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ABSTRACT

Geroch’s solution-generating method is extended to the case of Einstein spaces, which
possess a Killing vector and are thus asymptotically (locally) (anti-)de Sitter. This includes
the reduction to a three-dimensional coset space, the description of the dynamics in terms
of a sigma-model and its transformation properties under the SL(2, R) group, and the re-
construction of new four-dimensional Einstein spaces. The detailed analysis of the space of
solutions is performed using the Hamilton–Jacobi method in the instance where the three-
dimensional coset space is conformal to R × S2. The cosmological constant appears in this
framework as a constant of motion and transforms under SL(2, R).
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1 Introduction

In 1970, Geroch exhibited in his seminal paper [1] a method for generating vacuum solutions

of Einstein’s equations, generalizing previous work by Ehlers [2]. His starting point was a

four-dimensional manifold M, endowed with a metric g with vanishing Ricci tensor. A

generic, everywhere space-like or time-like, Killing vector ξ was also assumed for g, with

scalar twist ω and norm λ. A coset space S was further constructed as the quotient of M
by the one-parameter group of motions generated by ξ. The core of the proposed method

was to set an unambiguous one-to-one mapping between S and M, and recast the four-

dimensional Einstein’s equations in terms of the data on S : the metric h on the projected

space S orthogonal to ξ, and the scalar fields λ and ω. Any new triplet (h′, ω′, λ′) satisfying

that set of equations could be promoted to a new four-dimensional vacuum solution g′ with

one isometry.

Geroch’s crucial observation was that keeping the metric h within the conformal class of

fixed λh, new solutions could be generated as Möbius transformations of τ = ω + iλ: τ′ =
aτ+b/cτ+d with

(

a b
c d

)

in SL(2, R). In concrete examples such as Schwarzschild–Taub–NUT

solutions with mass m and NUT charge n, the compact subgroup of rotations
(

cos χ sin χ
− sin χ cos χ

)

∈
SO(2) ⊂ SL(2, R) induced rotations of angle 2χ in the parameter space (m, n), while non-

compact transformations
(

a b
0 1/a

)

∈ N ⊂ SL(2, R) acted homothetically, (m, n) → (m/a, n/a).

Prior to Geroch’s work, important results had been obtained by Ernst [3,4] in the slightly

less general case of the Lewis–Papapetrou geometries [5, 6], which possess two commuting

Killing vectors. In this case, solving vacuum Einstein’s equations becomes a two-dimensional

problem whose dynamics is governed by a two-dimensional sigma-model effective action.

Further developments appeared mostly in this direction [7, 8], and were often oriented to-

wards understanding the general integrability properties of the two-dimensional sigma-

model [9–12].1 Such analyses provide an important and complementary perspective with

respect to Geroch’s algebraic solution-generating technique.

1The literature on the integrability issues of the problem at hand is quite rich, see [13,14] for more references.
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Extending the above methods for solving Einstein’s equations in more general situations

has attracted some attention. Electrovacuum solutions were extensively studied, for exam-

ple, in [15, 16].2 However, in the presence of a cosmological constant, Geroch’s approach

becomes much more complicated, as we will see below, and this case is lesser investigated.

Some recent examples in the framework of Ernst’s equations can be found in [23–25]. Even

though integrability properties and solution-generating techniques may in some instances

lead to already known results, they ultimately allow for a deeper understanding of the land-

scape, and can exhibit genuinely new solutions (such as the Melvin-magnetic space with cos-

mological constant found in [25]). These perspectives and the increasing interest for (anti) de

Sitter geometries motivate our present attempt to revisit the Geroch group and integrability

in the presence of a cosmological constant.

