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Abstract

Even with identification of multiple causal genetic variants for common human diseases, un-

derstanding the molecular processes mediating the causal variants’ effect on the disease re-

mains a challenge. This understanding is crucial for the development of therapeutic

strategies to prevent and treat disease. While static profiling of gene expression is primarily

used to get insights into the biological bases of diseases, it makes differentiating the causa-

tive from the correlative effects difficult, as the dynamics of the underlying biological process-

es are not monitored. Using yeast as a model, we studied genome-wide gene expression

dynamics in the presence of a causal variant as the sole genetic determinant, and performed

allele-specific functional validation to delineate the causal effects of the genetic variant on the

phenotype. Here, we characterized the precise genetic effects of a functionalMKT1 allelic

variant in sporulation efficiency variation. A mathematical model describing meiotic landmark

events and conditional activation ofMKT1 expression during sporulation specified an early

meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional re-

sponse, we demonstrate anMKT1-dependent role of novel modulators, namely, RTG1/3,

regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation,

in additively effecting sporulation efficiency. In the presence of functionalMKT1 allele, better

respiration during early sporulation was observed, which was dependent on the mitochondrial

retrograde regulator, RTG3. Furthermore, our approach showed thatMKT1 contributes to

sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profil-

ing studies have suggested to mediateMKT1-pleiotropic effects during mitotic growth. These

results uncover interesting regulatory links betweenmeiosis andmitochondrial retrograde sig-

naling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dy-

namics of mediating genes. Applications in higher eukaryotes can be valuable for inferring

causal molecular pathways underlying complex dynamic processes, such as development,

physiology and disease progression.
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Author Summary

The causal path from a genetic variant to a complex phenotype such as disease progression

is often not known. Studying gene expression variation is one approach to identify the me-

diating genes, however, it is difficult to distinguish causative from correlative genes. This

becomes a challenge especially when studying developmental and physiological traits,

since they involve dynamic processes contributing to the variation and only single static

expression profiling is performed. As a proof of concept, we addressed this challenge here

in yeast, by studying genome-wide gene expression in the presence of the causative poly-

morphism ofMKT1 as the sole genetic variant, during the time phase when it contributes

to sporulation efficiency variation. Our analysis during early sporulation identified mito-

chondrial retrograde signaling and nitrogen starvation as novel regulators, acting additive-

ly to regulate sporulation efficiency. Furthermore, we showed that PUF3, a known

interactor ofMKT1 had an independent role in sporulation. Our results highlight the role

of differential mitochondrial signaling for efficient meiosis, providing insights into the fac-

tors regulating infertility. In addition, our study has implications for characterizing the

molecular effects of causal genetic variants on dynamic biological processes during devel-

opment and disease progression.

Introduction

Identifying the causative genetic variants associated with complex human diseases is only the

first step [1]. The major challenge is to understand how these genetic variants cause the disease.

The mediating molecular pathways connecting these variants to phenotypes have been more

systematically understood in model organisms than in humans [2]. However, even in model

organisms there are several examples where a causal genetic variant is not a component of the

annotated pathways associated to a trait, making it difficult to fully understand its molecular

basis [3]. Having this complete knowledge for complex diseases has a huge potential for devel-

opment and evaluation of available therapeutic and preventive strategies to counter these dis-

eases [4].

Studying gene expression variation is a standard approach for identification of the causal

path from a genetic variant to disease [5,6]. Many of these causal genetic variants have been re-

solved to single nucleotide polymorphisms (SNPs). Several studies in multiple organisms have

been performed to study the effects of these variants called as expression quantitative trait loci

(eQTLs) [7,8]. However, for making predictions for the molecular mechanisms underlying a

disease, trans-acting SNPs are more challenging than cis-acting. This is due to the difficulty in

distinguishing causative effects of these SNPs from the correlative effects since a SNP can: i) ei-

ther affect gene expression and the phenotype independently, or ii) modulate gene expression

of downstream molecular players, which in turn causes phenotypic variation (causal media-

tors), or iii) modulate the phenotype which then affects the gene-expression [5]. A few prag-

matic approaches have been recently tested in model organisms to identify the causal

mediators by studying gene expression changes. One approach, for instance, involved utilizing

expression information for the causal genetic variants from multiple environments, which was

a better predictor to identify the causal molecular intermediates by the fact that they interact

persistently with the variant [9]. For developmental and physiological processes, gene expres-

sion follows complex dynamic patterns [10] and so the effect of eQTLs on gene expression can

be highly context-sensitive, depending on the developmental stage, physiological phase or tis-

sue type [11–13]. Therefore, when the causative molecular effects of a genetic variant are being
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studied by measuring gene expression, knowledge of the particular temporal phase when the

causal variant transduces its molecular effects is crucial.

Allele replacement strains have been used extensively for fine-mapping the effects of causal

genetic variants associated with a trait [14]. Studying allele-specific gene expression could be

yet another useful approach which could be exploited in model organisms such as yeast, to

study the precise molecular effects of the causal variant on the trait. This can be done by per-

forming genome-wide expression profiling in a pair of allele replacement strains having the

same genetic background except for the allele. Using allele replacement strains,MKT1(89G)

was identified as a causal genetic variant for an efficient completion of sporulation in yeast,

called its sporulation efficiency [15].MKT1 is a putative endonuclease and its molecular role is

beginning to be, but not completely understood [9,16].MKT1 has been mapped as a causative

gene for several stress-related complex phenotypes, highlighting its extensive pleiotropy [9,17–

22], but its functional role in sporulation remains unclear. The developmental process of spor-

ulation in yeast encompasses two meiotic divisions followed by spore formation [23,24]. A

study performed parallel phenotyping analysis for the yeast deletion collection and identified

around 200 genes required for optimal sporulation efficiency [25]. These genes are both sporu-

lation-specific (i.e., required only during meiotic processes) and majorly sporulation-associated

(i.e., required for general cellular functions during sporulation such as nutrient metabolism

and respiration). However, the study did not identifyMKT1 as one of these genes. It is also not

known ifMKT1(89G) affects any of these 200 genes or any other gene to increase sporulation

efficiency. The first association ofMKT1 and sporulation process was reported in the linkage

mapping study between segregants of SK1 and S288c strains [15]. Moreover,MKT1(89G) was

mapped for sporulation efficiency, the end-point of sporulation process. We do not know at

which temporal phase during the course of sporulation (early entry into meiosis, middle pro-

gression through meiotic phases, or late spore wall formation),MKT1 affects meiosis.

