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The tensor-to-scalar ratio in punctuated inflation
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Recently, we have shown that scalar spectra with lower power on large scales and certain other
features naturally occur in punctuated inflation, i.e. the scenario wherein a brief period of rapid
roll is sandwiched between two stages of slow roll inflation. Such spectra gain importance due to
the fact that they can lead to a better fit of the observed Cosmic Microwave Background (CMB)
anisotropies, when compared to the conventional, featureless, power law spectrum. In this paper,
with examples from the canonical scalar field as well as the tachyonic models, we illustrate that,
in punctuated inflation, a drop in the scalar power on large scales is always accompanied by a rise
in the tensor power and, hence, an even more pronounced increase in the tensor-to-scalar ratio r
on these scales. Interestingly, we find that r actually exceeds well beyond unity over a small range
of scales. To our knowledge, this work presents for the first time, examples of single scalar field

inflationary models wherein r ≫ 1. This feature opens up interesting possibilities. For instance, we
show that the rise in r on large scales translates to a rapid increase in the angular power spectrum,
CBB

ℓ , of the B-mode polarization of the CMB at the low multipoles. We discuss the observational
implications of these results.

PACS numbers: 98.80.Cq, 98.70.Vc, 04.30.-w

I. INTRODUCTION AND MOTIVATION

The concordant cosmological model—viz. a spatially flat, ΛCDM model and a nearly scale invariant primordial
spectrum, with or without a small tensor contribution (say, with a tensor-to-scalar ratio r of less than 0.1)—seems
to fit the recent Cosmic Microwave Background (CMB) data rather well [1]. However, different observations have
indicated that a few low multipoles of the observed CMB angular power spectrum lie outside the cosmic variance
associated with the concordant model [2]. These discrepancies have remained in subsequent updates of the data [1, 2],
and have also survived in other independent estimates of the angular power spectrum (see, for instance, Refs. [3]).
Given the CMB observations, a handful of model independent approaches have been constructed over the last few
years to recover the primordial power spectrum [4]. At the smaller scales, all these approaches arrive at a spectrum
that is nearly scale invariant. However, many of the approaches seem to unambiguously point to a sharp drop in
power (with specific features) at the scales corresponding to the Hubble scale today.
Even as the debate about the statistical significance of the outliers in the CMB data has continued [5], a considerable

amount of effort has been devoted to understand the possible physical reasons behind these outliers (for an inexhaustive
list, see Refs. [6–9]). Within the inflationary paradigm, different models have been constructed to produce a sharp
drop in the scalar power at large scales, so as to lead to a better fit to the low quadrupole (see Refs. [7, 8]; for
earlier efforts that discuss generating features in the inflationary perturbation spectrum, see Refs. [10–12]). However,
many of the scenarios that have been considered in this context seem rather artificial—they either assume a specific
pre-inflationary regime or specific initial conditions for the inflaton [8]. Also, in some cases, either certain special
initial conditions are chosen for the perturbations or the initial conditions are imposed when a subset of the modes
are outside the Hubble radius [8]. Such requirements clearly contradict the spirit of inflation.
Motivated by the aim of arriving at the desired power spectrum without any special initial conditions on either the

background or the perturbations, we have recently considered a setting involving two stages of slow roll inflation that
sandwich an intermediate period of departure from inflation [13]. In such a punctuated inflationary scenario1, the
first phase of slow roll inflation allows us to impose the standard, sub-Hubble initial conditions on the perturbations
which may leave the Hubble radius during the subsequent rapid roll regime (i.e. a period wherein the first slow roll
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parameter ǫ ' 1). The second slow roll phase lasts for, say, 50–60 e-folds, thereby enabling us to overcome the well
known horizon problem associated with the hot big bang model. We had discovered that such a background behavior
can be achieved in certain large field inflationary models wherein the potentials contain a point of inflection [the
form of the potentials we had considered are encountered in the Minimal Supersymmetric Standard Model (MSSM)].
We had shown that the slow-rapid-slow roll transition leads to a step like feature in the scalar power spectrum.
Importantly, we had found that, if we set the scales such that the drop in the power spectrum occurs at a length
scale that roughly corresponds to the Hubble radius today, then a spectrum we had obtained leads to a much better
fit to the WMAP 5-year data when compared to the best fit reference ΛCDM model with the standard, power law,
primordial spectrum [13].
All models of inflation generate tensor perturbations that can potentially have an observable effect on the measured

