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Abstract—We consider a setting where a stream of qubits is
processed sequentially. We derive fundamental limits on the rate
at which classical information can be transmitted using qubits
that decohere as they wait to be processed. Specifically, we
model the sequential processing of qubits using a single server
queue, and derive expressions for the classical capacity of such
a quantum ‘queue-channel.’ Focusing on quantum erasures, we
obtain an explicit single-letter capacity formula in terms of the
stationary waiting time of qubits in the queue. Our capacity proof
also implies that a ‘classical’ coding/decoding strategy is optimal,
i.e., an encoder which uses only orthogonal product states, and
a decoder which measures in a fixed product basis, are sufficient
to achieve the classical capacity of the quantum erasure queue-
channel. More broadly, our work begins to quantitatively address
the impact of decoherence on the performance limits of quantum
information processing systems.

I. INTRODUCTION

Unlike classical bits, quantum bits (or qubits) undergo
rapid decoherence in time, due to certain unavoidable physical
phenomena. Information stored in a qubit may be completely
or partially lost as the qubit decoheres. The nature and the
rate of the decoherence process depend on the particular
physical implementation of the quantum state, as well as other
factors such as the environment and temperature. For example,
superconducting Josephson junction based qubits have average
coherence times that are typically of the order of a few tens
of microseconds [1, Table 2].

Decoherence of qubits poses a major challenge to scalability
of quantum information processing systems — therefore, it
is imperative to obtain a quantitative understanding of the
impact of decoherence on the performance limits of quantum
information processing systems.

In this paper, we consider a setting where a stream of qubits
is processed sequentially – for example, this ‘processing’ of
qubits could involve transmitting them through an optical
medium, or performing logical gate operations on them. We
derive fundamental limits on the rate at which classical infor-
mation can be transmitted using qubits that decohere as they
wait to be processed.

To be more precise, we model the sequential processing of a
stream of qubits using a single server queue. The qubits arrive
at the queue according to some stationary point process, and
the qubits are processed at a fixed average rate. The qubits
undergo decoherence (leading to errors or erasures) as they

wait to be processed, and the probability of error/erasure of
each qubit is modeled as a function of the time spent in the
queue by that qubit. We call this system a ‘queue-channel’
(a term borrowed from [2]), and characterise the information
capacity of the queue-channel, for the case when decoherence
leads to erasures.

A. Related Work

An information theoretic notion of reliability of a queu-
ing system with state-dependent errors was introduced and
studied in [2], where the authors considered queue-length
dependent errors motivated mainly by human computation and
crowd-sourcing. The classic paper of Anantharam and Verdú
considered timing channels where information is encoded in
the times between consecutive information packets, and these
packets are subsequently processed according to some queue-
ing discipline [3]. Due to randomness in the sojourn times
of packets through servers, the encoded timing information is
distorted, which the receiver must decode. In contrast to [3],
we are not concerned with information encoded in the timing
between packets — in our work, all the information is in the
qubits (i.e., symbols/packets, in the setting of [3]).

In a recent paper [4], we considered the queue-channel
problem described above, and derived the capacity of such
a queue-channel under certain technically restrictive condi-
tions. Specifically, [4] restricts the encoder to using only
orthogonal product states, and the decoder measures in a fixed
product basis. In this restricted setting, qubits are essentially
made to behave like ‘classical bits that decohere,’ and the
underlying quantum channel effectively simulates a classical
channel known as the induced classical channel. In general,
the classical capacity of the underlying quantum channel could
be larger than the capacity of the induced classical channel,
because the former allows for entangled channel uses and more
general (joint) measurements at the decoder.

As an aside, we remark that the erasure queue-channel
treated in [4] can be used to model a multimedia-streaming
scenario, where information packets become useless (erased)
after a certain time.

B. Our Contributions

In this paper, we completely characterise the classical
capacity of the quantum erasure queue-channel, without the
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restrictions in [4]. Specifically, we allow for possibly entangled
channel uses by the encoder, and arbitrary measurements at the
decoder.

