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Abstract—We consider a setting where a stream of qubits is
processed sequentially. We derive fundamental limits on the rate
at which classical information can be transmitted using qubits
that decohere as they wait to be processed. Specifically, we
model the sequential processing of qubits using a single server
queue, and derive expressions for the classical capacity of such
a quantum ‘queue-channel.’ Focusing on two important noise
models, namely the erasure channel and the depolarizing channel,
we obtain explicit single-letter capacity formulas in terms of the
stationary waiting time of qubits in the queue. Our capacity proof
also implies that a ‘classical’ coding/decoding strategy is optimal,
i.e., an encoder which uses only orthogonal product states, and
a decoder which measures in a fixed product basis, are sufficient
to achieve the classical capacity of both queue-channels. Our
proof technique for the converse theorem generalizes readily —
in particular, whenever the underlying quantum noise channel
is additive, we can obtain a single-letter upper bound on the
classical capacity of the corresponding quantum queue-channel.
More broadly, our work begins to quantitatively address the
impact of decoherence on the performance limits of quantum
information processing systems.

I. INTRODUCTION

Unlike classical bits, quantum bits (or qubits) undergo

rapid decoherence in time, due to certain unavoidable physical

interactions with their environment [3]. Information stored in

a qubit may be completely or partially lost as the qubit deco-

heres. The nature and the rate of the noise process depends

on the particular physical implementation of the quantum

state, as well as other factors such as the environment and

temperature. For example, superconducting Josephson junction

based qubits have average coherence times that are typically

of the order of a few tens of microseconds [4, Table 2].

Decoherence or noise poses a major challenge to the scalability

of quantum information processing systems — therefore, it

is imperative to obtain a quantitative understanding of the

impact of decoherence on the performance limits of quantum

information processing systems.

In this paper, we consider a setting where a stream of

qubits is processed sequentially. There are several possible

scenarios where qubits may wait to be processed. For example,
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in the context of quantum computation, subsets of qubits are

often ‘idling’ in a quantum circuit, waiting their turn while

other qubits are undergoing gate operations. Such idle qubits

undergo decoherence as they wait to get processed, and the

resulting errors are modelled as ‘storage errors’ in the context

of quantum fault tolerance [5].

In the context of quantum communication, such a sequential

processing of qubits arises naturally when we study consider

the problem of entanglement distribution over quantum net-

works [6]. In this case, classical information is encoded in

pairs of entangled photons which are transmitted over lossy

fibre. To sustain the entanglement over long distances, the

photons undergo an entanglement swap operation at quantum

repeaters that are placed at intermediate distances. Every pho-

ton that arrives at a repeater has to wait for its partner to arrive

in order to be processed, in which time they may get erased

or depolarized, depending on the nature of communication

channel as the quantum memory used to realise the quantum

repeater [7]. We derive fundamental limits on the rate at

which classical information can be transmitted using qubits

that decohere as they wait to be processed.

To be more precise, we model the sequential processing

of a stream of qubits using a single server queue [8]. The

qubits arrive to be processed at a ‘server’ according to

some stationary point process. For example, in the context

of quantum communication, qubits are generated by optical

sources which have an inherent randomness due to the under-

lying physical processes. The commonly used heralded single-

photon sources, for example, rely on a nonlinear physical

interaction which is probabilistic in nature [9]. The server

processes the qubits at a fixed average rate. The qubits undergo

decoherence (leading to errors) as they wait to be processed,

and the probability of error/erasure of each qubit is modeled

as a function of the time spent in the queue by that qubit.

After the processing completes, the qubits are measured and

interpreted as classical bits. We call this system a ‘quantum

queue-channel’ and characterise the classical capacity of such

a quantum queue-channel.

A. Related Work

An information theoretic notion of reliability of a queu-

ing system with state-dependent errors was introduced and

studied in [10], where the authors considered queue-length

dependent errors motivated mainly by human computation and

crowd-sourcing. The classic paper of Anantharam and Verdú

considered timing channels where information is encoded in

the times between consecutive information packets, and these
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packets are subsequently processed according to some queue-

ing discipline [11]. Due to randomness in the sojourn times

of packets through servers, the encoded timing information is

distorted, which the receiver must decode. In contrast to [11],

we are not concerned with information encoded in the timing

between packets — in our work, all the information is in the

qubits.

In a recent paper [2], we considered the queue-channel

problem described above, and derived the capacity of an

erasure queue-channel under certain technically restrictive

conditions. Specifically, [2] restricts the encoder to using only

orthogonal product states, and the decoder measures in a fixed

product basis. In this restricted setting, qubits are essentially

made to behave like ‘classical bits that decohere,’ and the

underlying quantum channel effectively simulates a classical

channel known as the induced classical channel. In general,

the classical capacity of the underlying quantum channel could

be larger than the capacity of the induced classical channel,

because the former allows for entangled channel uses and more

general (joint) measurements at the decoder.

As an aside, we remark that the erasure queue-channel

treated in [2] can be used to model a multimedia-streaming

scenario, where information packets become useless (erased)

after a certain time.

B. Our Contributions

In this paper, we completely characterise the classical capac-

ity of quantum queue-channel for two important noise models,

namely the erasure channel and the depolarizing channel.

Specifically, we allow for possibly entangled channel uses by

the encoder, and arbitrary measurements at the decoder.

Obtaining the queue-channel capacity for an arbitrary noise

model involves overcoming some technical challenges. First,

the quantum queue-channel is non-stationary. Second, the era-

sure events corresponding to consecutive qubits are correlated

through their waiting times, which are in turn governed by

the queuing process. This leads to memory across consecutive

channel uses.

Interestingly, we note that the capacity result in [2, Theorem

1] for the induced classical channel readily offers an ‘achiev-

able rate’ for the quantum erasure queue-channel — after all,

any rate that is achievable with the restrictions in [2] can

be achieved without those restrictions. Much of the technical

challenge therefore lies in proving a ‘converse theorem,’ i.e.,

in showing a capacity upper bound that matches the expression

in [2, Theorem 1]. The key contributions in this paper can be

summarised as follows:

1) Upper bound on the capacity of additive quantum queue-

channels: We first show that whenever the underlying quan-

tum noise channel is additive, we can obtain a single-letter

upper bound on the classical capacity of the corresponding

quantum queue-channel. Our upper bound proof proceeds via

the following key steps. The first step involves showing a

certain conditional independence of n consecutive channel

uses, conditioned on the sequence of qubit waiting times

(W1,W2, . . . ,Wn). Specifically, we show that the n-qubit

queue-channel factors into a tensor product of single-use

channels, for any given sequence of the waiting times. Next,

we use a general capacity upper bound proved in [12, Lemma

5] for non-stationary channels, which we then simplify using

the conditional independence result from the first step.

2) The Quantum Erasure Queue-Channel: The general

upper bound proved for any additive quantum queue-channel,

along with the celebrated additivity result of Holevo [13] for

the quantum erasure channel immediately gives us a single-

letter capacity upper bound. For the erasure queue-channel,

we show that the upper bound is indeed the same as the

capacity expression derived in [2, Theorem 1] for the induced

classical channel. That is, the capacity of the quantum erasure

queue-channel does not increase by allowing for entangled

channel uses by the encoder, and arbitrary measurements at the

decoder. In other words, the classical coding/decoding strategy

in [2] (proposed for the induced classical channel), is indeed

sufficient to realise the classical capacity of the underlying

quantum erasure queue-channel. Furthermore, we show that

the capacity remains the same, regardless of whether the arrival

and departure times of the qubits (and hence their waiting

times) is available at the decoder.

In hindsight, this result may not be altogether surprising,

considering that the classical capacity of the memoryless

quantum erasure channel is the same as the capacity of the

classical erasure channel. In other words, a classical coding

strategy is sufficient to realise the classical capacity of the

(memoryless) quantum erasure channel — see [14].

3) The Depolarising Queue-Channel: When the underlying

noise model is a depolarising channel, we obtain the capacity

expression for the queue channel, assuming that the decoder

has access to the sequence of arrival and departure times

(and hence the waiting times) of the qubits. The upper bound

proof is technically similar to the erasure case, except that

we appeal to the additivity result for the depolarising channel,

due to King [15]. For the achievability part, we consider the

corresponding induced classical channel (which turns out to

be a binary symmetric queue-channel) and use a classical

coding/decoding strategy to obtain an achievable rate which

matches the upper bound. When the waiting times are not

available at the decoder, the achievable rate that we obtain is

strictly smaller than the upper bound enforced by additivity

arguments — in such a case, we can only identify the interval

in which the capacity lies.