CMB temperature and polarization spectra [14]. Barring an exception [15], most of the efforts in the literature have
focused on suppressing the scalar power spectrum on large scales, and have overlooked the corresponding effects on the
tensors. In this paper, we investigate the effects of the slow-rapid-slow roll transition on the tensor perturbations in
the canonical scalar field and the tachyonic [16–18] inflationary models. Aided by a few different examples (including
the specific model that we had considered earlier), we show that, in punctuated inflation, a drop in the scalar power
on large scales is always associated with an increase in the tensor power and, hence, a dramatic rise in the tensor-
to-scalar ratio r, on these scales. In fact, we find that the strong rise leads to a small range of modes for which the
tensor-to-scalar ratio actually proves to be much greater than unity2. We believe that this is the first instance in the

literature wherein examples of single scalar field inflationary models resulting in r ≫ 1 are being presented. However,
if we are to utilize the drop in the scalar power to provide a better fit to the low CMB quadrupole, then the modes
with the rather large tensor-to-scalar ratio turn out to be bigger than the Hubble scale today.
The rapid rise in the tensor-to-scalar ratio r at large scales translates to a dramatic enhancement in the angular

power spectrum, CBB
ℓ , of the B-mode polarization of the CMB at the low multipoles. This could potentially be a

characteristic signature of punctuated inflationary scenarios that match the CMB data well. But, in the specific models
of punctuated inflation that we have explored to match the low multipoles of CMB temperature power spectrum,
the enhanced CBB

ℓ is not at an observable level. This is due to the following two reasons. Firstly, the band of scales
where r ≫ 1 is well beyond the Hubble scale today and, secondly, because r is extremely small at large wavenumbers.
However, it is readily conceivable that there exist models of punctuated inflation where either one or both of these
features can be modified favorably to arrive at observable levels of CBB

ℓ . We defer a systematic hunt for such models
to a later publication and, in this work, we highlight the extremely large values of tensor-to-scalar ratio r attainable
in the punctuated inflationary scenario.
This paper is organized as follows. In Sec. II, after rapidly summarizing the essential equations and quantities, we

outline the broad features of the scalar and tensor spectra in punctuated inflation. In Sec. III, we discuss the spectra
that arise in two different punctuated inflationary models involving the canonical scalar field, while, in Sec. IV, we
discuss the spectra in a particular tachyonic model. In Sec. V, we consider the corresponding effects on the angular
power spectrum of the B-mode polarization of the CMB. Finally, in Sec. VI, we conclude with a brief discussion on
the implications of this feature. In the appendix, to highlight the feature that the tensor-to-scalar ratio can turn out
to be greater than unity for a range of modes in punctuated inflation, we illustrate the evolution of the scalar and
tensor amplitudes for a particular mode from this domain.
In the discussions below, we shall set ~ and c as well as MP = (8 πG)−1/2 to unity. As is often done in the context

of inflation, we shall work with the spatially flat Friedmann model. Also, throughout, an overdot and an overprime
shall denote differentiation with respect to the cosmic and the conformal times, respectively. Moreover, φ shall denote
the scalar field described by the canonical action, while T shall denote the tachyon.

II. CHARACTERISTICS OF THE PERTURBATION SPECTRA IN PUNCTUATED INFLATION

In this section, after outlining the equations governing the perturbations and listing the observable quantities of
interest, we discuss the broad features of the scalar and the tensor spectra that arise in the punctuated inflationary
scenario.

2 In the models we consider, r attains a maximum value of about 100. Though the tensor-to-scalar ratio is large, the actual amplitude of
the tensor perturbations still remains small enough for the linear perturbation theory to be valid.
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A. Key equations and quantities

We begin by briefly summarizing the essential equations and the quantities that we shall be interested in [19, 20].
The curvature perturbation Rk and the tensor perturbation Uk satisfy the differential equations

R′′
k + 2

(

z′

z

)

R′
k + k2 c2

S
Rk = 0 and U ′′

k + 2

(

a′

a

)

U ′
k + k2 Uk = 0, (1)

where a is the scale factor and c
S
denotes the speed of propagation of the scalar perturbations. The effective speed

of sound c
S
turns out to be unity for the canonical scalar field, while c2

S
= (1 − Ṫ 2) in the case of the tachyon [18].