In this study, we hypothesized that the use of allele replacement strains for studying ge-

nome-wide gene-expression during the temporal phase when the causal variant contributes to

the phenotype could provide useful insights for identifying the causal molecular mediators un-

derlying complex trait variation. In a pair of allele replacement strains differing solely for

MKT1 causal allele, we characterized the molecular role ofMKT1(89G) in yeast sporulation ef-

ficiency variation. Using genetic assays and mathematical modeling for the meiotic events, we

identified the role ofMKT1(89G) in the early phases of sporulation. In the specific context of

MKT1(89G), we studied the genome-wide transcriptional response particularly in the early

phase of sporulation and then genetically tested the candidate mediators. Using such an ap-

proach, we identified and confirmed novel pathways mediating the effects ofMKT1(89G) in

sporulation efficiency variation. The molecular findings resulting from our study demonstrate

the advantage of studying allele-specific temporal gene expression dynamics to identify the

causal pathways linking genetic variant to complex traits.

Results

Early effects of causal variant on phenotypic variation

Allele replacement ofMKT1 in the S288c strain from the endogenous adenine (89A) to gua-

nine (89G), of SK1 strain, resulted in increased sporulation efficiency [15]. Whole-genome re-

sequencing of theMKT1 allele replacement strain followed by a series of backcrosses (Meth-

ods), was done to confirm thatMKT1(A89G) was the only sequence difference between the

S288c parent (MKT1(89A) indicated as “S strain”) and the allele replacement strain (MKT1

(89G) indicated as “M strain”), the two strains used in this study. After 48h, the high sporulat-

ing SK1 strain and the M strain showed increased sporulation efficiency compared to the S
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strain, which was consistent with the previous report [15] (Fig 1, Table 1, Methods). Compared

to the S strain, the SK1 and M strains showed a 17- and a 9-fold increase, respectively

(P = 1.9x10-28, P = 1.0x10-25, respectively, pair test in Methods). Deletion ofMKT1 in the S

strain resulted in sporulation efficiency similar to the S strain, showing thatMKT1(89A) is a

loss-of-function allele for its function in sporulation (Fig 1, Table 1). However, it is possible

that theMKT1(89A) gene product may have an activity for other phenotypes.

To define the temporal phase during sporulation whenMKT1(89G) contributes to sporula-

tion efficiency, firstly the proportion of yeast cells completing Meiosis I and II (MI and MII) in

the S, M and SK1 strains were quantified (Fig 2A, Methods). M strain started entering MI/II

within 10h in sporulation medium, while S strain did not enter MI/II even after 48h. Using

these data, multi-stage modeling for the M strain and the parent strains S and SK1 was done to

study the distribution of the cell population in different stages of meiosis (Methods, S1 File). As

expected, the model predicted that the difference between the M and the S strains occurred

during entry into meiosis (initial lag phase of sporulation, S1 Fig). Hence, our observations and

the model suggested an early role of the causal variant ofMKT1 in sporulation, which was in

agreement with a recent study that showed the contribution of causal variants in critical deci-

sion-making steps in the early stages of a phenotypic process [26]. In order to confirm this

early role ofMKT1(89G) in sporulation efficiency variation, a tetracycline-repressible dual-sys-

tem was used to conditionally expressMKT1(89G) (Methods).MKT1(89G) expression was

switched off until 3h after initiation of sporulation, which led to a reduction in the sporulation

Fig 1. Role ofMKT1 allele in sporulation efficiency variation. Bar plots represent the mean sporulation
efficiency, after 48h, of the SK1, M and S strains and S strain withmkt1∆. wt indicates wild type strain. The
sporulation efficiency data is indicated as circles. A pair test using logit link function was performed (see
Methods).

doi:10.1371/journal.pgen.1005195.g001
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efficiency of the M strain (PTet-MKT1) equivalent to the S strain (Fig 2B, S2 Fig). This result

showed that activity ofMKT1(89G) allele was essential within the first 3h of sporulation.

Meiotic initiation is regulated by multiple nutrient signaling pathways [27]. The functional

allele ofMKT1 has a fitness advantage during growth in glucose-rich conditions [9]. Therefore,

we tested if increased sporulation efficiency of the M strain is influenced by expression of

MKT1(89G) during the rich growth medium stage preceding sporulation (Methods). We ob-

served that switching offMKT1(89G) during growth in glucose had no effect on sporulation ef-

ficiency of the M strain (Fig 2B). Altogether, these results indicated that the role ofMKT1(89G)

during sporulation was independent of its role during growth in glucose and that the allele

played a role in the early response to sporulation.

Genome-wide gene expression response in the presence of causal
variant

To identify the pathways through which theMKT1(89G) allele affects early sporulation, we

studied the entire range of transcriptional response in the S and M strains during the first 10h

of sporulation, with denser sampling in the early phase of sporulation (Methods). An extensive

remodeling of gene expression was observed in both strains, which increased as time pro-

gressed through sporulation (S5 Fig). As expected, the genes involved in sporulation showed a

higher expression in the M strain than in the S strain (P = 2.0 x 10–37, permutation P = 0.16,

Methods, S6 Fig). Amongst all genes, we identified 862 gene transcripts showing a statistically

significant (10% FDR, Methods) differential expression as a function of time between the M

and S strains. No enrichment of any functional category within these differentially expressed

genes was observed, indicating the pleiotropic role ofMKT1(89G) and that it might be affecting

various aspects of the sporulation process. Comparison of expression profiles of the few known

meiotic regulators in the M and S strains showed that IME1, the master regulator of meiosis

[28], was not differentially expressed. However, NDT80, the other crucial regulator of meiosis,

involved in meiotic commitment [29], was differentially expressed (S7 Fig, S4 Table). These

Table 1. Mean sporulation efficiency in percentages, with standard deviation (S.D.) of the strains after
48h.