C. Organisation

The remainder of this paper is organised as follows. Sec-

tion II details the system model and preliminaries. Section III

presents the relevant channel capacity definitions and proceeds

to present our main technical results. Section IV deals with

the induced classical channels and their capacities — the

achievability part of our capacity results also come from this

section. Section V concludes the paper and proposes directions

for future work.

II. SYSTEM MODEL AND PRELIMINARIES

The model we study is similar to the one considered in [2].

Specifically, a source generates a classical bit stream, which is
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encoded into qubits. These qubits arrive at a continuous-time

single-server queue according to a stationary point process

of rate λ. To be more explicit, the single-server queue is

characterised by (i) A server that processes the qubits in the

order in which they arrive, i.e., in a First Come First Served

(FCFS) fashion1, and (ii) An ‘unlimited buffer’ — that is,

there is no limit on the number of qubits that can queue

up as they wait to be processed. We assume that the service

times for the qubits are independent and identically distributed

(i.i.d.) random variables. The service time of the jth qubit

is denoted by Sj and has a cumulative distribution FS . The

average service rate of each qubit is µ, i.e., EFS
[S] = 1/µ. For

stability of the queue, we assume λ < µ. For ease of notation

let us assume µ = 1. (Our results easily extend to general µ).

Let Aj and Dj be the arrival and the departure epochs of jth
qubit, respectively and Wj = Dj − Aj be the total time that

jth qubit spends in the queue. Adopting a standard convention,

we use upper case letters to denote random variables, and

the corresponding lower case letters to denote the realized

values of the random variable. For example, Wj is the random

variable that denotes the total time spent in the queue by the

jth qubit, while wj denotes a specific realization of Wj .
The probability that the jth qubit undergoes erasure/error

is modelled as an explicit function of its waiting time wj , as

we specify in the next subsection. After getting processed at

the server, the qubits are measured and interpreted as classical

bits (see Fig. 1).

Remark 1: The main technical results in this paper hold as

long as the queueing system described above is both stationary

and ergodic. Stationarity essentially means that the queue

eventually reaches a ‘steady-state’ behaviour. In particular it

implies that random variables of interest (such as waiting

time of a qubit, queue length etc.) converge in distribution

to a corresponding stationary distribution. Ergodicity means

that the long-term time average of waiting times, queue

lengths, or functions thereof, converge (almost surely) to the

corresponding ensemble average (or expectation), taken over

the stationary distribution. Most stable queuing models of

interest (including the M/GI/1 queue and GI/GI/1 queue with

non-arithmetic inter-arrival/service distributions) satisfy these

two properties.

We further remark that while we consider the queuing sys-

tems that are stationary, the queue-channel is non-stationary,

because we start with an empty queue, and send a finite length

codeword. Each symbol then undergoes waiting time depen-

dent errors, which corresponds to a non-stationary channel.

A. Noise Model

As the qubits wait to be served, they undergo decoherence,

leading to errors at the receiver. This decoherence is mod-

eled mathematically as a completely positive trace preserving

(CPTP) map on the the qubit states [3].

Let the finite set X denote the input alphabet. In general, a

given input symbol Xj ∈ X , is encoded as a positive trace-

class operator (called the density operator) ρj on a Hilbert

1The FCFS assumption is not required for our results to hold, but it helps
the exposition.
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Fig. 1. Schematic of the queue-channel depicting the case of quantum
erasure.

space HA of dimension |X |. The noise process is denoted

as the map N : S(HA) → S(HB), where S(HA) (S(HB))
denotes the set of density operators on the input Hilbert space

HA (output Hilbert space HB). The map N is often referred

to as the (quantum) noise channel.

The probability that a given state ρj undergoes decoherence

is modelled as a function of the waiting time Wj , and the noise

channel is accordingly parameterized in terms of the waiting

time as NWj
. The noisy output state after the action of the

map NWj
is denoted as σj ≡ NWj

(ρj). This noisy state is

measured by the receiver by performing a general quantum

measurement and decoded as the output symbol Yj ∈ Y .

An n-length transmission over the above channel is denoted

as follows. Inputs are drawn from the set X (n) of length n
symbols {Xn = (X1X2 . . . Xn)}, and encoded into density

operators ρXn ∈ S((HA)⊗n) on an n-fold tensor product of

the input Hilbert space HA. The n-qubit channel is denoted

N (n)
Wn and parameterized by the sequence of waiting times

Wn = (W1,W2, . . . ,Wn). Note that the encoded state ρXn

could be entangled across multiple channel uses. Furthermore,

in general, the n-qubit queue-channel is not a stationary,

memoryless channel and does not automatically factor into an

n-fold tensor product of single qubit channels. We refer to the

sequence of n-qubit channels ~N ~W = {N (n)

W (n)}∞n=1, which are

parameterised by the corresponding waiting time sequences

{W (n)}∞n=1, as a quantum queue-channel, and characterize

the classical capacity of this system (in bits/sec).

In this paper, we model the erasure/error probability of a

qubit as an explicit function of its time spent in the queue.

Thus, for the jth state ρj with waiting time wj , we denote

by p(wj) the probability its error/erasure, where p : [0,∞) →
[0, 1] is typically increasing. We pay special attention to two

important noise models:

(i) The quantum erasure channel [16] which acts on the jth
state ρj with waiting time wj as follows: ρj remains

unaffected with probability 1− p(wj), and is erased to a

(fixed) erasure state |e〉〈e| with probability p(wj).
(ii) The quantum depolarizing channel, which acts on a given

qubit ρj as, ρj → (1 − p(wj))ρj + p(wj)
I
2 , where I/2

is the maximally mixed state [3].

In several physical scenarios, the decoherence time of a single

qubit maybe modelled as an exponential random variable.
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Thus, the probability of a qubit erasure/error after waiting

for a time w is given by p(w) = 1 − e−κw, where 1/κ is

a characteristic time constant of the physical system under

consideration [3, Section 8.3].

III. QUANTUM QUEUE-CHANNEL CAPACITY

We are interested in defining and computing the informa-

tion capacity of the quantum queue-channel. We follow the

conventions and the definitions from [11] that were adopted

in [10] for defining the capacity of queue-channels.

A. Definitions

Let M be the message transmitted from a set M and

M̂ ∈ M be its estimate at the receiver. We now define an

(n,R, ǫ, T ) code for classical communication over a quantum-

queue channel ~N ~W . Let An, Dn denote the arrival epoch and

departure epoch sequences, respectively.

Definition 1: An (n,R, ǫ, T ) quantum code is characterized

by an encoding function Xn = f(M), leading to an encoded

n-qubit quantum state ρXn corresponding to message M , and

a decoding function

M̂ = g(Λ,N (n)(ρXn), An, Dn)

corresponding to a measurement Λ at the receiver’s end, where

the cardinality of the message set |M| = 2nR, the expected

total time for all the symbols of any codeword to reach the

receiver is less than T , and the average probability of error of

the code is less than ǫ.
The measurement Λ at the decoder is a positive operator

valued measure (POVM) with operator elements {ΛM̂} corre-

sponding to message M . The probability of error correspond-

ing to message M is

pe(M) = Tr
[

(I − ΛM̂ )N (n)

W (n)(ρXn)
]

,

and the average probability of error is given by
1

|M|
∑

M∈M pe(M).
As the average probability of error at the decoder for an

(n,R, ǫ, T ) quantum code is less than ǫ, the code is callled an

ǫ-achievable code with rate R
T .

Definition 2: A rate R̄ is said to be achievable if for any

ǫ ∈ (0, 1), there exists an ǫ-achievable code with rate R̄, or

equivalently, if for any ǫ ∈ (0, 1) there exists an (n,R, ǫ, T )
code with R̄ = R

T .

Definition 3: The information capacity of the queue-

channel is the supremum of all achievable rates for a given

arrival and service process, and is denoted by C bits per unit

time.

Note that the information capacity of the queue-channel de-

pends on the arrival process, the service process, and the noise

model. We assume that the receiver knows the realizations of

the arrival and the departure times of each symbol, although

we point out some results that hold even without this assump-

tion.