Also, the quantity z is given by

z =
(

a φ̇/H
)

and z =
(√

3 a Ṫ /c
S

)

, (2)

in the case of the conventional scalar field and the tachyonic inflationary models, respectively, with H , as usual, being
the Hubble parameter. The scalar and the tensor power spectra P

S
(k) and P

T
(k) are then defined as

P
S
(k) =

(

k3

2 π2

)

|Rk|2 and P
T
(k) = 2

(

k3

2π2

)

|Uk|2, (3)

with the amplitude of the perturbations Rk and Uk evaluated, in general, at super-Hubble scales. (The factor of
two in the tensor spectrum P

T
(k) above is to account for the two states of polarization of the gravitational waves.)

Finally, the tensor-to-scalar ratio r(k) is defined as follows:

r(k) ≡
(P

T
(k)

PS(k)

)

. (4)

B. The scalar and the tensor spectra in punctuated inflation

While considering single scalar field models, it is often remarked that, during inflation, the amplitude of the curvature
perturbations freezes at its value at Hubble exit. Actually, this happens to be true only if there is no departure from
slow roll inflation soon after the modes leave the Hubble radius [21]. But, when there is a period of deviation from
slow roll, then, it is found that the asymptotic (i.e. the extreme super-Hubble) amplitude of the modes that exit
the Hubble scale just before the deviation are enhanced when compared to their value at Hubble exit. While modes
that leave well before the departure from slow roll are unaffected, it has been shown that there exists an intermediate
range of modes whose amplitudes are suppressed at super-Hubble scales. Due to these behavior, punctuated inflation
leads to a step like feature in the scalar power spectrum. Evidently, the two nearly flat regions of the step correspond
to modes that exit the Hubble scale during the two stages of slow roll. For instance, in the case of the canonical
scalar field models, these slow roll amplitudes will be given by the following standard expression (see, for example,
Refs. [19, 20]):

P
S
(k) ≃

(

1

12 π2

)

(

V 3

V 2
φ

)

k=(aH)

, (5)

where Vφ ≡ (dV/dφ), and the spectral amplitude has to be evaluated when the modes leave the Hubble radius. The
step actually contains a sharp dip before the rise, and this feature is associated with the modes that leave the Hubble
radius just before the transition to the rapid roll regime.
Let us now understand the tensor spectrum that can result in a similar situation. In the case of the scalar modes,

the quantity (z′/z) that appears in the differential equation for the curvature perturbation Rk in Eq. (1) turns out to
be negative during a period of fast roll, and it is this feature that proves to be responsible for the amplification or the
suppression of the modes at super-Hubble scales [21]. In contrast, the coefficient of the friction term in the equation
for the tensor amplitude Uk in Eq. (1)—viz. (a′/a)—is a positive definite quantity at all times. Hence, we do not
expect any non-trivial super-Hubble evolution of the tensor perturbations. However, recall that, during a period of
slow roll, the tensor amplitude is proportional to the potential of the scalar field and, in the case of the canonical
scalar field models, it is given by [19, 20]

PT(k) ≃
(

2V

3 π2

)

k=(aH)

. (6)
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It is then immediately clear that, in the slow-rapid-slow roll scenario of our interest, the tensor spectrum will also be
in the shape of a step, with the modes that leave during the second slow roll phase having lower power than those
which exit during the first phase [since, unless the potential is negative, the inflaton always rolls down the potential
(see, for example, Ref. [22])]. In other words, in punctuated inflation, the tensor step happens to be in exactly the
opposite direction as the step in the scalar spectrum. The fact that the scalar power drops at large scales, while the
tensor power rises on these scales, leads to a sharp increase in the tensor-to-scalar ratio r. Interestingly, we find that
the steep rise can result in the tensor-to-scalar ratio being greater than unity for a small range of modes. (These range
of modes correspond to those for which the scalar spectrum exhibits a sharp dip before the rise.) However, as we shall
discuss below, in the specific models of punctuated inflation that we consider, in spite of the rise, the tensor-to-scalar
ratio remains too small to be observed (r proves to be less than 10−4) for the modes of cosmological interest (say,
10−4 < k < 1 Mpc−1). But, we believe that the increase in the tensor-to-scalar ratio at large scales considerably
improves the prospects of constructing punctuated inflationary models wherein CBB

ℓ at the low multipoles is within
the observational reach of current missions such as PLANCK [23] or future ones such as, for instance, CMBPol [24].
In the following two sections, we shall explicitly illustrate these behavior with the help of specific examples.