Strain Mean ± S.D.

SK1 88.2 ± 0.7

S (MKT1(89A)) 5.3 ± 3.4

S (mkt1∆) 4.5 ± 0.5

S (puf3∆) 1.3 ± 1.5

S (rtg1∆) 6.7 ± 0.7

S (rtg3∆) 5.8 ± 1.0

S (dal82∆) 4.4 ± 0.5

M (MKT1(89G)) 47.5 ± 6.0

M (puf3∆) 28.8 ± 5.8

M (rtg1∆) 20.3 ± 1.8

M (rtg3∆) 24.8 ± 1.8

M (dal82∆) 29.1 ± 4.7

M (puf3∆ rtg3∆) 14.5 ± 1.5

M (puf3∆ dal82∆) 23.9 ± 2.2

M (rtg3∆ dal82∆) 17.4 ± 1.4

Gene deletions are indicated in brackets. Raw values are given in S2 File.

doi:10.1371/journal.pgen.1005195.t001
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Fig 2. Conditional expression ofMKT1(89G) during the early phase in sporulation affects the sporulation efficiency. (A) Percentage of 1-, 2- and
4-nuclei states of the M, S and SK1 strains on y-axis. 1-nucleus stage is indicated in red (G1/G2 phase), 2-nuclei state is black (completion of MI phase) and
blue is 4-nuclei stage (completion of MII phase). x-axis represents time in sporulation medium. (B) Each strain was grown sequentially in rich (YPD) and pre-
sporulation medium (YPA) before incubating in sporulation medium (Spo) for 48h after which sporulation efficiency was estimated. Bar plot represent the
mean sporulation efficiency after 48h.MKT1 expression was switched OFF by addition of doxycycline (indicated as +), and its expression was ON without
doxycycline (indicated as-). “+3h” condition indicates that doxycycline was present in the Spo medium for first 3 hours of incubation and was removed from
the medium afterwards. Tukey’s multiple comparisons test (P < 0.05), bars with the same letter code do not differ significantly. Error bars are the standard
errors of mean.

doi:10.1371/journal.pgen.1005195.g002
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results suggested thatMKT1(89G) could affect sporulation at the post-transcriptional level of

IME1 or at the transcriptional level of NDT80, both of which could have early regulatory conse-

quences during meiosis [30]. This observation also suggested that the role ofMKT1(89G) dur-

ing sporulation might be early and upstream to the regulators of meiosis, in agreement with

our earlier results (see Fig 2A and 2B).

To capture the early role ofMKT1(89G) during sporulation, genes upregulated early in the

M strain and either downregulated or expressed later in the S strain, were considered. Thus,

differentially expressed genes were clustered based on their expression profiles, separately for

the M and S strains (Methods). Clustering gave six and seven clusters in the M and S strains, re-

spectively, from which four major clusters were identified in each strain (Fig 3A, S5 Table).

Clusters I and II consisted of genes mostly expressed in the early stages of meiosis with an en-

richment for the target genes of IME1 and NDT80, respectively. In particular Cluster I con-

tained some of the earliest expression changes in the M strain. Comparison of this early cluster

between the M and the S strains showed that while 46% (71/143) of its genes overlapped (Fig

3B, S5 Table), the remaining 72 early expressing genes were uniquely differentially expressed in

the M strain (S6 Table). We posited that transcription factor(s) whose target genes were signifi-

cantly enriched within these unique 72 early expressing genes of the M strain might be involved

in regulating entry into meiosis. Forty one such transcription factors (P� 0.05, odds

ratio� 1.5) were identified, which consisted of the regulators of metabolic and mitochondrial

signaling (Methods, S7 Table), including sporulation-specific genes, such as IME1, SIN3 and

WTM2 (a UME1 paralog). To evaluate if the approach we used indeed identified the causal me-

diating genes contributing to sporulation efficiency variation in the context ofMKT1(89G), we

selected a few candidate genes from this list of regulators for further investigation. One of the

major concerns while studying gene expression is that transcriptional changes can be buffered

at the level of phenotype and so do not always manifest themselves in phenotypic variation

[31]. Hence, to avoid this buffering while identifying causal regulators of sporulation down-

streamMKT1(89G), a comprehensive literature survey was done for the selected 41 transcrip-

tion factors to identify the prime candidate regulators. We did not consider those genes, which

have been previously shown to have a causal relationship with sporulation efficiency variation

[25]. While prioritizing candidate genes, specifically those regulators were chosen whose func-

tional annotations were related to the processes associated with early regulation of sporulation,

such as mitochondrial function and nutrient starvation, but a causal role in sporulation was

not known [24,27,32–35]. From this list, RTG1, a regulator of mitochondrial retrograde signal-

ing [36] and DAL82, a regulator of nitrogen metabolism [37] (Fig 4, S8–10 Figs, S8 Table) were

selected for further investigation.