There are several physical scenarios where the arrival and

departure times of each qubit is known, the simplest example

being that of heralded single-photon sources which are ubiq-

uitous in quantum communication networks (see [9] for exam-

ple). The source typically produces a pair of entangled pho-

tons, one of which is used as a reference by the encoder/sender

and the other photon is used in the actual communication

protocol. The reference photon provides information about the

arrival time, whereas the departure time can be obtained from

the time-stamp on the receiver’s detector.

Even in scenarios where this assumption may not be prac-

tical or realistic, conditioning on the waiting times offers a

useful conceptual handle towards tackling the problem. We

also note that two key results in the paper—namely the general

upper bound in Theorem 1, and the exact capacity of the

erasure queue-channel in Theorem 2, hold irrespective of the

receiver’s knowledge of the waiting times.

B. Holevo Information and Additivity

Before we proceed, we briefly review some well estab-

lished concepts from quantum Shannon theory, which will be

useful in analyzing the queue-channel capacity. An important

measure that characterizes the classical capacity of quantum

channels is the Holevo information of a quantum channel, also

referred to as the Holevo capacity of a quantum channel [17].

Definition 4 (Holevo Information): The Holevo Informa-

tion of a quantum channel N is defined as the entropy

difference [16], [18],

χ(N ) := sup
{Px,ρx}

χ({Px,N (ρx)})

= sup
{Px,ρx}

H

(

∑

x

PxN (ρx)

)

−
∑

x

pxH(N (ρx)),

(1)

where the supremum is taken over all input ensembles

{Px, ρx} and H(ρ) = −Tr[ρ log ρ] is the von Neumann

entropy associated with a density operator ρ.

The celebrated Holevo-Schumacher-Westmoreland theorem

states that the classical capacity of a quantum channel, de-

noted as C(N ), is the regularized Holevo information across

independent channel uses [19], [20]. In other words,

C(N ) = lim
n→∞

χ(N⊗n)

n
,

where N⊗n is the product channel corresponding to n inde-

pendent channel uses. The Holevo information of the channel

N is said to be additive if it satisfies χ(N ⊗ N ) = 2χ(N ).
It is easy to see that for quantum channels whose Holevo

information is additive, the classical capacity of the channel

is simply equal to the Holevo information. Additivity of the

Holevo information further implies that the classical capacity

of such channels is achievable via a classical encoding and

decoding strategy – the optimal coding strategy does not

require entangled inputs at the encoder or collective mea-

surements at the decoder. Examples of channels for which

the Holevo information is known to be additive include the

quantum erasure channel [13] and the quantum depolarizing

channel [15].
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Definition 5 (Additive quantum queue-channel): A

quantum queue-channel ~N ~W is said to be additive if

the Holevo information of the underlying single-use quantum

channel N is additive. Specifically, additivity of the Holevo

information of the quantum channel N implies

χ(NW1 ⊗NW2) = χ(NW1) + χ(NW2).

C. Upper bound on the Capacity for Additive Quantum

Queue-Channels

We first invoke the capacity formula obtained in [12], for

the classical capacity of general quantum channels which are

neither stationary nor memoryless.

Proposition 1: The capacity of the quantum queue-channel

(in bits/sec) described in Sec. II is given by

C = λ sup
{~P ,~ρ}

I( {~P , ~ρ}, ~N ~W ), (2)

where, I( {~P , ~ρ }, ~N ~W ) is the quantum spectral inf-

information rate originally defined in [12]. We have stated this

definition in Appendix A for completeness. Here, ~P is the to-

tality of sequences {Pn(Xn)}∞n=1 of probability distributions

(with finite support) over input sequences Xn, and {~ρ} denotes

the sequences of states {ρXn} corresponding to the encoding

Xn → ρXn . Finally, ~N ~W denotes the sequence of channels

{N (n)

W (n)}∞n=1, which are parameterised by the corresponding

waiting time sequences {W (n)}∞n=1.

We are now ready to state and prove a general upper bound

for the capacity of additive quantum queue-channels.

Theorem 1: For an additive quantum queue-channel ~N ~W ,

the capacity is bounded as,

C ≤ λ Eπ [χ(NW )] bits/sec.,

irrespective of the receiver’s knowledge of the arrival and the

departure times. Here χ(NW ) denotes the Holevo information

of the single-use quantum channel corresponding to waiting

time W and π is the stationary distribution of the waiting

time in the queue.

Proof Outline: Obtaining the queue-channel capacity of a

quantum channel poses certain technical challenges, since the

error probabilities are correlated across different channel uses.

In other words, the probability that the ith qubit gets affected

by an error is a function of its waiting time in the queue, which

in turn depends on the waiting time of the previous (i− 1)th

qubit and so on. Furthermore, the channel is non-stationary.

However, for the queue-channel model considered here, the

n-qubit queue-channel does factor into a tensor product of

single-use channels, conditioned on the sequence of waiting

times (W1,W2, . . . ,Wn). This is formally shown in Lemma 1

below.

In order to obtain an upper bound on capacity, we proceed

via the following key steps. First, we invoke an upper bound

proved in [12, Lemma 5], to bound the capacity as the limit

inferior of the Holevo information of a sequence of quantum

channels. Next, we use the tensor product from of the channel

obtained in Lemma 1 in conjunction with the fact that the

Holevo information of the channel N is additive. Finally, we

invoke the ergodicity of the queue to obtain a single-letter

expression for an upper bound on the queue-channel capacity.

Lemma 1 (Conditional independence): The n-qubit quan-

tum queue-channel N (n)
Wn factors into a tensor product

of single-use channels, conditioned on the waiting times

(W1,W2, . . . ,Wn).

Proof: Consider a sequence of n qubits transmitted

via a quantum queue-channel with associated waiting times

W1,W2, . . . ,Wn. The n-qubit channel maybe described via n-

fold tensor-product operators of the form {B1⊗B2⊗. . .⊗Bn},

where each single-qubit operator Bi is one of a finite set

of noise operators {E1, E2, . . . , EL}, which characterize the

quantum channel N . Note that the operators Ei ∈ M2×2

which belong to the space of 2×2 complex matrices are called

the Kraus operators associated with the quantum channel N .

There are Ln tensor-product operators of the form

{B1 ⊗ B2 ⊗ . . . ⊗ Bn}, occurring with probabili-

ties qk1k2...kn
(W1,W2, . . . ,Wn), with the indices ki ∈

{E1, E2, . . . , EL}, depending on which noise operator each

Bi corresponds to. This n-fold channel is a non-iid, cor-

related quantum channel in general, since the joint distri-

bution qk1k2...kn
(W1,W2, . . . ,Wn) does not factor into a

product of the individual error probabilities for each qubit.

However, conditioned on the the waiting time sequence

W (n) = (W1,W2, . . . ,Wn), the joint distribution does fac-

tor as qk1k2...kn
(W1,W2, . . . ,Wn) = Πiqki

(Wi). Therefore,

conditioned on the waiting times (W1,W2, . . . ,Wn) we may

represent the action of the n-qubit channel on any n-qubit

state ρ12...n as shown in (3). In other words, conditioned on

the waiting time sequence Wn, the n-qubit channel factors into

an n-fold tensor product of the form NW1
⊗NW2

⊗. . .⊗NWn
,

as desired.

We are now ready to prove the upper bound on the capacity

of an additive quantum queue-channel. We assume that the

sequence of waiting times ~W is available at the receiver.

Proof: (Theorem 1) We start with an upperbound on the

quantum inf-information rate proved in [12, Lemma 5]:

I( {~P , ~ρ }, ~N ~W ) ≤ lim inf
n→∞

1

n
χ( {P (n), ρXn},N (n)

W (n) ),

where, χ({P (n), ρXn},N (n)
Wn) is the Holevo information of

the ensemble {P (n)(Xn),N (n)

W (n)(ρXn)}. Consider now the

Holevo information χ(N (n)

W (n)) of the n-qubit quantum queue-

channel, for a given sequence of waiting times W (n). Lemma 1

implies that,

χ(N (n)
Wn) = χ(NW1 ⊗NW2 ⊗ . . .⊗NWn

).

Furthermore, the fact that the queue-channel is additive implies

for any n,

χ(N (n)
Wn) =

n
∑

i=1

χ (NWi
) .