III. PUNCTUATED INFLATION WITH CANONICAL SCALAR FIELDS

In this section, we shall discuss punctuated inflationary scenarios in models where inflation is driven by the canonical
scalar field. We shall first present the model that we had considered earlier [13], and then discuss a hybrid inflation
model.
Before proceeding to discuss the specific models, we shall outline as to how one can arrive at the potential and the

parameters that result in punctuated inflation and the desired scalar spectrum. Needless to say, not all potentials
will allow punctuated inflation. Therefore, to begin with, one has to identify a potential, or a class of potentials, that
lead to such a scenario. Even amongst the limited class of potentials, the required slow-rapid-slow roll transition may
occur only for a certain range of values of the parameters describing the potential. The form of the potential and the
range of the parameters can be arrived at, say, based on the behavior of the first two potential slow roll parameters.
Once the potential and the range of the parameters that allow punctuated inflation have been identified, we need
to ensure that the following two observational requirements are also satisfied. Firstly, the second stage of slow roll
inflation has to last for about 60 e-folds in order to overcome the horizon problem. Secondly, the nearly scale invariant
higher step in the scalar power spectrum has to match the COBE amplitude. These two conditions further restrict
the allowed range of the parameters describing the potential.

A. The model motivated by MSSM

The model motivated by MSSM that we had considered in our earlier work contains two parameters m and λ, and
is described by the potential [25]

V (φ) =

(

m2

2

)

φ2 −
(

√

2λ (n− 1)m

n

)

φn +

(

λ

4

)

φ2(n−1), (7)

where n > 2 is an integer. This potential has a point of inflection at φ = φ0 (i.e. the location where both Vφ and
Vφφ ≡ (d2V/dφ2) vanish), with φ0 given by

φ0 =

[

2m2

(n− 1)λ

]
1

2 (n−2)

. (8)

Note that the potential (7) reduces to a typical large field model when the field is sufficiently far away from the point
of inflection. It is then clear that the first stage of slow roll can be achieved in the domain φ ≫ φ0, and a period
of rapid roll can occur when φ ≃

[√
2 (n− 1)

]

. Also, since the first two potential slow roll parameters vanish at the
point of inflection, a second stage of slow roll can be expected to arise when the field is very close to φ0. We find
that restarting inflation after the rapid roll phase and the number of e-folds that can be achieved during the second
stage of slow roll crucially depends on the location of the point of inflection. We depend on the numerics to arrive at
a suitable value of φ0. Once φ0 has thus been identified, we find that the COBE normalization determines the value
of the other free parameter m.
In Fig. 1, we have plotted the scalar and the tensor power spectra for the cases of n = 3 and n = 4. These spectra

correspond to the parameters that provide the best fit to the WMAP 5-year data (for further details, see Ref. [13]).
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We should mention that in these cases inflation is actually interrupted for about one e-fold during the rapid roll
regime. We had found that, while the n = 3 case provides a much better fit to the data than the reference concordant
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FIG. 1: The scalar power spectrum PS(k) (the solid black line) and the tensor power spectrum PT(k) (the dashed black line)
have been plotted as a function of the wavenumber k for the cases of n = 3 (on the left) and n = 4 (on the right). These spectra
correspond to the following values of the potential parameters: m = 1.5368 × 10−7 and λ = 6.1517 × 10−15 (corresponding to
φ0 = 1.9594) for n = 3 case and m = 1.1406× 10−7 and λ = 1.448× 10−16 (corresponding to φ0 = 2.7818) for n = 4 case. The
red curve in these plots is the spectrum (9) with the exponential cut off, whose parameters have been arrived at by a simple
visual comparison with the numerically evaluated scalar spectrum. It corresponds to AS = 2 × 10−9, nS = 0.945, α = 3.35
and k∗ = 2.4 × 10−4 Mpc−1 in the n = 3 case, while AS = 2 × 10−9, nS = 0.95, α = 3.6 and k∗ = 9.0 × 10−4 Mpc−1 in the
case of n = 4. Note that the vertical blue lines denote k∗. We should mention that, in the two slow roll regimes, the spectral
amplitudes evaluated in the slow roll approximation [cf. Eqs. (5) and (6)] match the above exact numerical spectra quite well.
The horizontal dotted lines indicate the maximum value of the tensor amplitude that can arise in these MSSM-motivated,
punctuated inflationary models.