Even though Geroch insisted in starting with a vacuum solution (M, g), all the require-

ments necessary to translate Einstein’s equations to three-dimensional terms remain valid

in the more general case of Einstein spaces: λ and ω are well-defined and together with

the coset (S , h), they provide a complete characterization of (M, g). In order to proceed

along Geroch’s lines, we must be careful with the choice of conformal class for the met-

ric h. Insisting on exploring new configurations (ω′, λ′) with λ′h′ held fixed to λh, as in

the original work [1], leads to a space of solutions that cannot accommodate simultaneously

Schwarzschild-(A)dS and Taub–NUT-(A)dS spaces. Overcoming this obstruction requires

the consideration of (h′, ω′, λ′) with h′ in the conformal class of h without further restric-

tion. This amounts to introducing an extra scalar field κ as the conformal factor, and investi-

gating the dynamics of the fields (κ, ω, λ) as inherited from the four-dimensional Einstein’s

equations, within the conformal class of the original metric h.

Our results are summarized as follows. The dynamics of (κ, ω, λ) is captured by a

three-dimensional sigma model with target space conformal to R × H2, where H2 is the

Lobatchevski plane. The Geroch SL(2, R) algebra3 is realized as the isometry of the target-

space H2-factor. Restricting our attention to metrics h conformal to R × S2, the problem is

further reduced to particle motion on R × H2 in the presence of a scalar potential and subject

to the Hamiltonian constraint. By adopting appropriately the time parameter, one reaches

a Hamiltonian such that, irrespective of the value of the cosmological constant, two out of

three SL(2, R) generators are broken, although they still provide two conserved quantities

when the constraint is satisfied. This leads to a unified picture, and using the Hamilton–

Jacobi method integrability is explicitly demonstrated, showing in particular that the cos-

mological constant Λ plays the role of a constant of motion. In conclusion, when Λ is non-

2 For a brief summary discussing the integrability issues of vacuum Einstein’s equations as well as electorvac-
uum equations, see [17] and references therein. For recent developments on integrability issues in supergravity
and string-theory solutions, see [18–20]. For some recent applications of the solution-generating techniques on
asymptotically flat as well as black-ring solutions in five dimensions, see [21, 22].

3It is common in the literature to name this finite-dimensional algebra Ehlers, and keep Geroch for the affine
one, when present. In our study, there is no ambiguity.
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vanishing, Geroch’s group emerges as a tool for handling the dynamics, even though only a

subgroup of it provides an algebraic mapping in the space of solutions; the latter mapping

transforms, among other parameters, the cosmological constant itself.

2 From four to three dimensions and back to four

We assume M a four-dimensional manifold endowed with a Lorentzian-signature metric

g = gabdxadxb, invariant under a one-parameter group of motions generated by the Killing

vector ξ. The latter has norm and twist one-form

λ = ‖ξ‖2 (2.1)

w = −2iξ ⋆ dξ (2.2)

respectively.4 Here ξ is also the Killing one-form, and obeys identically

⋆ d ⋆ dξ = 2iξRic, (2.3)

where Ric is the four-dimensional Ricci tensor. Assuming the metric is Einstein (Ric = Λg),

Eq. (2.3) reads

d ⋆ dξ = 2Λ ⋆ ξ. (2.4)

Using the identity quoted in footnote 4, we conclude5 that dw = 0 and define the scalar twist

locally as

w = dω. (2.5)

With the above data, we can define the space S as a quotient of M with respect to the

action of the one-parameter group generated by ξ. This coset space need not be a subspace

of M as ξ may not be hypersurface-orthogonal (which would imply zero twist). There is a

natural metric h on S induced by g of M as

hab = gab −
ξaξb

λ
, (2.6)

4We follow in this section the original presentation of Geroch (the appendix of [1] provides a useful com-
plementary reading). Here “⋆” is the four-dimensional Hodge duality performed with ηabcd =

√−g ǫabcd

(ǫ0123 = 1). We also recall that for ζ a vector and ̟ a form

Lζ̟ = d(iζ̟) + iζd̟,

where Lζ is the Lie derivative along ζ and iζ is the contraction with ζ.
5This conclusion actually holds whenever ξ is an eigenvector of the Ricci tensor. This is trivial in vacuum and

straightforward for Einstein spaces, but may occur in other instances, which we have not explored here.
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which defines the projector onto S is

hb
a = δb

a −
ξbξa

λ
. (2.7)

For the metric (2.6), the volume form and the fully antisymmetric tensor read:

Volh =
∓1√
±λ

iξVolg ⇔ ηabc =
±1√
±λ

ηabcdξd. (2.8)

We will assume for concreteness λ < 0 so that the Killing vector ξ is time-like and h is spatial.