Rewriting this in terms of the Holevo information of the
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N (n)

W (n)(ρ12...n)

=
∑

k1,k2,...,kn

qk1k2...kn
(W1,W2, . . . ,Wn)Bk1

⊗Bk2
. . .⊗Bkn

(ρ12...n)B
†
k1

⊗B†
k2
. . .⊗B†

kn

=
∑

k1,k2,...,kn

qk1(W1)qk2(W2) . . . qkn
(Wn)Bk1 ⊗Bk2 . . .⊗Bkn

(ρ12...n)B
†
k1

⊗B†
k2
. . .⊗B†

kn

= (NW1 ⊗NW2 . . .⊗NWn
) (ρ12...n). (3)

encoding ensemble for the n-qubit channel, we get,

sup
{Pn(Xn),ρXn}

χ( {Pn
Xn ,N (n)

W (n)(ρXn)} )

=

n
∑

i=1

sup
{Pi(Xi),ρi}

χ( {P (Xi),NWi(ρi)} ).

(4)

Combining the above sequence of steps, we thus get the

following upper bound on the capacity of an additive quantum

queue-channel:

C
(a)
= λ sup

{~P ,~ρ}
I( {~P , ~ρ}, ~N ~W )

(b)

≤ λ sup
{~P ,~ρ}

lim inf
n→∞

1

n
χ( {P (n), ρXn},N (n)

W (n) )

(c)

≤ λ lim inf
n→∞

1

n
sup

{P (n),ρXn}
χ( {P (n), ρXn},N (n)

W (n) )

(d)
= λ lim inf

n→∞
1

n

n
∑

i=1

sup
{P (Xi),ρi}

χ( {P (Xi),NWi
(ρi)}

= λ lim inf
n→∞

1

n

n
∑

i=1

χ (NWi
)

(e)
= λ Eπ [χ(NW )] a.s.

Here, (a) is simply the definition of the queue-channel capac-

ity as stated in Eq. (2), and (b) is the upper bound from [12,

Lemma 5]. This upper bound uses the quantum Neyman-

Pearson Lemma and the monotonicity of the quantum relative

entropy, in addition to invoking arguments from quantum

hypothesis testing. The inequality (c) follows from elementary

real analysis. The equality in (d) follows from the conditional

independence of the n-use channel and the additivity of the

quantum queue-channel (see Eq. (4)), and (e) follows from

the ergodicity of the queue.

We note that our proof of the upper bound on classical

queue-channel capacity assumes knowledge of the sequence

of waiting times (W1,W2, . . . ,Wn) at the receiver. This

automatically implies an upper bound for the scenario where

the receiver does not have knowledge of the waiting times.

D. Erasure Queue-Channels

Erasure channels are ubiquitous in classical as well as

quantum information theory. Our model of an erasure queue-

channel captures a quantum information system where qubits

decohere with time into erased (or non-informative) quantum

states.

A single-use quantum erasure channel, for a qubit with wait-

ing time W1 = w1 is characterized by a pair of noise operators

(or Kraus operators), namely the operator E : ρ1 → |e〉〈e|
which maps any input density operator ρ1 to a fixed erasure

state |e〉〈e| , and the identity operator I : ρ1 → ρ1. If the

input state has a waiting time W1 = w1, the erasure and

identity operations occur with probabilities qE(w1) = p(w1)
and qI(w1) = 1−p(w1) respectively. Thus, the final state after

the action of the erasure queue-channel for a given input state

ρ1, with waiting time W1 = w1 is

NW1(ρ1) = qE(w1)Eρ1E
† + qI(w1) ρ1.

We now evaluate the upper bound proved in Theorem 1 for

the case of the quantum erasure queue-channel and show that

is achievable using a classical coding strategy. This leads us to

the following result on the classical capacity of the quantum

erasure queue-channel.

Theorem 2: For the erasure queue-channel defined above,

the capacity is given by C = λ Eπ [1− p(W )] bits/sec,

irrespective of the receiver’s knowledge of the arrival and the

departure times, where π is the stationary distribution of the

waiting time in the queue.

Proof Outline: The upper bound simply follows from the

upper bound proved in Theorem 1 above, since the Holevo

capacity of the quantum erasure channel is additive [13]. The

achievability proof follows by fixing a classical encoding and

decoding strategy and showing that the capacity of the induced

classical channel does indeed coincide with the upper bound.

Proposition 2 (Upper bound on Capacity): The

capacity of the quantum erasure queue-channel satisfies

C ≤ λ Eπ [1− p(W )] bits/sec.

Proof: In order to obtain an upper bound on capacity, we

invoke the celebrated additivity result of Holevo [13] for the

quantum erasure channel. Next, we use the fact that the Holevo

information of a single use erasure channel corresponding to

waiting time Wi is given by [14],

χ(NWi
) ≡ sup

{P (x),ρx}
χ( {Px,NWi

(ρx)} ) = 1− p(Wi). (5)

This, along with the upper bound proved in Theorem 1 above,

results in the desired upper bound.

Proposition 3 (Lower bound on Capacity (Achievability)):

The capacity of the quantum erasure queue-channel satisfies

C ≥ λ Eπ [1− p(W )] bits/sec.

Proof: We prove the lower bound by producing a particu-

lar encoding/decoding strategy that achieves the said capacity

expression. In particular, we employ a classical strategy in
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which classical bits 0 and 1 are encoded into two fixed

orthogonal states (say |ψ0〉 and |ψ1〉), and the decoder also

measures in a fixed basis. The input codewords are unen-

tangled across multiple channel uses and the decoder simply

performs product measurements. In this setting, the qubits

essentially behave as classical bits, and the quantum erasure

channel simulates the induced classical channel. The capacity

of the corresponding induced classical channel is equal to

λ Eπ [1− p(W )] , as shown in Theorem 7 in Sec. IV-B below.

We remark that the above capacity result does not depend

on the specific functional form of p(·). Further, the capacity

result holds for any stationary and ergodic queue — i.e., it

does not assume any specific queueing model. If we assume

the functional form p(W ) = 1 − exp(−κW ) for the erasure

probability, the following corollary is immediate.

Corollary 1: When the decoherence time of each qubit

is exponentially distributed, i.e., p(W ) = 1 − exp(−κW ),
the erasure queue-channel capacity is given by λEπ

[

e−κW
]

bits/sec., where π is the stationary distribution of the waiting

time in the queue.

E. M/M/1 and M/GI/1 examples

We remark that the capacity expression λEπ

[

e−κW
]

is

simply λ times the Laplace transform of the stationary waiting

time W, evaluated at κ, which is the rate of decoherence. We

now derive closed form expressions for the capacity for the

M/M/1 and M/GI/1 queues. An M/GI/1 queue is a well-

studied model of a single server queue in which the arrival

process is a Poisson process, the service times are independent

of the arrival process, and generally distributed (but i.i.d across

qubits). See [8, Chapter 5] for a detailed treatment of the

M/GI/1 queue. The M/M/1 queue is is a special case of

an M/GI/1 queue, where the service times are exponentially

distributed.

Using Pollaczek-Khinchin formula (see [8, Eq. (5.105)])

for an FCFS M/GI/1 queue, we can obtain a closed-form

expression for the capacity and the optimal arrival rate.

Theorem 3: For an FCFS M/GI/1 erasure queue-channel

(with p(W ) = 1− exp(−κW )),

(i) the capacity is given by
λ(1−λ)
1−αλ bits/sec, and

(ii) the capacity is maximised at

λM/GI/1 =
1

α

(

1−
√
1− α

)

=
1

1 +
√
1− α

,

where α = 1−F̃S(κ)
κ , and F̃S(u) =

∫

exp(−ux)dFS(x) is the

Laplace transform of the service time distribution.

Proof: First, note that for the particular form of p(·) con-

sidered here, the capacity expression in Theorem 2 simplifies

to λE[exp(−κW )].

Next, using the Pollaczek-Khinchin formula for the M/GI/1
queue (with µ = 1), we write

E[exp(−κW )] =
(1− λ)κ

κ− λ(1− F̃S(κ))
=

1− λ

1− αλ
,

0.2 0.4 0.6 0.8 1.0
λ

0.2

0.4

0.6

0.8

Capacity

κ=1κ=0.1κ=0.01

Fig. 2. The capacity of the M/M/1 erasure queue-channel (in bits/sec)
plotted as a function of the arrival rate λ for different values of the
decoherence parameter κ.

where α = (1−F̃S(κ))
κ . Thus, the capacity is

λ(1−λ)
1−αλ bits/sec,

and the capacity maximising arrival rate is

arg max
λ∈[0,1)

λ(1− λ)

1− αλ
.