Notably, we show that the erasure queue-channel capacity
remains the same as the capacity expression derived in [4,
Theorem 1] for the induced classical channel. That is, the
capacity does not increase by allowing for entangled channel
uses by the encoder, and arbitrary measurements at the de-
coder. In other words, the classical coding/decoding strategy
in [4] (proposed for the induced classical channel), is indeed
sufficient to realise the classical capacity of the underlying
quantum erasure queue-channel.

In hindsight, this result may not be altogether surprising,
considering that the classical capacity of the memoryless
quantum erasure channel is the same as the capacity of the
classical erasure channel. In other words, a classical coding
strategy is sufficient to realise the classical capacity of the
(memoryless) quantum erasure channel – see [5].

Proving the erasure queue-channel capacity result involves
overcoming some technical challenges. First, the erasure
queue-channel is non-stationary. Second, the erasure events
corresponding to consecutive qubits are correlated through
their waiting times, which are in turn governed by the queuing
process. This leads to memory across consecutive channel
uses.

Interestingly, we note that the capacity result in [4, The-
orem 1] for the induced classical channel readily offers an
‘achievable rate’ for the quantum erasure queue-channel – after
all, any rate that is achievable with the restrictions in [4] can
be achieved without those restrictions. Much of the technical
challenge therefore lies in proving a ‘converse theorem,’ i.e.,
in showing a capacity upper bound that matches the expression
in [4, Theorem 1].

Our upper bound proof proceeds via the following key
steps. The first step involves showing a certain conditional
independence of n consecutive channel uses, conditioned
on the sequence of qubit waiting times (W1,W2, . . . ,Wn).
Specifically, we show that the n-qubit queue-channel factors
into a tensor product of single-use erasure channels, for any
given sequence of the waiting times. Next, we use a general
capacity upper bound proved in [6, Lemma 5], which we then
simplify using the conditional independence result from the
first step. Finally, we invoke the celebrated additivity result
of Holevo [7] for the quantum erasure channel, and obtain a
single-letter capacity upper bound. This upper bound matches
the achievable rate using classical coding/decoding strategies,
completing the proof.

II. SYSTEM MODEL

The model we study is similar to the one considered in [4].
Specifically, a source generates a classical bit stream, which
is encoded into qubits. These qubits are sent sequentially to a
continuous-time single server queue according to a stationary
point process of rate λ. The service times for each qubit are
independent and identically distributed (i.i.d.). After getting
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Fig. 1. Schematic of the queue-channel depicting the case of quantum
erasure.

processed by the server, each qubit is measured and interpreted
as a classical bit.

The service time of the jth qubit is denoted by Sj and
has a cumulative distribution FS . The average service rate
of each qubit is µ, i.e., EFS

[S] = 1/µ. In the interest of
simplicity and tractability, we assume Poisson arrivals, i.e.,
the time between two consecutive arrivals is i.i.d. with an
exponential distribution with parameter λ. For stability of the
queue, we assume λ < µ. For ease of notation let us assume
µ = 1. (Our results easily extend to general µ). For the service
discipline, we consider First-Come-First-Served (FCFS).

Let Aj and Dj be the arrival and the departure epochs of
jth qubit, respectively and Wj = Dj − Aj be the total time
that jth qubit spends in the queue.

A. Noise Model

As the qubits wait to be served, they undergo decoherence,
leading to errors at the receiver. This decoherence is modeled
in general as a completely positive trace preserving (CPTP)
map on the the qubit states [8]. In general, a given symbol
Xj ∈ X , is encoded as a positive trace-class operator (called
the density operator) ρj on a Hilbert space HA of dimension
|X |. The noise channel is denoted as a map N : S(HA) →
S(HB), where S(HA) (S(HB)) denotes the set of density
operators on the input Hilbert space HA (output Hilbert
space HB). The probability that a given state ρj undergoes
decoherence is indeed a function of the waiting time Wj and
the noise map is accordingly parameterized in terms of the
waiting time as NWj . The noisy output state after the action
of the map NWj

is denoted as σj ≡ NWj
(ρj). This noisy state

is measured by the receiver by performing a general quantum
measurement and decoded as the output symbol Yj ∈ Y .