This corresponds to the lower signs in (2.8). We would like to stress, however, that the whole

reduction procedure goes smoothly through when λ is positive, i.e. for a space-like Killing

vector field.

Following [1], let us quote hereafter some basic features of the geometrical relationship

between M and S . There is a natural one-to-one correspondence between tensors on S and

tensors T on M that satisfy iξT = 0 and Lξ T = 0 (i.e. transverse and invariant with respect

to the Killing flow). Assume now a tensor T on S . It is easy to show that the covariant

derivative D defined following this correspondence,

DcT
b1 ...bq

a1 ...ap = hℓchm1
a1

. . . h
mp
ap hb1

n1
. . . h

bq
nq∇ℓT

n1...nq

b1...bp
(2.9)

with ∇ the Levi–Civita derivative on M, coincides with the unique Levi–Civita covariant

derivative on S . This provides a Riemann tensor on S in terms of the Riemann tensor of

M:6

Rabcd = h
p

[a
h

q

b]
h r
[chs

d]

(

Rpqrs +
2
λ

(

∇pξq∇rξs +∇pξr∇qξs

))

(2.10)

(the calligraphic letters refer to S tensors).

The existence of a Killing vector ξ on (M, g) allows us to recast the dynamics of g in

terms of (h, ω, λ), which can all be regarded as fields on S . For that, one extracts the S-

Ricci tensor Rab from (2.10) and further determines the S-Laplacians of λ and ω. The final

equations are

Rab = 1
2λ2 (DaωDbω − habD

cωDcω) + 1
2λDaDbλ − 1

4λ2DaλDbλ + hm
a hn

b Rmn,

D
2λ = 1

2λ (DcλDcλ − 2DcωDcω)− 2Rmnξmξn,

D
2ω = 3

2λD
cλDcω.

(2.11)

Equations (2.11) provide in principle new solutions (h′, ω′, λ′). Without ambiguity, the latter

can be promoted to a new metric g′ with symmetry ξ′ on M. The procedure is based on the

6Equations (2.10) are more general than Gauss–Codazzi equations, since ξ needs not be hypersurface orthog-
onal.
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following observation: the two-form defined on S as7

F′ =
1

(−λ′)3/2
⋆

3
h′ dω′ (2.12)

is closed. Thus, locally

F′ = dη′. (2.13)

The field η′, a priori defined on S , can be promoted to a field on M by adding the necessary

exact piece such that its normalization is

iξη′ = 1. (2.14)

This defines a new Killing field on M

ξ′ = η′λ′ (2.15)

and the new four-dimensional metric reads:

g′ab = h′ab +
ξ′aξ′b
λ′ . (2.16)

3 The sigma-model

Equations (2.11) can be recast in a more useful manner by introducing a three-dimensional

reference metric ĥ, defined as

hab =
κ

λ
ĥab. (3.1)

The dilaton-like field κ captures one of the degrees of freedom carried by the metric h, and

inheritates its dynamics from the latter’s. This is useful for probing mini-superspace solu-

tions with frozen ĥ, because it allows for one gravity degree of freedom to remain dynamical,

together with ω and λ.8 In this instance, as advertised in the introduction, the scalar degree

of freedom κ is crucial for the system to capture e.g. mass and NUT parameters simultane-

ously. This issue will be further discussed in Sec. 4.

Assuming g is Einstein

Rab = Λgab, (3.2)

7Here ⋆3
h′ stands for the three-dimensional Hodge-dual with respect to h′.