model, the n = 4 case leads to a very poor fit to the data. We believe that the poor fit by the n = 4 case can be
attributed to the large bump in the scalar power spectrum that arises just before it turns nearly scale invariant. Since
the bump grows with n, we feel that the cases with n > 4 will fit the data much more poorly and, hence, we have not
compared these cases with the data.
The scalar power spectrum with a drop in power at large scales is often approximated by an expression with an

exponential cut off of the following form (see, for instance, the first two references in Ref. [8]):

P
S
(k) = A

S

(

1− exp [−(k/k∗)
α]

)

knS
−1. (9)

In Fig. 1, we have also plotted this expression for values of AS , nS , α and k∗ that closely approximate the exact
spectra we obtain.
In Fig. 2, we have plotted the resulting tensor-to-scalar ratio r for the two cases of n = 3 and n = 4. Clearly, the

broad characteristics of the scalar and the tensor spectra as well as the tensor-to-scalar ratio that we had outlined in
the previous section are corroborated by these two figures.

B. A hybrid inflation model

Another model that is known to lead to a punctuated inflationary scenario is a hybrid model that can be effectively
described by the following potential (see the first reference in Ref. [21]; for the earliest discussion of the model, see
Ref. [26]):

V (φ) =

(

M4

4

)

(

1 +B φ4
)

. (10)

For suitable values of the parameter B, this potential admits two stages of slow roll inflation, broken by a brief period
of rapid roll. The first slow roll phase is driven by the φ4 term and, when φ has rolled down the potential and has
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FIG. 2: The tensor-to-scalar ratio r(k) for the cases of n = 3 (the solid black line) and n = 4 (the dashed black line) has been
plotted as a function of the wavenumber k. These plots have been drawn for the same choice of parameters as in the previous
figure. The vertical solid and dashed blue lines denote the k∗ corresponding to the n = 3 and n = 4 cases, respectively. Note
that, despite the rise at the larger wavelengths, the tensor-to-scalar ratio remains smaller than 10−4 for modes of cosmological
interest (i.e. for k & k∗). For this reason, in our earlier work [13], we had ignored the tensor contribution when comparing with
the WMAP 5-year data. Interestingly, we find that there arises a domain wherein the tensor-to-scalar ratio r(k) is actually
much greater than unity. To highlight this feature, we have included the horizontal green line which denotes r = 1. In the
appendix, we have plotted the evolution of the scalar and tensor amplitudes for a mode from this domain.

become sufficiently small, the false vacuum term drives the second phase. The parameterM determines the amplitude
of nearly scale invariant lower step in the scalar spectrum (associated with the modes that leave during the first stage
of slow roll inflation), with a mild dependence on B. However, B very strongly affects the rise in the scalar power
(corresponding to the modes that leave just before the rapid roll stage) and the asymptotic spectral index (associated
with the modes that leave during the second stage of inflation), since it determines the extent and the duration of the
departure from slow roll.
We are able to achieve COBE normalization for a suitable combination of the parameters M and B. For these

values of the parameters, we find that, as in the MSSM-motivated model, a departure from inflation occurs (again,
for about one e-fold) during the rapid roll phase. In Fig. 3, we have plotted the resulting scalar and the tensor power
spectra as well as the associated tensor-to-scalar ratio. We should hasten to clarify that we have not compared the
hybrid model with the CMB data, as we had done in the n = 3 and n = 4 cases of the MSSM-motivated model.
A well known property of the hybrid models is that they lead to blue scalar spectra. We believe that, the blue tilt,
along with the rather large bump (which turns out to be larger than the one in n = 4, MSSM-motivated model) will
considerably spoil the fit to the CMB data.

IV. AN EXAMPLE OF TACHYONIC PUNCTUATED INFLATION

In this section, we shall consider a tachyonic model that allows punctuated inflation. Since our experience suggests
that a point of inflection in the potential is an assured way of achieving a slow-rapid-slow roll transition, we shall
construct a tachyonic potential containing a point of inflection.
Tachyonic potentials are usually written in terms of two parameters, say, λ and T0, in the following form [16–18]:

V (T ) = λ V1(T/T0), (11)

where V1(T/T0) is a function which has maximum at the origin and vanishes as T → ∞. In order to achieve
the necessary amount of inflation and the correct amplitude for the scalar perturbations, suitable values for the
two parameters λ and T0 that describe the above potential can be arrived at as follows. One finds that, in these
potentials, inflation typically occurs around T ≃ T0 corresponding to an energy scale of about λ1/4. Moreover, it