An n-length transmission over the above channel is denoted
as follows. Inputs are drawn from the set X (n) of length n
symbols {Xn = (X1X2 . . . Xn)}, and encoded into density
operators ρXn ∈ S((HA)⊗n) on an n-fold tensor product of
the input Hilbert space HA. The n-qubit channel is denoted
N (n)
Wn and parameterized by the sequence of waiting times

Wn = (W1,W2, . . . ,Wn). Note that the encoded state ρXn



could be entangled across multiple channel uses. Furthermore,
in general, the n-qubit queue-channel is not a stationary,
memoryless channel and does not automatically factor into
an n-fold tensor product of single qubit channels.

We refer to this system as a quantum queue-channel, and
characterize the classical capacity of this system (in bits/sec).

In this paper, we restrict attention to a quantum erasure
channel [9] which acts on the jth state ρj as follows: ρj
remains unaffected with probability 1− p(Wj), and is erased
to a (fixed) erasure state |e〉〈e| with probability p(Wj), where
p : [0,∞)→ [0, 1] is typically increasing.

Note that we have modelled the erasure probability of the
jth qubit as an explicit function of the time Wj spent in
the queue. For instance, in several physical scenarios, the
decoherence time of a single qubit maybe modelled as an
exponential random variable. In other words, the probability
of a qubit erasure after waiting for a time W is given by
p(W ) = 1−e−κW , where 1/κ is a characteristic time constant
of the physical system under consideration [8, Section 8.3].

III. QUANTUM QUEUE-CHANNEL CAPACITY

We are interested in defining and computing the information
capacity of the waiting time dependent queue-channel.

A. Definitions

Let M be the message transmitted from a set M and M̂ ∈
M be its estimate at the receiver.

Definition 1: An (n,R, ε, T ) quantum code consists of an
encoding function Xn = f(M), leading to an encoded
n-qubit quantum state ρXn corresponding to message M ,
and the decoding function M̂ = g(Λ,N (n)(ρXn), An, Dn)
corresponding to a measurement Λ at the receiver’s end, where
the cardinality of the message set |M| = 2nR, and for each
codeword, the expected total time for all the symbols to reach
the receiver is less than T .

Definition 2: If the decoder chooses M̂ with average prob-
ability of error less than ε, the code is said to be ε-achievable.
For any 0 < ε < 1, if there exists an ε-achievable code
(n,R, ε, T ), the rate R

T is said to be achievable.
Definition 3: The information capacity of the queue-

channel is the supremum of all achievable rates for a given
(Poisson) arrival process with arrival rate λ and is denoted by
C bits per unit time.
Note that the information capacity of the queue-channel de-
pends on the arrival rate, the service process, and the noise
model. We assume that the receiver knows the realization of
the arrival and the departure time of each symbol.

In order to evaluate the classical capacity of the quantum
queue-channel, we invoke the capacity formula obtained in [6],
for the classical capacity of general quantum channels which
are neither stationary nor memoryless. The following propo-
sition is a direct consequence of the general channel capacity
expression in [6].

Proposition 1: The capacity of the queue-channel (in
bits/sec) described in Sec. II is given by

C = λ sup
{~P ,~ρ}

I( {~P , ~ρ}, ~N ~W ), (1)

where, I( {~P , ~ρ }, ~N ~W ) is the quantum analog of the spectral
inf-information rate defined in [10]. Here, ~P is the totality
of sequences {Pn(Xn)}∞n=1 of probability distributions (with
finite support) over input sequences Xn, and {~ρ} denotes
the sequences of states {ρXn} corresponding to the encoding
Xn → ρXn . Finally, ~N ~W denotes the sequence of channels
{N (n)

W (n)}∞n=1, which are parameterised by the corresponding
waiting time sequences {W (n)}∞n=1.

B. Erasure Queue-Channels

Erasure channels are ubiquitous in classical as well as
quantum information theory. Our model captures a quantum
information system where qubits decohere with time into
erased (or non-informative) quantum states.