8The original Geroch’s reference metric was defined as h̃ab = λhab. Freezing h̃ removes all h degrees of
freedom, leaving only ω and λ as dynamical fields.
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and introducing τ = ω + iλ, Eqs. (2.11) read:

R̂ab = − 2
(τ−τ̄)2 D̂(aτ D̂b)τ̄ + 1

2κ

(

D̂aD̂bκ + ĥabD̂
c
D̂cκ

)

− 1
4κ2

(

3D̂aκD̂bκ + ĥabD̂
cκD̂cκ

)

+ 4iΛ κ
τ−τ̄ ĥab, (3.3)

D̂
2τ = 2

τ−τ̄ D̂
cτD̂cτ − 1

2κ D̂
cκD̂cτ − 2iΛκ, (3.4)

where all hatted quantities refer to the metric ĥ. These equations describe the dynamics of

the fields (ĥ, κ, τ), the equation for κ being the trace of (3.3):

D̂
2κ = 3

4κ D̂
cκD̂cκ + κ

(τ−τ̄)2 D̂
cτ D̂cτ̄ − 6iΛ κ2

τ−τ̄ + κ
2R̂. (3.5)

Equations (3.3), (3.4) and (3.5) can be obtained by extremizing, with respect to ĥab, τ and

κ, the sigma-model action

S =
∫

S
d3x
√

ĥL, (3.6)

with

L = −
√
−κ

(

D̂
aκD̂aκ

2κ2
+ 2

D̂
aτD̂aτ̄

(τ − τ̄)2
+ R̂− 4iΛ

κ

τ − τ̄

)

. (3.7)

For the κ, ω and λ “matter”, the target space is three-dimensional with metric read off from

the kinetic term:

ds2
target =

√
−κ

(

−dκ2

κ2
+

dω2 + dλ2

λ2

)

. (3.8)

This metric is conformal to R × H2, which has an R × SL(2, R) isometry group generated by

ζ =
1

2
κ∂κ , (3.9)

and

ξ+ = ∂ω, ξ− =
(

λ2 − ω2
)

∂ω − 2ωλ∂λ, ξ2 = ω∂ω + λ∂λ, (3.10)

obeying

[ξ+, ξ−] = −2ξ2, [ξ+, ξ2] = ξ+, [ξ2, ξ−] = ξ−. (3.11)

For the metric (3.8), ζ is a conformal Killing field, whereas the ξs remain Killing, and generate

the SL(2, R) Geroch group.9 The quadratic Casimir of the latter is generated by the Killing

tensor Ξ = −κ/λ2
(

dω2 + dλ2
)

.

The (κ, ω, λ) “matter” potential,

V =
√
−κ
(

R̂− 2Λ
κ

λ

)

, (3.12)

9This finite-dimensional group is sometimes called the Ehlers group, whereas its affine extension appears as
Geroch.
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breaks part of the SL(2, R) symmetry, which makes the integrability analysis more intricate.

Let us note for the time that it is invariant under ξ+ only.10

In the present note we will focus on a mini-superspace analysis of the integrability prop-

erties of (3.6)–(3.7), leaving the general investigation for future work. We will assume that

the space S is topologically R × S2, and the metric ĥ of the form11

dŝ2 = dσ2 + dΩ2, (3.13)

where dΩ2 is the two-dimensional σ-independent piece. We will further assume that the

functions κ, ω, λ depend on the coordinate σ only. This choice is motivated by the general

structure of Einstein exact solutions such as Schwarzschild or Taub–NUT. With the ansatz

(3.13), the Ricci tensor reads:

R̂abdxadxb =
R̂

2
dΩ2, (3.14)

where R̂ is the scalar curvature of dŝ2 and dΩ2.

Equation (3.3) has now two independent components, the trace part (3.5) and the trans-

verse part. These read12

κ̈ =
κ

(τ − τ̄)2
τ̇ ˙̄τ +

3

4κ
κ̇2 + κ

(

R̂

2
− 6iΛ

κ

τ − τ̄

)

, (3.15)

and

R̂ =
2

(τ − τ̄)2
τ̇ ˙̄τ + 4iΛ

κ

τ − τ̄
+

1

2κ2
κ̇2, (3.16)

respectively. Furthermore, Eq. (3.4) takes the form

τ̈ =
2

τ − τ̄
τ̇2 − 1

2κ
κ̇τ̇ − 2iκΛ. (3.17)

Equations (3.15) and (3.17) describe the dynamics of κ(σ) and τ(σ). Equation (3.16) implies

on the one hand that R̂ is a function of σ only, while on the other hand being the scalar

curvature of dΩ2, R̂ should a priori depend only on S2 coordinates. It must therefore be

constant and thus dΩ2 is necessarily a metric on S2, E2 or H2 with R̂ = 2ℓ, ℓ = 1, 0,−1:

dΩ2 = dχ2 + fℓ(χ)dψ2, (3.18)

10The potential is also conformally invariant under 2ζ + ξ2, but this observation is of no interest for the subse-
quent developments.