Identification of novel pathways mediating the causal effects of genetic
variant on phenotypic variation

To test the role of RTG1 and DAL82 in sporulation efficiency variation, their deletions in both

M and S strains were phenotyped. Another regulator of retrograde signaling RTG3 [38], a

physical interactor and target gene of RTG1, showing differential expression in our data, was

also deleted in the two strains. Deleting RTG1, RTG3 or DAL82 reduced the mean sporulation

efficiency in the M strain significantly, by about two-fold (P = 6.2x10-10, P = 2.8x10-10,

P = 1.6x10-7 respectively, Fig 5A, Table 1, pair test in Methods). This effect was specific to the

M strain, because deletion of these genes in the S strain did not affect their mean sporulation ef-

ficiency (Fig 5A, Table 1, pair test in Methods); and for RTG1 and RTG3, significant interaction

terms were found between the backgrounds (S and M strains) and the deletion for these genes

(P = 5.8x10-5, P = 4.7x10-3 respectively, interaction test in Methods). RTG1, RTG3 and DAL82

Temporal Expression Profiling Reveals Causal Pathways
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have not been previously identified as involved in sporulation efficiency as determined from a

genome-wide deletion screen [25]. Since this deletion collection was made in the S288c back-

ground, carrying the non-functional alleleMKT1(89A), this could be a possible reason for the

Fig 3. Variation in the gene expression in the presence ofMKT1(89G) during sporulation. (A) Heat map of the M and S strains showing differentially
expressed genes across time within each cluster. The order of genes in the two strains is based on the clustering of the M strain. The average expression
profile (black line) of each cluster in the M strain is shown alongside the heatmap. Gray lines show the expression profile for each gene in the cluster. In
brackets is the number of genes in each cluster in the M strain. (B) Overlap of early expressing genes of Cluster I between the M and S strains.

doi:10.1371/journal.pgen.1005195.g003
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lack of functional implication. A deletion study in the SK1 strain that contains the functional

MKT1(89G) allele, did not investigate the association of these early sporulation regulators with

the process [39]. However, interestingly, an up-regulation of RTG1 in the early phase of sporu-

lation has been observed in SK1 [40]. These results, thus, support our approach of studying the

early effects of the causative allele and implicate novel roles for RTG1, RTG3 and DAL82 in the

early phase of sporulation efficiency downstream toMKT1(89G).

To further investigate if RTG1/3 and DAL82 belonged to the same pathway (epistatic effect)

or were in separate pathways (additive effect), double deletions for RTG3 and DAL82 were phe-

notyped in the M strain. Deletion of RTG3 and DAL82 together reduced the mean sporulation

efficiency of the M strain by approximately 3-fold (Fig 5A, Table 1). A non-significant interac-

tion term was obtained between RTG3 and DAL82 (interaction test in Methods), indicating

that they regulated sporulation efficiency additively, downstream toMKT1(89G). Furthermore,

because deletion of RTG3 and DAL82 in the M background only partially reduced the sporula-

tion efficiency to that of the S strain (P [M (rtg3∆ dal82∆) vs. S] = 2.5x10-7, Fig 5A, pair test in

Methods), these results indicated that these genes explained a partial role ofMKT1(89G), and

additional complementary pathways were at play.

The mitochondrial retrograde signaling pathway gets upregulated in response to altered mi-

tochondrial function and nutrient starvation. This pathway fine-tunes the metabolic and stress

response pathways of the cell by affecting glutamate synthesis and mitochondrial DNA

Fig 4. Comparison of the regulatory sub-networks of the transcription factors: Rtg1 and Dal82 in the M and S strains. In each subnetwork,
differentially expressed target genes of Rtg1 and Dal82 are shown as nodes connected to their respective regulator. Red color indicates 2-fold
overexpression and blue 2-fold repression, calculated as an average of the first three time points in sporulation (early phase). See S8 Table for
expression values.

doi:10.1371/journal.pgen.1005195.g004
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maintenance [33,41]. Since mitochondrial function with regard to respiration is implicated as a

critical regulator of sporulation [42], we speculated if differential mitochondrial activity was in-

volved in sporulation efficiency variation in the presence ofMKT1(89G). We evaluated the mi-

tochondrial function in the M and S strains by assaying oxygen consumption flux during early

sporulation (Methods). The M strain showed a better mitochondrial function than the S strain

(Fig 5B) at 1h in sporulation. Deletion of RTG3 in the M strain decreased this oxygen con-

sumption flux, though dal82∆ had no effect on the flux (Fig 5B). These results suggested a role

of differential mitochondrial function in sporulation efficiency variation. However, a better un-

derstanding of the role of mitochondrial retrograde pathway in sporulation efficiency would re-

quire further investigation.

Role of PUF3 in sporulation efficiency independent ofMKT1(89G)

Differential mitochondrial activity in the presence ofMKT1(89G) suggests a role for the Mkt1

interactor, Puf3, a Pumilio-family protein, which has been suggested to explain the extensive

MKT1(89G) pleiotropy during mitotic growth in rich media as well as in stress environments

[16,22,43]. Puf3 is an mRNA binding protein that regulates the fate of nearly 200 nuclear-en-

coded mitochondrial transcripts [44]. Even though we found a few PUF3 target genes (13/214

genes) differentially expressed during sporulation, none were in the set of unique early express-

ed transcripts in the M strain (S10 Fig). To further evaluate if PUF3 had a role in sporulation ef-

ficiency variation in the presence ofMKT1(89G), we deleted PUF3 in the S and M strains and

M strain with single deletions of rtg3∆ and dal82∆. If PUF3 has an independent role in

Fig 5. Retrograde signaling and nitrogen starvation regulators mediate the sporulation efficiency variation inMKT1(89G)-dependent manner. (A)
Bar plots represent the mean sporulation efficiency, after 48h, of single gene deletions of rtg1∆, rtg3∆, dal82∆ both in M and S strains and double deletion of
rtg3∆ dal82∆ in M strain. wt indicates wild type strain. The sporulation efficiency data is indicated as circles. A pair and an interaction test using logit link
function were performed (see Methods). (B) Comparison of respiration for the yeast cells incubated for 1h in sporulation medium in the wild type M and S
strains, and rtg3∆ and dal82∆ in the M strain. Y-axis denotes O2 flux/vol (pmol/(s.ml)). P was calculated by an unpaired t-test. Error bars are the standard
errors of mean.

doi:10.1371/journal.pgen.1005195.g005

Temporal Expression Profiling Reveals Causal Pathways

PLOS Genetics | DOI:10.1371/journal.pgen.1005195 June 3, 2015 10 / 23



sporulation, reduction in sporulation efficiency by puf3∆ deletion would be independent of the

background (MKT1, RTG3 or DAL82), and we would observe an additive effect on sporulation

efficiency. Any observed significant deviation from this expectation would imply dependence.