The objective function in the above optimization problem is

concave in λ. This implies that the value of λ that maximises

the capacity is the one at which the derivative of the capacity

with respect to λ is zero. Taking the derivative, we obtain a

quadratic function in λ which when equated to zero yields two

solutions for λ: 1
α ±

√
1−α
α . The only valid solution for which

λ ∈ [0, 1) is given by 1
α −

√
1−α
α .

This result offers interesting insights into the relation be-

tween the information capacity and the characteristic time-

constant of the quantum states. Fig. 2 plots capacity versus

arrival rate for an M/M/1 queue of unit service rate. We note

that κ = 0.01 corresponds to an average coherence time which

is two orders of magnitude longer than the service time —

a setting reminiscent of superconducting qubits [4]. We also

notice from the shape of the capacity curve for κ = 0.01
that there is a drastic drop in the capacity, if the system is

operated beyond the optimal arrival rate λM/M/1. This is due

to the drastic increase in delay induced decoherence as the

arrival rate of qubits approaches the server capacity.

Theorem 3 characterizes an optimal λ for given arrival

and service distributions. One can also ask after the best

service distribution for a given arrival process and a fixed

server rate. This question is of interest in designing the server

characteristics like gate operations [21], or photon detectors for

quantum communications. The following theorem is useful in

such scenarios.

Theorem 4: For an erasure queue-channel with p(W ) =
1 − exp(−κW ) and Poisson arrivals at a given rate λ,
the capacity is maximised by the service time distribution

FS(x) = 1(x ≥ 1), i.e., a deterministic service time max-

imises capacity, among all service distributions with unit mean

and FS(0) = 0.

Proof: As derived in the proof of Theorem 3, the capacity

is

λ(1− λ)κ

κ− λ(1− F̃S(κ))
=

(1−λ)κ
λ

κ−λ
λ + F̃S(κ)

.
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Thus, for any given λ, among all service distribution with unit

mean, the capacity is maximised by that service distribution for

which F̃S(κ) is minimised. For any service random variable

S, by Jensen’s inequality, we have F̃S(κ) = E[exp(−κS)] ≥
exp(−κE[S]). Therefore, F̃S(κ) is minimised by S = E[S],
i.e., a deterministic service time.

Theorems 3 and 4 hold for an M/GI/1 queue when p(W ) =
1 − e−κW . For the M/M/1 case, we can derive a capacity

expression for any functional form of the erasure probability

p(·).
Theorem 5: For the M/M/1 erasure queue-channel, the

capacity expression for any functional form of the erasure

probability p(·) is given by

λ

(

1− 1− λ

λ
p̃

(

1− λ

λ

))

bits/sec.,

where for any u > 0, p̃(u) :=
∫

exp(−ux)p(x)dx is the

Laplace transform of p(·). Furthermore, the capacity maxi-

mizing arrival rate is

1− arg min
u∈(0,1)

u

(

1 + p̃

(

u

1− u

))

. (6)

Proof: This proof uses the exponential waiting time

distribution of M/M/1 queue to relate the capacity to Laplace

transform of p(·). It is known that the waiting time in M/M/1
is distributed as exp

(

1−λ
λ

)

for µ = 1. Thus,

E[p(W )] =

∫ ∞

0

p(w)
1− λ

λ
exp

(

1− λ

λ
w

)

dw

=
1− λ

λ
p̃

(

1− λ

λ

)

.

Thus, the capacity is given by λ
(

1− 1−λ
λ p̃

(

1−λ
λ

))

bits/sec.

Therefore, the capacity maximising arrival rate is the one

that maximises this expression:

arg max
λ∈(0,1)

λ

(

1− 1− λ

λ
p̃

(

1− λ

λ

))

⇐⇒ arg max
λ∈(0,1)

(

λ− (1− λ)p̃

(

1− λ

λ

))

⇐⇒ 1− arg max
u∈(0,1)

(

1− u− up̃

(

u

1− u

))

⇐⇒ 1− arg min
u∈(0,1)

u

(

1 + p̃

(

u

1− u

))

.

F. Quantum Depolarizing Queue-channel

Our techniques can be easily extended to study another

important additive quantum channel, namely the depolarizing

channel. Suppose that the jth qubit spends Wj = wj seconds

in the queue. The quantum depolarizing channel acts on a

given qubit ρj as, ρj → (1 − p(wj))ρj + p(wj)
I
2 , where

I/2 is the maximally mixed state [3]. Additivity of the

Holevo information of the depolarizing channel was shown by

King [15], leading to a single-letter formula for its classical

capacity, originally noted in [14]. Here, we evaluate the

classical capacity of the quantum depolarizing queue-channel

as stated below.

Theorem 6: The classical capacity of a quantum depolariz-

ing queue-channel with arrival rate λ is,

C = λ Eπ

[

1− h

(

p(W )

2

)]

bits/sec,

provided the receiver knows the arrival and the departure times

of the qubits. Here, h(.) denotes the binary entropy function,

and the expectation is taken over the stationary distribution of

the waiting time W in the queue.

Proof: Since the depolarising channel satisfies additivity

[15], the upper bound in Theorem 1 holds. Furthermore, the

Holevo information for a single-qubit depolarising channel is

evaluated to be [14]

χ(NW ) = 1− h

(

p(W )

2

)

.

To prove achievability, we first note that the induced classical

channel corresponding to the quantum depolarizing channel is

a binary symmetric channel with crossover probability φ(w) =
p(w)/2 (see [14]). Then, we invoke the capacity result proved

in Theorem 8 in Sec. IV-C for the induced classical channel.

Remark 2: We note that for the depolarising queue channel,

when the arrival and departure times are known to the receiver,

we get matching upper and lower bounds from Theorems 1

and 8, thus characterising the capacity exactly. However, when

the arrival and departure times are not known to the receiver,

there is a ‘Jensen gap’ between the upper and lower bounds

in Theorems 1 and 8 respectively. Thus, when the waiting

times are not known to the receiver, we are unable to precisely

characterise the capacity — we know only that it lies in

between λ
(

1− h
(

Eπ

[

p(W )
2

]))

and λ Eπ

[

1− h
(

p(W )
2

)]

bits/sec.

Remark 3: We remark that the upper bound and the ca-

pacity results which have been stated and proved for qubit

queue-channels, do extend readily to the case of qudit (d-

dimensional) queue-channels as well. The upper bound on

the queue-channel capacity stated in Theorem 1 is of course

independent of the dimension of the states and channels

involved; rather it depends only on the additivity of the

Holevo information for the channel. However, the capacity

expressions do change with the dimensionality of the system.

Specifically, the classical capacity of a qudit quantum erasure

queue-channel is Cd = λ log2 d Eπ [1− p(W )] bits/sec. and

the classical capacity of a qudit depolarizing queue-channel

(when the waiting times are known to the receiver) is

Cd = λ Eπ

[

log2 d+
(

1− p+
p

d

)

log2

(

1− p+
p

d

)

+

(d− 1)
p

d
log2

p

d

]

bits/sec.

IV. CAPACITY OF THE INDUCED CLASSICAL

QUEUE-CHANNEL

In this section we define and characterize the capacity of the

induced classical channel corresponding to a general quantum

queue-channel. Formally, the jth symbol Xj ∈ X = {0, 1}2,

2Results extend to any finite alphabet.
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is now encoded as one of a set of orthogonal states {|ψXj
〉}

belonging to a Hilbert space H of dimension 2. The noisy

output state |ψ̃j〉 is measured by the receiver in some fixed

basis, and decoded as the output symbol Yj ∈ Y . This

measurement induces a conditional probability distribution

P(Yj |Xj ,Wj). The induced classical channel is a sequence

of conditional distributions from Xn to Yn:

P(Y n|Xn,Wn) =

n
∏

j=1

P(Yj |Xj ,Wj) for n ∈ {1, 2, . . .}.

(7)

As argued in Lemma 1, Yj is conditionally independent of

other random variables, given Xj and Wj , which leads to the

product form above. Throughout, Zn = (Z1, Z2, . . . , Zn) de-

notes an n-dimensional vector and Z = (Z1, Z2, . . . , Zn, . . .)
denotes an infinite sequence of random variables.