A single-use quantum erasure channel, for a qubit with
waiting time W1 is characterized by a pair of noise operators
(or Kraus operators), namely the operator E : ρ1 → |e〉〈e|
which maps any input density operator ρ1 to a fixed erasure
state |e〉〈e| , and the identity operator I : ρ1 → ρ1. If the
input state has a waiting time W1, the erasure and identity
operations occur with probabilities qE(W1) = p(W1) and
qI(W1) = 1 − p(W1) respectively. Thus, the final state after
the action of the erasure queue-channel for a given input state
ρ1, with waiting time W1 is,

NW1
(ρ1) = qE(W1)Eρ1E

† + qI(W1) ρ1.

Theorem 1: For the erasure queue-channel defined above,
the capacity C = λ Eπ [1− p(W )] bits/sec, irrespective of
the receiver’s knowledge of the arrival and the departure times,
where π is the stationary distribution of the waiting time in
the queue.
Proof Outline: Obtaining the queue-channel capacity of the
quantum erasure channel poses certain technical challenges,
since the erasure probabilities are correlated across different
channel uses. In other words, the probability that the ith qubit
gets erased is a function of its waiting time in the queue, which
in turn depends on the waiting time of the previous (i− 1)th

qubit and so on. Furthermore, the channel is non-stationary.
However, for the queue-channel model considered here, the
n-qubit queue-channel does factor into a tensor product of
single-use channels, conditioned on the sequence of waiting
times (W1,W2, . . . ,Wn). This is formally shown in Lemma 1
below.

In order to obtain an upper bound on capacity, we proceed
via the following key steps. First, we invoke an upper bound
proved in [6, Lemma 5], to bound the capacity as the limit infe-
rior of the Holevo capacity of a sequence of erasure channels.
Next, we use the tensor product from of the channel obtained
in Lemma 1 in conjunction with the celebrated additivity result
of Holevo [7] for the quantum erasure channel. This results



N (n)

W (n)(ρ12...n) =
∑

k1,k2,...,kn

qk1k2...kn(W1,W2, . . . ,Wn)Ak1 ⊗Ak2 . . .⊗Akn (ρ12...n)A†k1 ⊗A
†
k2
. . .⊗A†kn

=
∑

k1,k2,...,kn

qk1(W1)qk2(W2) . . . qkn(Wn)Ak1 ⊗Ak2 . . .⊗Akn (ρ12...n)A†k1 ⊗A
†
k2
. . .⊗Akn

= (NW1
⊗NW2

. . .⊗NWn
) (ρ12...n). (2)

in a single-letter expression for the queue-channel capacity of
the quantum erasure channel, as shown in Proposition 2.

Finally, the achievability proof follows by fixing a classical
encoding and decoding strategy and showing that the capacity
of the induced classical channel does indeed coincide with the
upper bound. �

Lemma 1 (Conditional independence): The n-qubit erasure
queue-channel factors into a tensor product of single-qubit
erasure channels, conditioned on the sequence of waiting times
(W1,W2, . . . ,Wn).

Proof: Recall that the single-qubit erasure channel with
associated waiting time W1 can be described using the opera-
tors {E, I} with associated probabilities of occurrence denoted
as qE(W1), qI(W1) respectively. Consider a sequence of n
qubits transmitted via the erasure queue-channel with asso-
ciated waiting times W1,W2, . . . ,Wn. The n-qubit erasure
channel maybe described via n-fold tensor-product operators
of the form {A1 ⊗ A2 ⊗ . . . ⊗ An}, where each single-
qubit operator Ai ∈ {E, I}. There are 2n such operators,
occurring with probabilities qk1k2...kn(W1,W2, . . . ,Wn), with
the indices ki ∈ {E, I}, depending on whether Ai was an
erasure or the identity operator.