One extreme case of dependence would be epistasis. In that case, deleting PUF3 in these back-

grounds would not lead to decreased sporulation efficiency. We observed that PUF3 deletions

in all the four backgrounds: M, S, M (rtg3∆) and M (dal82∆) reduced their sporulation efficien-

cy (regression line y = 0.65x showing around 35% less sporulation efficiency for all strains, Fig

6A and 6B, Table 1, pair test in Methods). Furthermore, interaction terms (Methods) were

non-significant for deletion of PUF3 between the M and the S strains (P = 0.49), the M and M

(rtg3∆) strains (P = 0.53), and only mildly significant between the M and M (dal82∆) strains

(P = 0.02). These results indicated that the effect of PUF3 on sporulation efficiency was inde-

pendent ofMKT1(89G) and its downstream genes RTG1/3 and DAL82.

Discussion

Over the past decade a detailed genotype-phenotype map for complex traits including diseases

has been determined [45], however, a functional map defining how causal genetic variants (al-

leles) modulate the underlying pathways resulting in phenotypic variation, is missing. Filling

this functional gap will help to identify molecular candidates for therapeutic intervention in

human diseases and to make useful predictions regarding response to a particular therapy and

survival of a patient [1]. The first step to characterize this functional genotype-phenotype map

requires identification of the causal mediating genes in a biological network regulating the phe-

notype. Investigation of the intermediate phenotypes viz. transcripts, proteins and metabolites,

Fig 6. Role of PUF3 in sporulation efficiency is independent ofMKT1(89G). (A) Bar plots represent the mean sporulation efficiency, after 48h, of single
gene deletions of puf3∆, rtg3∆, dal82∆ and double gene deletions of rtg3∆ puf3∆, dal82∆ puf3∆ in M strains. Single gene deletion of puf3∆ in S strain is also
shown. wt indicates wild type strain. The sporulation efficiency data is indicated as circles. A pair and an interaction test using logit link function were
performed (see Methods). (B) The sporulation efficiency of wild type of M and S strains along with single gene deletions of rtg3∆, dal82∆ in M strain (x-axis)
compared to their sporulation efficiency with puf3∆ (y-axis).

doi:10.1371/journal.pgen.1005195.g006
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is routinely used to identify these causal mediators [46]. In this study we demonstrate a couple

of steps essential for accurate identification of these causal molecular mediators: i) studying al-

lele-specific temporal dynamics of the biological processes underlying complex traits, and ii) al-

lele-specific functional validation of the predicted mediators. We report the characterization of

molecular pathways modulated by a causal genetic variant in a dynamic biological process

using the above approach. In particular, we studied the molecular effects of the essentialMKT1

(89G) allele on the yeast transcriptome during sporulation. We not only identified novel path-

ways regulating the phenotype, but also confirmed the independent role of a known interactor

(Puf3) ofMKT1(89G) in the phenotype (Fig 7).MKT1(89A) is not a naturally occurring allele,

observed only in the S288c strain [20]. However, such rare polymorphisms are receiving in-

creasing attention for their contribution to common human diseases [47]. In this sense, our ap-

proach has a general applicability since it can be applied to study the molecular basis of both

common and rare variants.

Using our approach of studying early gene expression dynamics in response to theMKT1

(89G) allele, we identified that regulators of mitochondrial retrograde signaling and of nitrogen

starvation act additively to regulate sporulation efficiency (Fig 5A). Mitochondria responds to

a wide array of stresses by inducing various complex cellular responses and promoting cellular

adaptation to reduce the impact of further stressors [48]. Mitochondrial retrograde signaling is

one of the stress signaling responses of the cell during mitochondrial functional alteration and

glutamate starvation [33]. It affects mitochondrial DNAmaintenance [49] and hence the respi-

ratory competency of a cell. During meiosis in yeast cells, energy production occurs through

the Krebs cycle [32,35,42], and hence respiration is a critical regulator of meiosis in yeast [42]

and in humans. In humans, low mitochondrial DNA has been associated with ovarian insuffi-

ciency [50]. We observed an improved mitochondrial activity during early sporulation in the

M strain compared to the S strain (Fig 5B). A reduction in this high mitochondrial activity in

the absence of mitochondrial retrograde signaling regulator RTG3 indicated thatMKT1(89G)

might confer a better stress response through RTG3, with increased sporulation efficiency

being one of the consequences. This role of retrograde signaling in regulation of developmental

Fig 7. A model for the molecular basis of theMKT1 causal variant in the sporulation efficiency
variation.MKT1(89G) genetically interacts with RTG1/3 and DAL82 (solid lines) to possibly modulate
respiration and nitrogen metabolism in order to increase sporulation efficiency.MKT1(89G) also interacts
(dashed lines) with other molecular pathways to further affect sporulation efficiency. PUF3 shows aMKT1

(89G)-independent role (dashed lines) in sporulation efficiency variation.

doi:10.1371/journal.pgen.1005195.g007
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processes responding to nutritional stresses has been shown for pseudohyphal growth in yeast

[51]. Further investigating this association of differential mitochondrial signaling, particularly

retrograde signaling with meiosis and development in general can help provide insights into

the factors regulating infertility.