We are interested in defining and computing the information

capacity of this induced classical queue-channel. As mentioned

earlier, we restrict ourselves to using a fixed set of orthogonal

states to encode the classical symbols at the sender’s side,

and measuring in some fixed basis at the receiver’s end. For

this reason, the capacity of the induced classical channel is

not the same as the classical capacity of the quantum channel

resulting from the underlying decoherence model.

The motivation behind the study of the induced classical

queue-channel is twofold. Firstly, the achievability result (i.e.,

the capacity lower bound) for this channel is applicable to

the classical capacity of the quantum queue-channel studied

in the previous section. Indeed, as we show below, when

the arrival and departure times of the symbols are known at

the receiver, the capacities of the induced classical erasure

and binary symmetric queue-channels are the same as that of

the classical capacities of the corresponding quantum queue-

channels. Secondly, the induced queue-channel has other inter-

esting applications as well. It closely models delay-sensitive

communication systems where data packets become useless

after a deadline [2], [22].

A. Definitions

Let M be the message transmitted from a set M and M̂ ∈
M be its estimate at the receiver.

Definition 6: An (n, R̃, ǫ, T ) code consists of the encoding

function Xn = f(M) and the decoding function M̂ =
g(Xn, An, Dn), where the cardinality of the message set

|M| = 2nR̃, the expected total time for all the symbols of

any codeword to reach to the receiver is less than T , and the

average probability of error at the decoder is less than ǫ.
If the average probability of error of a code is less than ǫ

the code is called an ǫ-achievable code.

Definition 7: For any 0 < ǫ < 1, if there exists an ǫ-

achievable code (n, R̃, ǫ, T ), the rate R = R̃
T is said to be

achievable.

Definition 8: The information capacity of the induced clas-

sical queue-channel is the supremum of all achievable rates

for a given arrival and service process and is denoted by CInd

bits per unit time.

We assume that the transmitter knows the arrival process

statistics, but not the realizations before it does the encoding.

However, depending on the scenario, the receiver may or may

not know the realization of the arrival and the departure time

of each symbol.

The following result is a consequence of the general channel

capacity expression in [23] and is useful in deriving the main

results on single letter capacity expression.

Proposition 4: The capacity of the queue-channel (in

bits/sec) described above is given by

CInd = λ sup
P(X)

I(X;Y|W), (8)

when the receiver knows the arrival and the departure time of

each symbol. On the other hand, when the receiver does not

have that information, the capacity is,

CInd = λ sup
P(X)

I(X;Y). (9)

Here, I is the usual notation for classical inf-information

rate [23]. Specifically, I(X;Y) is defined as the limit in-

ferior in probability of the information density sequence
{

1
n log P(Y n|Xn)

P(Y n)

}∞

n=1
.

Proof: The case where arrival and departure times of

the qubits are not known follows directly from [23] using

(limiting) stationarity and ergodicity of the arrival and the

departure processes of the queue. Note that a string of n qubits

see the joint channel

P(Y n|Xn) =

∫

Wn

n
∏

j=1

P(Yj |Xj ,Wj)dP(Wn),

and the number of qubits coming out of the queue per unit time

(asymptotically) is λ. Combining these two facts with standard

information spectrum results we get the desired capacity result.

When the arrival and the departures times of the qubits

are known at the receiver, the channel behaves like Xn →
(Y n, An, Dn). In that case it follows from [23] that the

capacity of this channel is

λ sup
P(X)

I(X; (Y,A,D)).

Next, note that Wj = Dj−Aj for all j, and since no informa-

tion is encoded in timings, X is independent of (A,D). By

definition, I(X; (Y,A,D)) is the limit inferior in probability

of the following sequence:

1

n
log

P(Y n, An, Dn|Xn)

P(Y n, An, Dn)

=
1

n
log

P(An, Dn|Xn)P(Y n|Xn, An, Dn)

P(An, Dn)P(Y n|An, Dn)

=
1

n
log

P(Y n|Xn, An, Dn)

P(Y n|An, Dn)

=
1

n
log

P(Y n|Xn,Wn)

P(Y n|Wn)
(10)

The step before the last is due to independence of Xn and

(An, Dn). Also, as per the channel model we have the Markov

property (An, Dn) → Wn → Y n, which leads to the final

expression. The liminf in probability of the quantity in (10),

is by definition, equal to I(X;Y|W).
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B. Erasure Queue-Channels

Erasure channels are ubiquitous in classical as well as

quantum information theory. We consider a classical erasure

queue-channel [14] induced by the quantum erasure queue-

channel where the jth state |ψXj
〉 remains unaffected with

probability 1 − p(Wj), and is erased to a state |e〉 with

probability p(Wj), where p : [0,∞) → [0, 1] is typically

increasing. Such a model also captures the communication

scenarios where information packets become useless (erased)

after a deadline. For such an erasure channel, a single letter

expression for capacity can be obtained.

Theorem 7: For the classical erasure queue-channel defined

above, the capacity (in bits/sec) is given by λ Eπ [1− p(W )],
irrespective of the receiver’s knowledge of the arrival and the

departure times of symbols.

Remark 4: For a general queue-channel, the capacity could

depend on the receiver’s knowledge (or lack thereof) of the

arrival and the departure times of symbols. However, for the

erasure case, the received symbol is either correct or is erased,

but is never wrong. This makes the knowledge of the arrival

and departure times irrelevant, and the capacity remains the

same in both cases.

Proof of Theorem 7: We first prove the result for the case

when the receiver knows the arrival and the departure times.

The proof uses an upper-bound on I(X;Y|W) in terms

of two conditional sup-entropy rates rate and shows that

Eπ [1− p(W )] is an upper-bound on I(X;Y|W). On the

other hand, using a similar lower-bound on I(X;Y|W) we

show that for a choice of distribution of {Xn} (namely, i.i.d.

uniform), I(X;Y|W) is no smaller than Eπ [1− p(W )]. More

precisely, we use the following two bounds, which follow from

the properties of limit superior and limit inferior [24, Chap. 3]:

I(X;Y|W) ≤ H(Y|W)−H(Y|X,W), (11)

I(X;Y|W) ≥ H(Y|W)−H(Y|X,W), (12)

where H(Y|W) and H(Y|X,W) are respectively the lim-

sup in probability of the sequences
{

1
n log 1

P(Y n|Wn)

}∞

n=1
and

{

1
n log 1

P(Y n|Xn,Wn)

}∞

n=1
. Similarly, H(Y|W) is the lim-inf

in probability of
{

1
n log 1

P(Y n|Wn)

}∞

n=1
.

We now state three lemmas, which lead to the capacity

result.

Lemma 2: For the induced classical erasure queue-channel,

H(Y|X,W) = Eπ[h(p(W ))],

irrespective of the choice of PX.

Lemma 3: For the induced classical erasure queue-channel,

H(Y|W) ≤ 1 +Eπ[h(p(W ))]−Eπ[p(W )],

irrespective of the choice of PX.

Lemma 4: For uniform and i.i.d {Xi}
H(Y|W) = 1 +Eπ[h(p(W ))]−Eπ[p(W )].

The proofs of Lemmas 2, 3, and 4 appear in Appendix B.

Combining Lemmas 2 and 3 we get a PX-independent upper-

bound on I(X;Y|W) :

I(X;Y|W) ≤ 1−Eπ[p(W )].

A matching lower bound on I(X;Y|W) is readily obtained

using Lemmas 2 and 4. Thus, for the erasure queue-channel,

sup
PX

I(X;Y|W) = 1−Eπ[p(W )].

We obtain the capacity of this channel by multiplying the

above expression by λ (see Proposition 4).

When the arrival and departure times are not available at

the receiver, one way to prove the capacity result is to analyze

I(X;Y). However, it is easier to use a dominance argument

for the probability of errors in the two scenarios: arrival

and departure times known, versus unknown, at the receiver.

Consider any encoding and decoding scheme which attains

capacity when the arrival and departure times are known at

the receiver. Note that under this encoding scheme the rate is

close to the capacity and the probability of error is tending to 0.