11Had we made the choice of a space-like Killing-vector reduction, several other options would have been pos-
sible for the – non-positive-definite – metric ĥ. The subsequent analysis would have been qualitatively altered,
even though the principle remains unchanged.

12The dot stands for the derivative with respect to σ.
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fℓ(χ) =



















sin2 χ ℓ = 1

χ2 ℓ = 0

sinh2 χ ℓ = −1.

(3.19)

Notice finally that Eq. (3.16) is first-order and is thus a constraint – a common occurrence in

solving Einstein’s equations – ensuring the consistency of the reduction (3.13).

Following the above Lagrangian scheme, the equations of motion (3.15) and (3.17) are

obtained using

L =

√
−κ

2

[

−
(

κ̇

κ

)2

− 4
τ̇ ˙̄τ

(τ − τ̄)2
− 4

(

ℓ− 2iΛ
κ

τ − τ̄

)

]

, (3.20)

which is the mini-superspace version of (3.7). Equation (3.16) appears now simply as the

Hamiltonian constraint

H = 0. (3.21)

Solving Einstein’s equations in the present form, amounts to studying the motion of a parti-

cle on the three-dimensional space-time with metric (3.8), interacting with a scalar potential

V = 2
√
−κ
(

ℓ− Λ
κ

λ

)

, (3.22)

and obeying the zero-energy condition (3.21).

For zero cosmological constant, the full Lagrangian (3.20) is invariant under the full

SL(2, R) generated by (3.10). This allows to scan algebraically the space of solutions, even

when κ is frozen [1]. As it will become clear very soon, this κ will play a genuinely dynami-

cal role for non-vanishing Λ, where integrability is still at work despite the reduction of the

symmetry due to the potential (3.22).

4 Conservation laws and Hamilton–Jacobi method

We will now proceed to discuss the role of the Geroch SL(2, R) group as solution-generating,

as well as the integrability properties of the Hamilton–Jacobi equation. For convenience, we

trade the evolution parameter σ for r̂, defined as

dr̂ =
(−κ)3/2

−λ
dσ, (4.1)

and rescale the Lagrangian to ensure that the action remains invariant:
∫

dσL =
∫

dr̂ L̂.

The reader may wonder why such a transformation is performed. In (3.20) the SL(2, R)

symmetry is reduced by the Λ term of the potential (3.22). The integrability properties of the

model, however, are not affected as long as the total number of commuting charges remains

8



unaltered. A unified treatment is therefore possible since non-vanishing Λ destroys only

non-commuting symmetries. Transformation (4.1) is designed to alter the symmetry, and

render its residual part independent of Λ. Indeed, using the generalized momenta

pκ =
1

λ

dκ

dr̂
, pω = − κ2

λ3

dω

dr̂
, pλ = − κ2

λ3

dλ

dr̂
, (4.2)

we move to the Hamiltonian formalism with

Ĥ =
λ

2
p2

κ −
λ3

2κ2
(p2

ω + p2
λ) + 2ℓ

λ

κ
− 2Λ. (4.3)

As advertised, the symmetries and integrability properties of this Hamiltonian do not de-

pend on Λ. The latter appears as a constant potential, and due to the conservation of energy,

acquires the status of a simple constant of motion.