This n-fold channel is a non-iid, correlated quan-
tum channel in general, since the joint distribution
qk1k2...kn(W1,W2, . . . ,Wn) does not factor into a product of
the individual error probabilities for each qubit. However, for
an FCFS queue, the probabilities qk1k2...kn satisfy the Markov
property, qk1k2...kn = qkn|kn−1

qkn−1|kn−2
. . . qk2|k1qk1 . Fur-

thermore, conditioned on the the waiting time sequence
W (n) = (W1,W2, . . . ,Wn), the conditional probabilities
simply reduce to qki|ki−1

= qki(Wi).
Therefore, conditioned on the waiting times

(W1,W2, . . . ,Wn) we may represent the action of the
n-qubit channel on any n-qubit state ρ12...n as shown in (2).
In other words, conditioned on the waiting time sequence
Wn, the n-qubit channel factors into an n-fold tensor product
of the form NW1 ⊗NW2 ⊗ . . .⊗NWn , as desired.

We next state and prove an upper bound on the queue-
channel capacity of the quantum erasure channel.

Proposition 2 (Upper bound on Capacity): The capacity
of the quantum erasure queue-channel C ≤ λ Eπ [1− p(W )].

Proof: We start with an upperbound on the quantum
analog of the inf-information rate proved in [6, Lemma 5]:

I( {~P , ~ρ } ~N ) ≤ lim inf
n→∞

1

n
χ( {P (n), ρXn},N (n)

W (n) ),

where, χ({P (n), ρXn},N (n)
Wn) is the Holevo information of the

ensemble {P (n)(Xn),N (n)

W (n)(ρXn)}.
Recall that the Holevo information of an ensemble E ≡

{Px,N (ρx)} is defined as the von Neumann entropy differ-
ence [9],

χ({Px,N (ρx)}) = H

(∑
x

PxN (ρx)

)
−
∑
x

pxH(N (ρx)).

The supremum of this entropy difference over all input ensem-
bles {P (x), ρx} defines the Holevo capacity of the channel N :

χ(N ) := sup
{P (x),ρx}

χ( {Px,N (ρx)} ).

Consider now the Holevo capacity χ(N (n)

W (n)) of the n-qubit
erasure queue-channel, for a given sequence of waiting times
W (n). Lemma 1 implies that

χ(N (n)
Wn) = χ(NW1

⊗NW2
⊗ . . .⊗NWn

).

Next we invoke the well known additivity property of the
Holevo capacity of the quantum erasure channel [7], to obtain,
for any n,

χ(N (n)
Wn) =

n∑
i=1

χ (NWi
) .

Recasting this in terms of the Holevo information of the
encoding ensemble for the n-qubit channel, we get,

sup
{Pn(Xn),ρXn}

χ( {PnXn ,N (n)

W (n)(ρXn)} )

=

n∑
i=1

sup
{Pi(Xi),ρi}

χ( {P (Xi),NWi(ρi)} ). (3)

Finally, we use the fact that the Holevo information of a single
use erasure channel corresponding to waiting time Wi is given
by [5],

χ(NWi) ≡ sup
{P (x),ρx}

χ( {Px,NWi(ρx)} ) = 1− p(Wi). (4)

Combining the above sequence of steps, we thus get the
following upper bound on the capacity of the erasure queue-



channel:

C
(a)
= λ sup

{~P,~ρ}
I( {~P , ~ρ}, ~N ~W )

(b)

≤ λ sup
{~P,~ρ}

lim inf
n→∞

1

n
χ( {P (n), ρXn},N (n)

W (n) )

(c)

≤ λ lim inf
n→∞

1

n
sup
{~P,~ρ}

χ( {P (n), ρXn},N (n)

W (n) )

(d)
= λ lim inf

n→∞

1

n

n∑
i=1

sup
{P (Xi),ρi}

χ( {P (Xi),NWi(ρi)} )

(e)
= λ lim inf

n→∞

1

n

n∑
i=1

(1− p(Wi))
(f)
= λ Eπ [1− p(W )] a.s.

Here, (a) is simply the definition of the queue-channel
capacity as stated in Eq. (1), and, (b) is the upper bound
from [6, Lemma 5]. The inequality in (c) follows from the
fact that for each n, the Holevo information is upper bounded
by the supremum over all input encodings. The equality in
(d) follows from the conditional independence of the n-use
channel and the additivity of the quantum erasure channel (see
Eq. (3)) and (e) simply uses the Holevo capacity of the single
use quantum erasure channel stated in Eq. (4). Finally, (f)
follows from the ergodicity of the M/GI/1 queue.