In this study, we characterized the essential role ofMKT1(89G) allele in sporulation efficien-

cy. This allele was particularly interesting to study as this coding polymorphism ofMKT1 is

present in all laboratory strains (except strains isogenic to S288c), as well as clinical and natural

isolates of yeast including the SGRP strain collection [15,18,20,52]. Since the previous genetic

screens [39,25,53] or genome-wide expression studies [40,54] for sporulation and sporulation

efficiency, were done in the S288c background carrying theMKT1 allele which is non-function-

al in sporulation, this could be a possible reason for not identifyingMKT1 to be involved in the

process. The founder strain of S288c, EM93 carries theMKT1(89G) allele suggesting that dur-

ing domestication of S288c this functional allele was lost [20,55]. During evolution of S288c in

low-glucose conditions, the nativeMKT1(89A)mutated toMKT1(89G) within 500 generations

[56], also indicating the crucial role ofMKT1(89G) in stress-related conditions. Altogether,

these observations demonstrate the limitations of studying genotype-phenotype relationships

in a single genetic background, especially in laboratory strains, which might have degenerated

their stress response machinery partially or completely, as a result of domestication [57].

Using our approach, we further showed anMKT1(89G)-independent role of PUF3 in meio-

sis (Fig 6A and 6B). This was surprising since eQTL mapping studies have suggestedMKT1 as

a global regulator of gene expression [22,58] and have identified its most upstream interactors,

such as PUF3, during mitotic growth in multiple environments [9,16]. Puf3 regulates transla-

tion and degradation of nuclear-encoded mitochondrial mRNAs by localizing them near mito-

chondria or P-bodies, which are cytoplasmic sites for mRNA decay and stalling [16,44,59,60].

SinceMKT1 has a post-transcriptional regulatory role both in yeast [61] and in trypanosomes

[62], its interaction with PUF3 suggested a probable mechanism for understanding the role of

MKT1. However, for sporulation efficiency, we observed that Puf3 showed anMKT1(89G)-in-

dependent role. We, therefore, speculate that Puf3 might be a mitotic growth-specific interac-

tor ofMKT1(89G). Its role in sporulation efficiency, though, could involve post-transcriptional

regulation of mitochondrial mRNAs through P-bodies during sporulation. In Drosophila, C.

elegans, mice and mammals [63,64], P-bodies related RNA granules are known to be involved

in translational control of germ cell transcripts. However, in yeast, P-bodies have been ob-

served only during glucose starvation and stress conditions such as ethanol tolerance [22,65].

Therefore, our results indicate an interesting interaction between Puf3 and sporulation efficien-

cy variation and this could be a future line of investigation to determine if P-body formation

has a regulatory role in yeast meiosis.

Through our analysis, we attempted to understand the molecular basis of a complex trait.

Using an allele-specific approach, we determined and functionally validated the molecular con-

sequences of a single causative variant in phenotypic variation. This approach helped to identi-

fy novel associations between mitochondrial and metabolic pathways with meiosis. Further

analyses of these expression data can identify additional regulators and pathways involved in

sporulation efficiency variation in the presence ofMKT1(89G) (Fig 7, S7 Table). This approach

demonstrated in yeast can be applied to higher eukaryotes to study transcriptional dynamics of

developmental processes or progression of diseases. This will assist in understanding the pre-

cise genetic effects of a causal variant, improving the existing genotype-phenotype functional

relationship map.
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Materials and Methods

Yeast strains, growth and sporulation conditions

Whole-genome resequencing of theMKT1 allele replacement strain (S9 Table) was performed

to confirm the presence of the causative SNP (details in S1 Table, S1 Text (Section 1)). Back-

crossing the haploid allele replacement strain to the S288c parent strain three consecutive

times (details in S1 Text (Section 2)) confirmed that homozygousMKT1(A89G) was the only

sequence difference between the diploid S288c parent (S strain) and the allele replacement

strain (M strain). All the S (MKT1(89A)) and M (MKT1(89G)) strains used in this study were

derivatives of S288c strain except SK1 strain (S9 Table). The strains were grown at 30°C in

YPD (1% yeast extract, 2% bacto peptone, 2% dextrose) and YPA (1% yeast extract, 2% bacto

peptone, 1% potassium acetate). Deletions were performed in the haploids by replacing the

specific ORF with one of the dominant drug-resistance cassettes (hphMX4, kanMX4 or

natMX4) which were PCR-amplified from their respective plasmids as described previously

[66]. The strains were transformed using the standard lithium acetate-based method [67] and

homologous integration of the deletion cassette was confirmed by performing a colony PCR

for both the ends. Three confirmed independent transformants were selected to minimize ran-

dom mutations during the transformation step, diplodized using pHS2 plasmid (containing a

functional HO) and phenotyped. All further experiments were performed using the diplodized

parent strains and their diploid derivatives. The primers for deletions and their confirmations

are listed in S10 Table. Sporulation conditions and the calculation of sporulation efficiency was

done as previously described [68] in liquid sporulation medium (1% potassium acetate supple-

mented with 20mg/ml uracil, 20mg/ml histidine, 30mg/ml leucine, 20mg/ml methionine and

30mg/ml lysine). For each strain, minimum three biological replicates were used and approxi-

mately 1,000 cells were counted per replicate. Fold difference was calculated as the ratio of

mean sporulation efficiencies of the two strains A and B when the sporulation efficiency of A is

greater than of B.

Statistical analysis of sporulation efficiency data

Two statistical tests were used: the pair test and the interaction test. The pair test tests the null

hypothesis that two given strains have the same sporulation efficiency. To this end, the number

yi,k of sporulated cells (4-nuclei count) among the total number of cells ni,k of strain i in repli-

cate experiment k was modeled with a quasi-binomial generalized linear model using the logit

link function and subject to a common log-odd ratio βi between replicates, i.e.:

log
mi;k

ni;k � mi;k

 !

¼ bi for all k;

where μi,k = E(yi,k). The pair test tests the null hypothesis of equality of log odd-ratios for two

strains i and j, i.e.H0: βi = βj.

The interaction test tests the null hypothesis that the effect of mutation A is independent of

the effect of mutation B, taking the M strain as reference background. This test thus compares

four strains: mutation A only, mutation B only, both A and B and neither A nor B (M strain).