By the optimality of MAP (maximum aposterior probability)

decoding, if we replace the decoding scheme by a MAP

decoder the probability error cannot increase. For the case

where the receiver does not know arrival and departure times,

we can use the same encoding scheme, followed by a MAP

decoding. For an erasure channel, the MAP decoding depends

only on the prior probabilities of the codewords that match the

received codeword at the non-erased symbols. Therefore, the

knowledge of {p(Wi)} (and hence that of arrival and departure

times) has no effect on the MAP decoding. Thus, it follows that

the same rate and the probability of error are also achievable

in the absence of arrival and departure times.

Note that the above theorem, particularly the achievability

result, completes the proof of Proposition 3. Furthermore,

since the capacity of the induced classical erasure queue-

channel is same as the classical capacity of the quantum

erasure queue-channel, the results in Theorem 3, 4, and 5 are

applicable here as well.

C. Binary Symmetric Queue-channels

In this section, we state our results for a binary symmetric

queue-channel. This classical channel is induced by the depo-

larizing quantum queue-channel. The probability of a bit flip

is captured by a function φ : [0,∞) → [0, 0.5], φ(Wi), where

P(Yi 6= Xi|Xi,Wi) = φ(Wi). Note that the p(W ) for the

depolarizing channel and φ(W ) are related as φ(W ) = p(W )
2 .

Theorem 8: For a binary symmetric queue-channel, the

capacity is λ (1−Eπ [h(φ(W ))]) bits/sec when the receiver

knows the arrival and departure times of the symbols. The

capacity is lower bounded by λ (1− h(Eπ [φ(W )])) when the

receiver does not know the arrival and departure times of the

symbols.

Proof:

Case I: arrival and departures times are known at the receiver

These steps are similar to the proof of the capacity result for

the erasure queue-channel. Once again, we use the inequalities

in (11) and (12) respectively, for the upper and the lower

bounds. For proving the upper-bound, we argue along the same

lines as Lemmas 2 and 3 to obtain

H(Y|W) ≤ 1, and

H(Y|X,W) = Eπ [h(φ(W ))] . (13)
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The last equality uses the following simple insight: the channel

probability distribution for binary symmetric queue-channel

can be written as

P(Y n|Xn,Wn) = P(Nn|Wn),

where Yi = Xi+Ni (modulo 2) and Ni ∼ Bernoulli(φ(Wi)).
The rest follows using conditional independence of {Ni} given

{Wi}, and the ergodicity of the process {Wi}. This completes

the proof of the upper-bound.

For deriving the lower bound, we fix the input distribution

to be i.i.d. Bernoulli(0.5) independent of W. An elementary

calculation then shows that Y is also i.i.d. Bernoulli(0.5) and

is independent of W. Thus,

H(Y|W) = 1.

Using (12) and (13) we obtain the following lower bound:

I(X;Y|W) ≥ 1− h(Eπ [φ(W )]).

Case II: arrival and departures times are not known at the

receiver

For obtaining the lower-bound in this case we use the

following inequality from [24].

I(X;Y) ≥ H(Y)−H(Y|X).

Again, for uniform i.i.d. X, we have H(Y) = 1.
For obtaining a lower bound, we obtain an upper-bound on

H(Y|X) by upper-bounding the limit

lim
n→∞

1

n
log

(

1

P(Nn)

)

(14)

in an almost sure sense.

Since {Wi} is stationary and ergodic, so is {Ni}. To bound

the limit in (14), we use successive Markov approximations

of this ergodic process, where the Markov approximation

approaches the ‘true’ process, as the order or the memory of

the Markov process tends to infinity. (A celebrated application

of this successive Markov approximation approach appears in

proving the asymptotic optimality of the LZ78 universal source

coding algorithm — see [25, Section 13.5.2]).

To be precise, we first consider the case where Ni is a k-

th order stationary and ergodic Markov process and obtain a

bound on the above limit, which does not depend on k. Let

{Ñt} be a k-th order Markov process with a transition kernel

n
∏

j=1

P(Ñj = uj |Ñj−1 = uj−1, . . . Ñ(j−k)+ = u(j−k)+)

=

n
∏

j=1

P(Nj = uj |Nj−1 = uj−1, . . . N(j−k)+ = u(j−k)+),

and P(Ñ1 = u1) = P(N1 = u1), where (j−k)+ = max(j−
k, 1). As claimed in the proof of [25, Lemma 13.5.4], (14)

is equal to limk→∞ βk, where βk is the almost sure limit of
1
n log

(

1
P(Ñn)

)

for the kth order Markov process.

Note that 1
n log

(

1
P(Ñn)

)

is given by

1

n
log

(

1

P(Ñk)

)

− 1

n

n
∑

t=k+1

logP(Ñt|Ñt−1, . . . , Ñt−k+1).

By ergodicity, the above expression has the following almost

sure limit:

EÑk+1,Ñk,...,Ñ1

[

− logP(Ñk+1|Ñ1, Ñ2, · · · , Ñk)
]

.

The expectation above is over the joint distribution of

(Ñ1, Ñ2, · · · , Ñk, Ñk+1), and can be recognized readily as

the conditional entropy of Ñk+1, given Ñ1, Ñ2, · · · , Ñk. This

in turn implies that

EÑk+1,Ñk,...,Ñ1

[

− logP(Ñk+1|Ñ1, Ñ2, · · · , Ñk)
]

= EÑk,...,Ñ1

[

EÑk+1

[

− logP(Ñk+1|Ñ1, Ñ2, · · · , Ñk)
]]

(15)

= EÑk,...,Ñ1

[

h(P(Ñk+1|Ñ1, Ñ2, · · · , Ñk))
]

≤ h(EÑk,...,Ñ1

[

P(Ñk+1|Ñ1, Ñ2, · · · , Ñk)
]

) (16)

= h(P(Ñk)) = h(Eπ [φ(W )]). (17)

Here, (15), (16) and (17) follow from iterated expecta-

tion, Jensen’s inequality due to concavity of h(·), and

stationarity of Ñk which is Bernoulli(Eπ [φ(W )]), re-

spectively. Thus, h(Eπ [φ(W )]) is an upper-bound on

EÑk+1,Ñk,...,Ñ1

[

− logP(Ñk+1|Ñ1, Ñ2, · · · , Ñk)
]

for all k.

Hence, (14) is upper-bounded by h(Eπ [φ(W )]).
When the receiver does not know the arrival and departure

times, λ (1−Eπ [h(φ(W ))]) is still an upper-bound on the

capacity. Thus, there remains a ‘Jensen’s gap’ between the

upper and the lower bound in that case.

We remark that the above capacity result for the binary

symmetric queue-channel is a special case of the capacity

result for a class of classical queue-channels called random

bijective queue-channels — see [22].

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we considered quantum queue-channels as a

framework to study the sequential processing of qubits, and

derived fundamental capacity limits for sequential quantum in-

formation processing. For the class of additive queue-channels,

we derived a single-letter upper bound for the capacity in terms

of the stationary waiting time in the queue. We then showed

that this capacity upper bound is achievable for two important

noise models, namely the erasure channel and the depolarising

channel. We also showed that a classical coding/decoding

strategy is capacity achieving for these channel.

There is ample scope for further work along several di-

rections. First, we can study the queue-channel capacity for

other noise channels whose Holevo information is known to

be additive. This includes the class of entanglement breaking

channels [26] as well as the class of Hadamard channels [16].

The upper bound on the classical capacity of the queue-

channel proved here will indeed hold in all of these cases.

However, whether the upper bound is achievable or not will

depend on the structure of the induced classical channel.

As seen in the case of the depolarizing queue-channel, the

upper bound may or may not be tight depending on whether

the receiver’s knowledge of the waiting times of the qubits.