In the Hamiltonian formalism, the Geroch algebra (3.10)–(3.11) is realized in terms of

Poisson brackets with the following phase-space functions:

F̂+ = pω, (4.4)

F̂− = −2ωλpλ − (ω2 − λ2)pω − 4Λωr̂, (4.5)

F̂2 = ωpω + λpλ + 2Λ r̂. (4.6)

It should be stressed here that the extra r̂-dependent terms in F̂+ and F̂2 are not necessary

for reproducing the SL(2, R) algebra.13 They are needed, however, for F̂2 to generate a first

integral. Indeed, the Poisson brackets with the Hamiltonian14 read:

{

Ĥ, F̂+
}

= 0, (4.7)
{

Ĥ, F̂2

}

= −Ĥ − 2Λ, (4.8)

{

Ĥ, F̂−
}

= 2ωĤ + 4Λ
(

ω +
r̂λ3pω

κ2

)

, (4.9)

whereas

dF̂+
dr̂

= 0, (4.10)

dF̂2

dr̂
= −Ĥ, (4.11)

dF̂−
dr̂

= 2ωĤ + 4Λ
r̂λ3 pω

κ2
. (4.12)

The above analysis shows that on the Ĥ = 0 surface, F̂+ and F̂2 are conserved. This

13It would have been enough to consider the functions ξ
µ
i pµ, i = ±, 2.

14We use {F, G} = ∑µ

(

∂F
∂pµ

∂G
∂qµ − ∂G

∂pµ

∂F
∂qµ

)

and remind that dF
dr̂ = ∂F

∂r̂ + {H, F}.
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reflects the solution-generating role of the Geroch subgroup N ⊂ SL(2, R). For the case

Λ = 0, all three dynamical functions F± and F2 are conserved. Nevertheless, the integrability

properties remain unaltered despite the reduction of the SL(2, R) first integrals. This is not

surprising since only the commuting first integrals are relevant for the integrability issues.

We will here discuss these properties using the Hamilton–Jacobi method. This has the virtue

to work irrespective of the value of Λ because the latter will appear as a simple integration

constant.

The equation to solve is

Ĥ

(

∂S

∂qi
, qi

)

+
∂S

∂r̂
= 0. (4.13)

The aim is to find the principal solution S
(

qi, r̂; αi

)

with 3 arbitrary constants αi. From this

solution, the equations of motion become algebraic, βi = ∂S
∂αi

with βi new arbitrary constants

and momenta pi =
∂S
∂qi .

In the case at hand, the separation of variables in (4.13) is partial. Two commuting first

integrals can be used for that purpose: F̂+ and Ĥ with values 2ν and Ê. Hence

S = W + 2νω − Êr̂, (4.14)

where W satisfies

λ

2

(

∂W

∂κ

)2

− λ3

2κ2

(

(

∂W

∂λ

)2

+ 4ν2

)

+ 2ℓ
λ

κ
= Ê + 2Λ ≡ E. (4.15)

A solution W(κ, λ; E, ν, α), depending on an extra constant α must be found for this equation.

Once the Hamilton–Jacobi procedure is completed, E will have to be set equal to 2Λ.

With or without cosmological constant, Eq. (4.15) is not further separable. It is however

integrable and, after a few technical steps, we find:

W =
1

6α2

√

2ακ

λ
− ν2

(

E
(

ν2 +
ακ

λ

)

+ 6α (2αλ − ℓ)
)

. (4.16)

The general solutions can now be obtained upon substituting the above expression in Eq.

(4.14) and differentiating with respect to α1 = E, α2 = ν and α3 = α. Let us introduce a new

set of constants

β1 =
∂S

∂E
, β2 =

∂S

∂ν
, β3 =

∂S

∂α
. (4.17)
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A straightforward computation leads to:

β1 =
1

6α2

√

2ακ

λ
− ν2

(ακ

λ
+ ν2

)

− r̂, (4.18)

β2α2

√

2ακ

λ
− ν2 =

E

2
ν
(ακ

λ
− ν2

)

+ α

(

ℓν − 2ανλ + 2αω

√

2ακ

λ
− ν2

)

, (4.19)

3α3β3

√

2ακ

λ
− ν2 =

κ

λ

(

E

2

(

2ν4 λ

κ
− 2αν2 − α2 κ

λ

)

+ 3α

(

2α2λ + ℓα − ℓν2 λ

κ

))

.(4.20)