7

0.00001 0.0001 0.001 0.01 0.1 1
1×10

-22

1×10
-20

1×10
-18

1×10
-16

1×10
-14

1×10
-12

1×10
-10

1×10
-8

0.00001 0.0001 0.001 0.01 0.1 11×10
-14

1×10
-12

1×10
-10

1×10
-8

1×10
-6

0.0001

0.01

1

100

r(k)

P
S
(k
),

P
T
(k
)

k k

FIG. 3: The scalar power spectrum PS(k) (the solid black line) and the tensor power spectrum PT(k) (the dashed black line)
have been plotted (on the left) as a function of the wavenumber k for the hybrid inflation model described by the potential (10).
The corresponding tensor-to-scalar ratio r(k) has also been plotted (on the right). As in the previous figure, the horizontal green
line in the right graph denotes r = 1. These spectra correspond to following values of the potential parameters: M = 2.6×10−5

and B = 0.552. The solid red curve in the left graph is the exponential cut off spectrum (9) corresponding to AS = 2× 10−9,
nS = 1.0, k∗ = 2.2 × 10−3 Mpc−1 and α = 3.5. The vertical blue line in both the graphs denotes k∗. We should mention
that the blue tilt in the scalar spectrum is very small and, hence, is not evident from the figure. Moreover, we find that, as in
the previous MSSM-motivated examples, in the two slow roll regimes, the amplitudes of the spectra calculated in the slow roll
approximation agree very well with the exact numerical spectra. Further, it should be noted that the amplitude of the tensors
in the first slow roll phase determines the maximum tensor amplitude that can arise in such a punctuated inflationary scenario.

turns out that, the quantity (λT 2
0 ) has to be much larger than unity (in units wherein MP = 1) for the potential slow

roll parameters to be small and, thereby ensure that, at least, 60 e-folds of inflation takes place. One first chooses a
sufficiently large value of (λT 2

0 ) by hand in order to guarantee slow roll. The COBE normalization condition for the
scalar perturbations then provides the second constraint, thereby determining the values of both the parameters λ
and T0 [18].
Now, consider a tachyon potential of the form

V (x) =

(

λ

1 + g(x)

)

, (12)

where x = (T/T0). Let the function g(x) be defined as an integral of yet another function f(x) as follows:

g(x) =

∫

dx f(x), (13)

with the constant of integration assumed to be zero. If we choose f(x) to be a polynomial that vanishes at least
quadratically at a point, say, x1, then, it is clear that the resulting potential V (x), in addition to satisfying the above
mentioned conditions (i.e. having a maxima at the origin and a minima at infinity), will also contain a point of
inflection at x1. A simple function that satisfies our requirements turns out to be3

f(x) =
[

(x− x1)
2 x2

]

. (14)

For this choice of the function f(x) and appropriate values of the parameters λ and T0, we find that the corresponding
potential gives rise to punctuated inflation. However, it is important to note that, unlike the earlier examples, the
rapid roll phase does not result in a deviation from inflation. In Fig. 4, we have plotted the scalar and the tensor
power spectra, and the corresponding tensor-to-scalar ratio that we obtain in this case. It is clear from the figure that
the spectra broadly behave in the same fashion as in the earlier examples.

3 Actually, this function contains another point of inflection at the origin. But, as we shall restrict ourselves to the domain x > 0, it is
not useful to us.
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FIG. 4: The scalar and the tensor power spectra, the corresponding tensor-to-scalar ratio as well as the exponential cut off
spectrum have been plotted exactly in the same fashion as in the previous figure. These figures correspond to the following
values of the parameters: λ = 10−13, T0 = 3.55 × 107, x1 = 10, AS = 2× 10−9, nS = 0.96, k∗ = 5.5× 10−4 Mpc−1, and α = 3.
We should also point out that, as in the earlier cases, in the two slow roll regimes, the spectral amplitudes, when evaluated in
the slow roll approximation, are in good agreement with the exact numerical spectra. Again, as in the previous examples, the
maximum value of the tensor amplitude that can arise in such punctuated inflationary scenarios is determined by its value in
the first slow roll phase.