Here, the strain S was considered as a M strain mutated forMKT1(89). For every interaction

test, we considered the dataset of the four strains of interest and fitted a quasi-binomial gener-

alized linear model using the logit link function and subject to:

log
mi;k

ni;k � mi;k

 !

¼ b
0
þ bAAi þ bBBi þ bA;BAiBi for all k;
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where, Ai and Bi are indicator variables of the mutations A and B in strain i respectively. The

interaction test tested the null hypothesis that the odd ratio of sporulation in the double mutant

equals the product of the odd ratios of each mutation, i.e.H0: βA,B = 0.

Both the pair test and the interaction test were implemented in the statistical language R

with the function glm() assuming a constant variance function fitted by maximizing the quasi-

likelihood and using the t-test on tested parameters (see S2 File for raw data and R script).

Estimating the progression through meiotic phases

Aliquots of sporulating cells of M strain culture were fixed with ethanol at regular intervals (as

indicated in Fig 2A) from 0 to 48h in the sporulation medium. These time-points were chosen

to capture the progression through meiotic stages in the strain. Samples were stained with

DAPI (4’-6’ diamidino-2-phenylindole) using the standard methods [69] for calculating the

proportion of cells with 1-nucleus (Non-sporulating/G1), 2-nuclei (MI) and 4-nuclei (MII)

using Carl Zeiss Axiovert 200 fluorescence microscope. For each strain, proportion of cells

were counted till saturation was reached for two consecutive time points. Grey scale images

were captured using a CCD camera and pseudo-coloured using the image acquisition software

(Axiovision) supplied with the microscope. To estimate the sporulation efficiency and DAPI

staining, 1,000 cells from the three biological replicates for each strain were counted.

Mathematical modeling for progression through meiotic phases

Amulti-stage modeling was performed (details and raw data in S1 File). Cells in G1/S phase of

cell cycle are said to be in 1-nucleus state. Cells that have completed MI or MII are said to be in

2-nuclei or 4-nuclei state, respectively. Cells that did not progress from one cell cycle state to

another are mentioned as inactive cells. The existence of inactive states is supported by the fact

that at steady state, some cells still have one nucleus or 2-nuclei indicating they are trapped at

these stages, which could be possibly due to nuclear destruction mechanism resulting in dyads

[70]. Hence, cells could be either in a 1-nucleus active, 1-nucleus inactive, 2-nuclei active, 2-nu-

clei inactive or 4-nuclei state. Moreover the cells were assumed to only progress in one direc-

tion (no back transitions) from the 1-nucleus active to either the 1-nucleus inactive or the

2-nuclei active stage, and from the 2-nuclei active to either the 2-nuclei inactive or to the 4-nu-

clei state. The samples contain a large number of cells and thus we used Ordinary Differential

Equations to describe the dynamics of the system. The dynamics was modeled with an initial

lag phase (measured as τ) followed by first order kinetics between the stages (measured as α, β,

γ and δ, as shown below).

X
1
!a X

2
!g X

4

X
1
!b Y

1

X
2
!d Y

2

0

B

@

1

C

A

where, X1 is proportion of cells in 1-nucleus active stage, X2 in 2-nuclei active stage, X4 in 4-nu-

clei active stage, Y1 is proportion of cells in 1-nucleus inactive stage, Y2 in 2-nucleus inactive

stage. The model was fitted by minimizing least square errors to the measured proportions of

the cells with 1, 2, and 4-nuclei, measured along the time. Confidence intervals were obtained

by bootstrap of the data.

Conditional expression ofMKT1 during sporulation

tetO7-based promoter substitution cassette containing kanMX4, amplified from the plasmid

pCM225 [71], was inserted to replace the endogenousMKT1 promoter (-300 to -1bp upstream
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start site) in the M strain (PTet-MKT1). M strains with the endogenous promoter (Pwt-MKT1)

and the tetO7 promoter (PTet-MKT1) were grown in a glucose-rich medium (YPD) and syn-

chronized in pre-sporulation medium (YPA) prior to initiating sporulation. To determine the

concentration of doxycycline at which the effect ofMKT1(89G) on sporulation efficiency is

similar toMKT1(89A) (implyingMKT1(89G) is not functional or OFF), the PTet-MKT1 strain

was grown and sporulated in 2, 3 and 5μg/ml of doxycycline and phenotyped by estimating the

sporulation efficiency after 48h. At 5μg/ml doxycycline, the sporulation efficiency of the PTet-

MKT1 strain was similar to the S strain (S2 Fig) and this concentration was used for further ex-

periments. To switch offMKT1(89G) expression only during the growth in glucose, the PTet-

MKT1 strain was grown in YPD with doxycycline, washed and added to YPA and the sporula-

tion medium in the absence of doxycycline. For switching offMKT1(89G) throughout the spor-

ulation process, doxycycline was added to all the three media (YPD, YPA and sporulation). To

switch offMKT1(89G) till 3h in sporulation medium, doxycycline was added in YPD, YPA and

sporulation medium. Cells were washed after 3h in sporulation and resuspended in the sporu-

lation medium without doxycycline till 48h, and were phenotyped. A complementary experi-

ment whereMKT1(89G) was switched ON till 3h in sporulation medium and switched OFF

from 3h to 48h in sporulation was done by adding doxycycline in sporulation medium post 3h

in sporulation medium (S2 Fig). For each strain in each condition, minimum three biological

replicates were used and approximately 1,000 cells were counted per replicate per condition for

estimation of sporulation efficiency. The means and variances were tested for significance

using one-way ANOVA followed by Tukey’s multiple comparisons test (Prism, Graphpad Soft-

ware Inc.). Statistical significance was determined at P< 0.05.

Transcriptional profiling, normalization, smoothing and baseline
transformation

Temporal transcriptome profiling was performed for the sporulating yeast cells at 0h, 30m,

45m, 1h10m, 1h40m, 2h30m, 3h50m, 5h40m and 8h30m (logarithmic time-series) in the spor-

ulation medium. For this, 100ml aliquots of the culture were pelleted and stored at -80°C.