The above three algebraic equations can be solved to obtain the general expressions for

κ, ω, λ, as functions of r̂ and of the set of constants of motion E, ν, α, β1, β2 and β3. Not all

βs are relevant, though: by a shift of r̂ we can absorb β1, while β2 only translates ω without

altering Ω. We will set them to zero without loss of generality and keep only β3 renamed as

β3 =
√

2
m

α3/2
. (4.21)

We now proceed to solving Eqs. (4.18)–(4.20). The first is actually an equation for κ/λ:

(

36r̂2α4 + ν6
)

− 3α2ν2
( κ

λ

)2
− 2α3

( κ

λ

)3
= 0. (4.22)

This is a cubic polynomial in κ/λ with negative discriminant and hence admits a unique

solution for κ/λ as a function of r̂. It can be noticed that this equation is factorized upon the

substitution

r̂ =
1√
2α

(

r3

3
+ rn2

)

, (4.23)

with ν traded for n as

n =
ν√
2α

. (4.24)

We find
κ

λ
=
(

r2 + n2
)

. (4.25)

Substituting the resulting value in Eq. (4.20) and setting E = 2Λ, we find a linear equation

in λ which can be straightforwardly solved as a function of r:

λ = − ∆

2α(r2 + n2)
, (4.26)

where

∆ = ℓ(r2 − n2)− 2mr − Λ

3

(

r4 + 6r2n2 − 3n4
)

. (4.27)

Hence

κ = − ∆

2α
. (4.28)
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Solving for ω from Eq. (4.19), we find:

ω = − n

3α

(

Λr +
3ℓr − 3m − 4Λn2r

r2 + n2

)

. (4.29)

It is clear from the above equations that the arbitrary parameter α plays a normalization

role. The interpretation of the general solution at hand (4.26)–(4.29) is straightforward upon

setting α to

α =
m2 + ℓ2n2

2
. (4.30)

The four-dimensional Einstein metric reconstructed following the steps of Sec. 2 is a three-

parameter family, where (m, n) are the mass and NUT charge,15 and Λ is the cosmological

constant. It reads:

g = − ∆

(m2 + ℓ2n2)(r2 + n2)

(

dT + 4n
√

m2 + ℓ2n2 fℓ(χ/2)dψ
)2

+ (r2 + n2)

(

dr2

∆
+ dΩ2

)

(4.31)

with dΩ2 and fℓ(χ) given in (3.18) and (3.19).

A few remarks are in order at this stage. The first concerns the role of κ, advertised as

being central for the mini-superspace analysis of (3.7) to capture both Schwarzschild and

Taub–NUT (A)dS spaces. In Geroch’s original method, i.e. for zero cosmological constant,

the Möbius transformation τ → aτ+b/cτ+d, which induces a motion in the (m, n) parame-

ter space, leaves λh invariant. Indeed, the , m- and n-dependence of the metric λh can be

reabsorbed in the radial-coordinate redefinition (only ℓ = 1 is relevant for vacuum solutions)

cosh σ =
r − m√
m2 + n2

, (4.32)

leading to κ = − sinh2 σ and

− λh = −κĥ = sinh2 σ
(

dσ2 + dΩ2
)

. (4.33)

Hence κ is constant over the parameter space, and re-expressing λh as κĥ does not enlarge

the solution space. For non-vanishing Λ, however, neither m nor n can be eliminated from κ

(or from λh) by coordinate redefinition: κ varies inside the (m, n) plane. Had we dismissed

κ, it would have been impossible to explore the whole space of solutions with the mini-

superspace ansatz (3.13) – i.e. with the original Geroch’s ansatz of fixed h̃ = λh.

