = 2 and m = 3, so we start the induction by

assuming that for some odd m ≥ 3, P (m)(i, j) holds for 0 ≤ i, j ≤ ℓ(m).

For odd m, the implications in Lemma 18 are enough to show that P (m+1)(i, j) holds for 1 ≤ i ≤
2ℓ(m) and 1 ≤ j ≤ 2ℓ(m) + 1. Note also that for odd m, we have ℓ(m+1) = 2ℓ(m), as can be verified

from (15). Since P (m+1)(0, 0), P (m+1)(0, 1) and P (m+1)(1, 0) trivially hold, we have that P (m+1)(i, j)
holds for 0 ≤ i ≤ ℓ(m+1) and 0 ≤ j ≤ ℓ(m+1) + 1.

Now, m + 1 is even, and we have shown above that P (m+1)(i, j) is true for 0 ≤ i ≤ ℓ(m+1) and

0 ≤ j ≤ ℓ(m+1) + 1. The implications in Lemma 17 are then sufficient to show that P (m+2)(i, j) holds

for 1 ≤ i, j ≤ 2ℓ(m+1) + 1. Again, P (m+2)(0, 0), P (m+2)(0, 1) and P (m+2)(1, 0) can be seen to hold

trivially, so P (m+2)(i, j) in fact holds for 0 ≤ i, j ≤ 2ℓ(m+1) + 1. This completes the induction step,

since for even m+ 1, it follows from (15) that ℓ(m+2) = 2ℓ(m+1) + 1.

As observed earlier, Proposition 14 proves Lemma 10.

Appendix C: Computing Uα and Uβ

To derive the expressions in (19)–(21), we make use of (5) and a result of Wei [15] that explicitly

determines the generalized Hamming weight hierarchy of RM(r,m). Any non-negative integer u <
k(r,m) can be uniquely expressed as a sum

u =

ℓ
∑

i=1

k(ri,mi), (37)

where r > r1 ≥ r2 ≥ . . . ≥ rℓ ≥ 0, m > m1 ≥ m2 ≥ . . . ≥ mℓ ≥ 0, and for all i, mi − ri =
m − r + 1 − i [15, Lemma 2]. The above representation is called the (r,m)-canonical representation

of u.

Theorem 19 ([15], Corollary 6). For 0 ≤ u < k(r,m), given the unique (r,m)-canonical representa-

tion of u as in (37), we have du(RM(r,m)) =
∑ℓ

i=1 2
mi .

For convenience, we will henceforth write du(RM(r,m)) simply as du.

Assume that m ≥ 2r. We want to show that (19) holds. We will only prove here the result for

s = α, as the result for s = β can be proved analogously. Let û be the integer given by

û =

r
∑

i=1

k(r − i,m+ 1− 2i). (38)

Note that the above is the (r,m)-canonical representation of û. By Theorem 19, we have dû =
∑r

i=1 2
m+1−2i. In binary form, b(dû) = (0, 0, . . . , 0, 0, 1, 0, 1, . . . , 0, 1), the number of 1s in b(dû)

being r. Comparing this with the binary form of α given in (17), it is clear that dû ≤ α.
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Next, write û+ 1 as

û+ 1 =
r

∑

i=1

k(r − i,m+ 1− 2i) + k(0,m− 2r),

using the fact that k(0,m − 2r) =
(m−2r

0

)

= 1. This is again in (r,m)-canonical form, and hence by

Theorem 19, we have dû+1 =
∑r

i=1 2
m+1−2i+2m−2r . In binary form, this is b(dû+1) = (0, 0, . . . , 0, 1,

1, 0, 1, . . . , 0, 1), the number of 1s here being r + 1. Comparing with (17), we see that α < dû+1.

Since dû ≤ α < dû+1, we have by (5), Uα = û. Observe that û as given by (38) is precisely equal

to the claimed value of Uα in (19).

Now, assume m < 2r. We wish to show (20) and (21). We sketch the proof for (21) here; the proof

for (20) is similar. Set

ǔ =







∑

m−1

2

i=1 k(r − 1− i,m− 2i) if m is odd,
∑

m
2

i=1 k(r − 1− i,m− 2i) if m is even.

The above is the (r,m)-canonical representation of ǔ, and hence,

dǔ =







∑

m−1

2

i=1 2m−2i if m is odd,
∑

m
2

i=1 2
m−2i if m is even.

Comparing b(dǔ) with b(β) given in (18), it can be seen that dǔ ≤ β.

The (r,m)-canonical representation of ǔ+ 1 is given by







∑

m−1

2

i=1 k(r − 1− i,m− 2i) + k(r − 1− m−1
2 , 0) if m is odd,

∑

m
2
−1

i=1 k(r − 1− i,m− 2i) + k(r − m
2 , 1) if m is even.

Again, dǔ+1 can be obtained from Theorem 19, and the subsequent comparison of binary forms shows

that β < dǔ+1. Hence, by (5), we have Uβ = ǔ, which proves (21).
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