Whether our capacity results can be extended to the larger
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I( {~P , ~ρ }, ~N ~W ) = sup







a ∈ R
+

∣

∣

∣

∣

∣

∣

lim
n→∞

∑

Xn∈X (n)

Pn(Xn)Tr
[

N (n)

W (n)(ρXn)
{

Γ{Pn(Xn),ρXn}(a) > 0
}



 = 1







. (18)

− logP(Y n|Wn) = − logP({Yi : i ∈ JE}, {Yi : i 6∈ JE}|Wn)

= − logP({Yi : i ∈ JE}|{Wi : i ∈ JE})− logP({Yi : i 6∈ JE}|{Wi : i 6∈ JE}) (19)

= −
∑

i∈JE

logP(E|Wi)− logP({Yi : i 6∈ JE}|{Wi : i 6∈ JE}) (20)

= −
∑

i∈JE

logP(E|Wi)− logP({Yi 6= E : i 6∈ JE}, {Yi : i 6∈ JE}|{Wi : i 6∈ JE}) (21)

= −
∑

i∈JE

log p(Wi)− logP({Yi 6= E : i 6∈ JE}|{Wi : i 6∈ JE}) − logP({Yi : i 6∈ JE}|{Yi 6= E : i 6∈ JE}, {Wi : i 6∈ JE})

= −
∑

i∈JE

log p(Wi)−
∑

i 6∈JE

log(1− p(Wi)) − logP({Yi : i 6∈ JE}|{Yi 6= E : i 6∈ JE}, {Wi : i 6∈ JE})

= −
n
∑

i=1

[1(Yi = E) log(p(Wi)) + 1(Yi 6= E) log(1− p(Wi))]− logP({Yi : i 6∈ JE}|{Yi 6= E ,Wi : i 6∈ JE}). (22)

class of additive queue-channels is an interesting avenue for

further investigations. In this context, the upper bounds proved

in [27] and the corresponding achievability results for finite-

length codes might be useful. An immediate application of

our work would be in identifying optimal rates for reliable

communication across quantum networks. We can also quanti-

tatively evaluate the impact of using quantum codes with finite

block lengths to protect qubits from errors. Employing a code

would enhance robustness to errors, but would also increase

the waiting time due to the increased number of qubits to be

processed. It would be interesting to characterise this tradeoff,

and identify the regimes where using coded qubits would be

beneficial or otherwise.

More generally, the qubits-through-queues paradigm studied

here may be used to analyse various performance aspects

of quantum circuits, such as, quantifying the best achievable

processing rate for asymptotically perfect accuracy. As we

enter an era of quantum networks and noisy intermediate-scale

quantum technologies [28], our work begins to quantitatively

address the impact of decoherence on the performance limits

of quantum information processing systems.

APPENDIX

A. Quantum Inf-Information Rate

Consider the quantum queue-channel ~N ~W comprising a se-

quence of channels {N (n)

W (n)}∞n=1, which are parameterised by

the corresponding waiting time sequences {W (n)}∞n=1. Let ~P
denote the totality of sequences {Pn(Xn)}∞n=1 of probability

distributions (with finite support) over input sequences Xn,

and {~ρ} denote the sequences of states {ρXn} corresponding

to the encoding Xn → ρXn . For any a ∈ R
+ and n, we first

define the operator

Γ{Pn(Xn),ρXn}(a) =

N (n)

W (n)(ρXn)− ean
∑

Xn∈X (n)

Pn(Xn)N (n)

W (n)(ρXn).

Let {Γ{Pn(Xn),ρXn}(a) > 0} denote the projector onto the

positive eigenspace of the operator Γ{Pn(Xn),ρXn}(a).
Definition 9: The quantum inf-information rate [12]

I( {~P , ~ρ }, ~N ~W ) is defined as in (18).

This is the quantum analogue of the classical inf-information

rate originally defined in [23], [24]. The central result of [12]

is to show that the classical capacity of the channel sequence
~N ~W is given by

C = sup
{~P ,~ρ}

I({~P , ~ρ}, ~N ~W ).

B. Proofs of Lemmas 2, 3 and 4

Proof of Lemma 2: We are interested in computing

H(Y|X,W), which is the limsup in probability of the se-

quence
{

1
n log 1

P(Y n|Xn,Wn)

}∞

n=1
. We start with the product

form (7) for the channel, and also note that P(Yi|Xi,Wi) =
p(Wi) if Yi is an erasure, else, it is 1 − p(Wi). Combining

these observations we obtain

log
1

P(Y n|Xn,Wn)
=

n
∑

i=1

log
1

P(Yi|Xi,Wi)

=





∑

i∈JE

log
1

P(Yi|Xi,Wi)
+

∑

i∈[n]\JE

log
1

P(Yi|Xi,Wi)





= −
n
∑

i=1

[1(Yi = E) log(p(Wi)) + 1(Yi 6= E) log(1− p(Wi))] ,

where E represents erasure, and JE denotes the set of indices

for which Yi = E . By ergodicity of the queue, the limit of the

final expression divided by n exists almost surely as a finite

constant, and is equal to Eπ[h(p(W ))].
Finally, we note that the lim-sup in probability and the lim-

inf in probability of a sequence are both equal to the almost
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sure limit of that sequence, whenever the latter exists. Hence,

the above almost sure limit is the value of H(Y|X,W). Note

that for an erasure queue-channel this limit does not depend

on the distribution of Xn.
Proof of Lemma 3: We are interested in computing

H(Y|W), which is the limsup in probability of the sequence
{

1
n log 1

P(Y n|Wn)

}∞

n=1
. Following standard conditional prob-

ability arguments, we get the series of equalities (19)–(22).

The equalities in (19) and (20) follow from the fact that

given Wi, the probability of a symbol getting erased is

independent of anything else (even the input symbols). The

equality in (21) follows because the event {Yi 6= E : i 6∈ JE}
contains the event {Yi : i 6∈ JE}.

Note that we need to analyze only the second term in (22).

Since the first term divided by n, as argued in the proof of

Lemma 2, has an almost sure limit Eπ[h(p(W ))].
Note that for an erasure channel, if Yi is not an erasure,

Yi has the same value as that of Xi and {Xi} are chosen

independently of {Wi}. So, for any joint distribution PX of

input symbols:

− 1

n
logP({Yi : i 6∈ JE}|{Yi 6= E ,Wi : i 6∈ JE})

= − 1

n
logPX({Yi : i 6∈ JE})

= −n− |JE |
n

1

n− |JE | logPX({Yi : i 6∈ JE}).

By ergodicity
|JE |
n converges a.s. to Eπ[p(W )] < 1. So,

a.s. n−|JE | → ∞. Thus, a.s. limn→∞ − 1
n−|JE | logPX({Yi :

i 6∈ JE}) is upper-bounded by the entropy rate of an i.i.d.

Bernoulli(0.5) process X, i.e., 1. Thus, a.s. the second term

in (22) is at most 1−Eπ[p(W )].
Proof of Lemma 4: This proof is similar to the proof of

Lemma 3, except the fact that

lim
n→∞

− 1

n− |JE | logPX({Yi : i 6∈ JE}) = 1

when PX is i.i.d. uniform.
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[11] V. Anantharam and S. Verdú, “Bits through queues,” IEEE Trans. Inf.

Theory, vol. 42, no. 1, pp. 4–18, Jan. 1996.
[12] M. Hayashi and H. Nagaoka, “General formulas for capacity of classical-

quantum channels,” IEEE Transactions on Information Theory, vol. 49,
no. 7, pp. 1753–1768, 2003.

[13] A. Holevo and M. Shirokov, “On Shor’s channel extension and con-
strained channels,” Communications in mathematical physics, vol. 249,
no. 2, pp. 417–430, 2004.

[14] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of
quantum erasure channels,” Physical Review Letters, vol. 78, no. 16,
p. 3217, 1997.

[15] C. King, “The capacity of the quantum depolarizing channel,” IEEE

Transactions on Information Theory, vol. 49, no. 1, pp. 221–229, 2003.
[16] M. M. Wilde, Quantum information theory. Cambridge University

Press, 2013.
[17] A. S. Holevo, “Bounds for the quantity of information transmitted by

a quantum communication channel,” Problemy Peredachi Informatsii,
vol. 9, no. 3, pp. 3–11, 1973.

[18] J. Watrous, The theory of quantum information. Cambridge University
Press, 2018.

[19] A. S. Holevo, “The capacity of the quantum channel with general signal
states,” IEEE Transactions on Information Theory, vol. 44, no. 1, pp.
269–273, 1998.

[20] B. Schumacher and M. D. Westmoreland, “Sending classical information
via noisy quantum channels,” Physical Review A, vol. 56, no. 1, p. 131,
1997.

[21] C. Ballance, T. Harty, N. Linke, M. Sepiol, and D. Lucas, “High-fidelity
quantum logic gates using trapped-ion hyperfine qubits,” Physical review

letters, vol. 117, no. 6, p. 060504, 2016.
[22] A. Chatterjee, K. Jagannathan, and P. Mandayam, “Qubits through

queues: The capacity of channels with waiting time dependent errors,”
arXiv:1804.00906, 2018.
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