The second remark is about Geroch’s SL(2, R). For vanishing Λ, the whole group leaves

15From the Hamiltonian perspective of the mini-superspace analysis, m appears as a “coordinate”, while n
is a “momentum”, as expected for the mass and NUT charge. Actually, for vanishing cosmological constant,
the SL(2, R) automorphism exchanging F̂+ and F̂− acts on the Hamiltonian system as a coordinate–momentum
duality, and permutes m and n in the solution. For non-zero Λ, this automorphism breaks down together with
the (m, n) duality map.
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the Lagrangian density (3.7) invariant and acts algebraically on (m, n). In the case at hand,

Eqs. (4.7), (4.8) and (4.10), (4.11) show that only F̂+ and F̂2, generating the subgroup N ⊂
SL(2, R), survive the cosmological constant. Furthermore, owing to (4.8), the algebraic ac-

tion of N alters not only m and n but also Λ. This is consistent with the fact that in the present

formalism, Λ appears as a constant of motion. Under transformations in N, τ → a(aτ + b),

the parameters get modified as m → m/a, n → n/a and Λ → a2Λ.16

Finally, let us remind that in the absence of a cosmological constant, F̂+, F̂− and F̂2 trans-

form in the adjoint representation of SL(2, R), with F̂+ F̂−+ F̂2
2 the quadratic Casimir [1]. One

may wonder how much of this property survives Λ. Here F̂− is not conserved, but thanks to

(4.12), we obtain using the explicit solution (up to an arbitrary constant, set here to zero):

F̂− − 4Λ

∫

dr̂
r̂λ3pω

κ2
=

2nℓ2

(m2 + ℓ2n2)
3/2

+
2n3Λ

(

6ℓ− 23n2Λ
)

9 (m2 + ℓ2n2)
3/2

. (4.34)

This, together with F̂+ = 2n
√

m2 + ℓ2n2 and F̂2 = 2m/
√

m2+ℓ2n2 gives the would-be quadratic

Casimir

F̂+

(

F̂− − 4Λ

∫

dr̂
r̂λ3pω

κ2

)

+ F̂2
2 = 4

(

1 +
n4Λ

(

6ℓ− 23n2Λ
)

9 (m2 + ℓ2n2)

)

, (4.35)

which is conserved, and invariant under the action of the subgroup N only. For zero Λ we

recover the already quoted result.

5 Outlook

Summarizing our findings, we would like to stress two achievements of the present work.

Firstly, we exhibited the realization of the SL(2, R) group in the dynamics of the three-

dimensional coset space, obtained by reducing an Einstein space along some Killing field.

This dynamics is captured by a sigma model, whose three-dimensional target space is non-

compact and has SL(2, R) isometry. Part of this symmetry is broken down to a subgroup of

SL(2, R) by the potential term. Only this subgroup generates algebraically new solutions à

la Geroch.

Secondly, we studied the integrability properties of a mini-superspace reduction, using

the Hamilton–Jacobi method. Irrespective of the value of the cosmological constant, the

Hamilton–Jacobi equation is partially separable but fully integrable. One separation con-

stant is the energy and is forced to be equal to the cosmological constant. Had we performed

our analysis starting with Ricci-flat four-dimensional space–time, the possibility of finding

new solutions of the general Einstein type would have arisen automatically. This option

16Notice for completeness that α → α/a2, whereas the constants βi transform as β1 → β1/a3, β2 → a2β2 + 2ab
and β3 → a2β3, respectively. The parameter b plays no substantial role: it formally enables us to set β2 to zero.
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appears here because we have kept dynamical the dilaton-like field κ, and chosen appropri-

ately the coordinate σ (Eq. (4.1)) – at the expense of breaking the SL(2, R) even at Λ = 0.

Mass, NUT charge and cosmological constant appear as the non-trivial first integrals, i.e, the

ones that cannot be reabsorbed in field redefinitions. All these parameters transform under

the algebraic action of the unbroken symmetry group N. The compact SO(2) ⊂ SL(2, R)

subgroup plays no role in this approach and merely appears as an accidental symmetry at

Λ = 0, bringing no new constant of motion.

This status of the cosmological constant is an important observation, to which we plan

to return in the study of the general sigma model. The latter includes the axially symmetric

case first introduced by Ernst [3, 4], and captures, e.g. the Kerr solution, which has (A)dS

extensions. In this instance, i.e., with two commuting isometries, the corresponding two-

dimensional model can be analyzed by standard Lax-pair and inverse-scattering techniques,

presently under investigation.
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