Proposition 3 (Lower bound on Capacity (Achievability)):
The capacity of the quantum erasure queue-channel satisfies
C ≥ λ Eπ [1− p(W )] .

Proof: We prove the lower bound by producing a particu-
lar encoding/decoding strategy that achieves the said capacity
expression. In particular, we employ a classical strategy in
which classical bits 0 and 1 are encoded into two fixed
orthogonal states (say |ψ0〉 and |ψ1〉), and the decoder also
measures in a fixed basis. The input codewords are unen-
tangled across multiple channel uses and the decoder simply
performs a product measurements. In this setting, the qubits
essentially behave as classical bits, and the quantum erasure
channel essentially simulates the induced classical channel.
The capacity of the corresponding induced classical channel
is equal to λ Eπ [1− p(W )] , as shown in [4, Theorem 1].

We remark that the above capacity result does not depend
on the specific functional form of p(·). Further, the capacity
result holds for any stationary and ergodic queue – i.e., it
does not assume any specific queueing model. If we assume
the functional form p(W ) = 1 − exp(−κW ) for the erasure
probability, the following corollary is immediate.

Corollary 1: When the decoherence time of each qubit
is exponentially distributed, i.e., p(W ) = 1 − exp(−κW ),
the erasure queue-channel capacity is given by λEπ

[
e−κW

]
bits/sec.

We remark that the capacity expression λEπ
[
e−κW

]
is

simply λ times the Laplace transform of the stationary waiting
time W, evaluated at κ, which is the rate of decoherence. Using
Pollaczek-Khinchin formula for an FCFS M/GI/1 queue, we
can obtain a closed-from expression for the capacity and the
optimal arrival rate [4].
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Fig. 2. The capacity of the M/M/1 queue-channel (in bits/sec) plotted as a
function of the arrival rate λ for different values of the decoherence parameter
κ.

Proposition 4: For an FCFS M/GI/1 erasure queue-
channel (with p(W ) = 1− exp(−κW )),
(i) the capacity is given by λ(1−λ)

1−αλ bits/sec, and
(ii) the capacity is maximised at

λM/GI/1 =
1

α

(
1−
√

1− α
)

=
1

1 +
√

1− α
,

where α = 1−F̃S(κ)
κ , and F̃S(u) =

∫
exp(−ux)dFS(x) is the

Laplace transform of the service time distribution.
This result offers interesting insights into the relation be-

tween the information capacity and the characteristic time-
constant of the quantum states. Fig. 2 plots capacity versus
arrival rate for an M/M/1 queue of unit service rate. We note
that κ = 0.01 corresponds to an average coherence time which
is two orders of magnitude longer than the service time —
a setting reminiscent of superconducting qubits [1]. We also
notice from the shape of the capacity curve for κ = 0.01
that there is a drastic drop in the capacity, if the system is
operated beyond the optimal arrival rate λM/M/1. This is due
to the drastic increase in delay induced decoherence as the
arrival rate of qubits approaches the server capacity.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we considered a quantum erasure queue-
channel, and derived a single-letter capacity formula in terms
of the stationary waiting time in the queue. We also showed
that a classical coding/decoding strategy is capacity achieving
for this channel.

There is ample scope for further work along several di-
rections. First, we can study waiting induced errors under
other widely studied quantum channel models, such as the
depolarising channel, phase damping and amplitude damping
channels. The additivity (or otherwise) of such channels is
likely to play a crucial role.

We have only considered uncoded quantum bits in this
paper. We can also quantitatively evaluate the impact of using
quantum codes to protect qubits from errors. Employing a code
would enhance robustness to errors, but would also increase
the waiting time due to the increased number of qubits to be
processed. It would be interesting to characterise this tradeoff,
and identify the regimes where using coded qubits would be
beneficial or otherwise.



As we enter an era of quantum networks and noisy
intermediate-scale quantum technologies [11], our work begins
to quantitatively address the impact of decoherence on the per-
formance limits of quantum information processing systems.
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