V. THE EFFECTS ON THE B-MODES OF THE CMB

As is well known, the polarization of the CMB can be decomposed into the E and B-components. While the E-mode
polarization is affected by both the scalar as well as the tensor perturbations, the B-modes are generated only by the
tensor perturbations4. Therefore, the B-mode provides a direct signature of the primordial tensor perturbations (see,
for instance, the last reference in Ref. [19]). The detection of the B-mode is a coveted, prime goal of the experimental
community (see, for example, the white paper [27]). We feel that the punctuated inflationary scenario can provide
additional theoretical motivation for this endeavor.
We have evaluated the angular power spectrum of the B-mode polarization of the CMB (i.e. CBB

ℓ ) using the
Boltzmann code CAMB [28]. In Fig. 5, we have plotted CBB

ℓ for the best fit values of the parameters in the n = 3
and the n = 4 cases of the MSSM-motivated model. For comparison, we have also plotted the corresponding angular
power spectra for the concordant cosmological model with a strictly scale invariant tensor spectrum and a tensor-
to-scalar ratio of r = 0.01, r = 2 × 10−8 and r = 10−7 (the last two values have been chosen since they match the
n = 3 and n = 4 cases of the MSSM-motivated model at the small angular scales). The CBB

ℓ for the two cases of the
MSSM-motivated model clearly exhibit an increase in their amplitude at the lower multipoles, reflecting the rise in
the tensor-to-scalar ratio on these scales5. But, despite the rise at the lower multipoles, the amplitude of CBB

ℓ in these
cases proves to be way too smaller than what is possibly detectable in the near future (current/upcoming missions
such as PLANCK [23] and CMBPol [24] are expected to be sensitive to r & 0.01). However, since the increase in
the B-mode power at large angular scales is a generic feature of punctuated inflation, we feel that it improves the
possibility that the effect may be detected in the future. It is conceivable that there exist punctuated inflationary
models that predict a significantly larger tensor-to-scalar ratio, while still providing a good fit to the CMB temperature
angular power spectrum. For example, given a value of the tensor-to-scalar ratio at, say, the Hubble radius today,
one can possibly work in the slow roll limit and invert the scalar power spectrum (that results in a good fit) to arrive

4 In fact, the B-modes are created by the vector perturbations too. However, inflation does not generate any vector perturbations.
5 We should point out that, in order to evaluate the CMB angular power spectra, CAMB integrates over the following range of wavenumber
of the primordial scalar and tensor spectra: 7.5 × 10−6 . k . 2.8 × 10−1 Mpc−1. Note that, in both the MSSM-motivated cases, the
region where r > 1 is well beyond the Hubble scale today, viz. k ≃ 10−4 Mpc−1 (cf. Fig. 2). Therefore, the resulting CBB

ℓ
will be

sensitive to the tensor power at such large scales, and we need to be careful about the lower limit of the k integral in CAMB. We find
that the CAMB’s default lower limit works well in these cases since r attains its maximum value at a wavenumber that is larger than
the lower limit.
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FIG. 5: The B-mode CMB angular power spectrum CBB

ℓ has been plotted as a function of the multipole ℓ for the best fit values
of the n = 3 (the solid black line) and the n = 4 (the dashed black line) cases of the MSSM-motivated model. For comparison,
we have also plotted the CBB

ℓ for the concordant cosmological model with a strictly scale invariant tensor spectrum and a
tensor-to-scalar ratio of r = 0.01 (the solid blue line), r = 2× 10−8 (the solid red line) and r = 10−7 (the dashed red line). The
latter two curves match the n = 3 and n = 4 cases of the MSSM-motivated model at the small angular scales, and they help
in highlighting the effects of punctuated inflation at the lower multipoles.

at a suitable inflationary potential. It seems a worthwhile exercise to systematically hunt for such models.

VI. CONCLUSIONS

In our earlier work [13], we had performed a Markov Chain Monte Carlo analysis to determine the values of the
parameters of the MSSM-motivated model that provide the best fit to the WMAP 5-year data for the CMB angular
power spectrum. We had found that a scalar spectrum in the n = 3 case leads to a much better fit of the observed
data than the spatially flat, ΛCDM model with a power law, primordial spectrum. We should emphasize again that
we have not carried out such a comparison with the data for the hybrid or the tachyon model. In the n = 3, MSSM-
motivated model, we had found that, in addition to the drop in the power at large scales, the bump present in the
spectrum before it turns nearly scale invariant had led to the improvement in the fit. In the n = 4 case, a rather
large bump had led to a poor fit to the data. We find that, a similar, large bump arises in the hybrid model as well.
Also, as we had mentioned, in the hybrid model, the scalar spectral index proves to be greater than unity at small
scales. We feel that these two features will not allow a better fit in the hybrid case. In the tachyonic model, though
the spectral index is close to the observed value, we find that no bump (above the asymptotic, nearly scale invariant
amplitude) arises in the spectrum. We expect that this feature will spoil the fit to the data. Moreover, we believe
that the lack of such a bump is due to the fact that inflation is not interrupted in this case.
In models which start with a period of fast roll, along with the scalar power, the tensor power is also suppressed

at large scales [15]. But, the drop in the scalar power proves to be sharper than that of the tensors and, as a result,
the tensor-to-scalar ratio displays a rise over these scales in such models. It has been argued that such a feature
may be detected by ongoing missions such as, for instance, PLANCK [23]. We too encounter an increase in the
tensor-to-scalar ratio on the large scales, though the reason is somewhat different. In punctuated inflation, the rise
in the tensor-to-scalar ratio turns out to be much stronger due to the fact that the tensor amplitude itself increases
on large scales. Intriguingly, we find that the rapid rise leads to the tensor-to-scalar ratio being much larger than
unity for a small range of modes. However, in the specific models we have considered, the tensor amplitude on scales
of cosmological interest (say, 10−4 < k < 1 Mpc−1) proves to be too small (r < 10−4) for the effect to be possibly
detected in the very near future.
The sharper the drop in the scalar spectrum at large scales, the better seems to be the fit to the low CMB

quadrupole. In punctuated inflation, the steeper the drop in the scalar power, the faster will be the corresponding rise
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in the tensor power at large scales. Therefore, if the scalar power drops fast, the tensor-to-scalar ratio can be larger
on the small scales, thereby improving the prospects of its detection through the B-modes of the CMB polarization.
However, empirical evidence indicates that, in punctuated inflation, a steeper drop in the scalar power requires a
larger value of the first slow roll parameter ǫ during the rapid roll. But, such a large ǫ also leads to a bigger bump
(above the asymptotic amplitude) in the scalar spectrum before it turns scale invariant. While a suitable bump seems
to provide a better fit to the data at a few lower multipoles after the quadrupole, too large a bump seems to spoil
the fit to the data (as in the n = 4, MSSM-motivated model). In other words, to lead to a good fit, there appears to
be a trade off between the sharpness of the cut off and the size of the bump in the scalar power spectrum. We are
currently exploring punctuated inflationary models that will lead to a sufficiently steep drop in the scalar power at
large scales, a suitably sized bump at the top of the spectrum, and also a reasonable tensor amplitude at small scales
that may be detectable by forthcoming missions.
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Appendix A: The evolution of the scalar and tensor perturbations for a mode with r > 1

In the various examples of punctuated inflation that we had discussed in the text, though the tensor-to-scalar ratio
remains too small (r < 10−4) on the scales of cosmological interest, we find that there exists a small range of modes
for which the tensor-to-scalar ratio turns out to be greater than unity. We believe that this is an interesting feature
with potentially observable consequences. To highlight this feature, in Fig. 6, we have plotted the evolution of the
amplitudes of the curvature and the tensor perturbations for a mode that has a tensor-to-scalar ratio greater than
unity in the n = 3, MSSM-motivated model. Note that, due to the deviation from slow roll, on super-Hubble scales,

0 10 20 30 40 50 60
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1000

|Rk|, |Uk|

N

FIG. 6: The evolution of the amplitudes of the curvature perturbation Rk (in blue) and the tensor perturbation Uk (in red)
has been plotted as a function of the number of e-folds N for the best fit values of the n = 3, MSSM-motivated model. These
perturbations correspond to the mode k = 10−5 Mpc−1, and the arrow denotes the time when the mode leaves the Hubble
radius. Notice that, as expected, the tensor amplitude freezes at its value near Hubble exit. In contrast, the amplitude of the
curvature perturbation is suppressed on super-Hubble scales. Evidently, it is this behavior of the curvature perturbation that
leads to the large tensor-to-scalar ratio associated with the mode.
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the amplitude of the curvature perturbation is suppressed when compared to its value near Hubble exit. Whereas, the
tensor amplitude approaches a constant value soon after the mode leaves the Hubble radius. It is such a suppression
of the curvature perturbation that results in the tensor-to-scalar ratio being greater than unity.
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