Transcriptome profiling was performed using the S. cerevisiae yeast tiling array (Affymetrix,

Cat# 520055) as described previously [72]. Time-series arrays of M and S strains in sporulation

were normalized by vsn (S1 Text (Section 3), S3 Fig) [73].

Using log2 transformed expression values, after normalization (S2 Table), the expression

profiles of all transcripts of S and M strains were made continuous over time using locfit [74]

with the bandwidth parameter ‘h’ optimized at 1.21 (S1 Text (Section 4), S4 Fig, S3 Table). A

baseline transformation for each transcript, after smoothing, was done by subtracting each

time point value from t = 0h (t0).

y0SðtnÞ ¼ ySðtnÞ � ySðt0Þ

y0MðtnÞ
¼ yMðtnÞ

� yMðt0Þ

where, y is the expression value of a transcript for a strain (S or M) at a specific time point and

y’ is the transformed expression value.

To compare the sporulation genes (obtained from Deutschbauer et al. [25]) between the M

and S strains, their expression in the two strains were tested using 1,000 permutations of Wil-

coxon test on an equal number of randomly selected genes (S6 Fig). R scripts used for the anal-

yses are given in the S3 File.
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Identification of differentially expressed genes using EDGE

To identify differentially expressed genes (after removing tRNAs, snRNAs and transcripts

from terminal repeats) between the two strains, the temporal expression profiles of each tran-

script was compared using the method implemented in the EDGE (Extraction of Differential

Gene Expression) software [75]. One thousand permutations were done to calculate the null

distribution with a random number seed. EDGE analysis identified transcripts of 862 signifi-

cant differentially expressed genes across time (10% FDR, S4 Table). Within these 862 genes, a

subset of differentially expressed transcription factors and differentially expressed targets of all

the transcription factors (obtained from the YEASTRACT database, [76] were selected. This

subset of 727 genes was used for further analysis.

Clustering of identified genes using TimeClust

The 727 differentially expressed genes were clustered according to their temporal expression

patterns using time abstraction method implemented in the TimeClust software [77]. The

smoothened and baseline transformed expression data of the 8 sporulation time-points was

analysed with window span parameter set at 3. An absolute expression change of 0.1 was con-

sidered as a change. This clustering method was applied on the expression data separately for

the two strains resulting in six and seven clusters in the M and S strains, respectively (S5

Table). The gene lists of the M and S strains for the Cluster I, consisting of early expressing

genes, were compared. For the genes unique to the M strain in this cluster (S6 Table), the tran-

scription factors regulating them were extracted using the YEASTRACT database (S7 Table)

[76].

Estimation of oxygen flux to evaluate mitochondrial function

After 1h in sporulation, 5 x 106 cells from each of the three biological replicates were used for

the assay. Oxygen consumption flux was determined, in total volume of 2.1ml sporulation me-

dium at 30°C with 500 rpm, using OROBOROS O2k high-resolution respirometer (ORO-

BOROS Instruments Corp., Innsbruck, Austria). Data acquisition and calculation of oxygen

flux was done according to the manufacturer’s instruction in DatLab software. Unpaired Stu-

dent’s t-test (Prism, Graphpad Software Inc.) was performed for comparing differences be-

tween the means of the two strains. Statistical significance was determined at P< 0.05.

Supporting Information

The Supporting information is also available at: http://www.tifr.res.in/~dbs/faculty/hsinha/

MKT1Spo

S1 Fig. Early role ofMKT1(89G) in sporulation predicted through modeling. Boxplot show-

ing the initial lag phase (in hours) of the strains (x-axis) in entering meiosis I, calculated by the

parameter tau (y-axis). See Methods for details of modeling.

(PDF)

S2 Fig. Conditional expression ofMKT1(89G) during sporulation. Each strain was grown

sequentially in rich (YPD) and pre-sporulation medium (YPA) before incubating in sporula-

tion medium (Spo) for 48h after which sporulation efficiency was estimated. Bar plot represent

the mean sporulation efficiency after 48h. (A) Testing doxycycline concentration for switching

offMKT1 expression during sporulation.MKT1 expression was switched OFF in all the three

conditions by addition of doxycycline (indicated as +dox). No doxycycline in any of the three

media is indicated as-dox (implyingMKT1 expression ON). Concentration of doxycycline is
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depicted on x-axis. Tukey’s multiple comparisons test (P< 0.05) was performed. In both con-

centrations 3μg/ml and 5μg/ml of doxycycline, M strain showed sporulation efficiency equiva-

lent to S strain. 2μg/ml doxycycline showed significant difference in mean sporulation

efficiency compared to S strain. Further experiments were performed using 5μg/ml doxycy-

cline. Error bars are the standard errors of mean. (B) Early role ofMKT1 expression.MKT1 ex-

pression was switched OFF by addition of doxycycline (indicated as +), andMKT1 expression

was ON when no doxycycline was added (indicated as-). “-3h” condition indicates that no

doxycycline was added till 3h in sporulation medium. “+3-48h” condition indicates thatMKT1

expression was switched OFF 3h-post initiation of sporulation, by adding doxycycline during

3–48h in sporulation medium. Tukey’s multiple comparisons test (P< 0.05), bars with the

same letter code do not differ significantly. Error bars are the standard errors of mean.

(PDF)

S3 Fig. Normalization of the time-series expression data. The expression for each transcript

in the two replicates has been plotted against each other. Replicate 1 is in x-axis and replicate 2

is in y-axis. Red line indicates the normal line expected if there was a 100% correlation between

the replicates.

(PDF)

S4 Fig. Smoothing of normalized temporal data using locfit. Representative images showing

normalized (black line) and normalized locfit (red line) data in M and S strain. x-axis denotes

the time-points in sporulation medium and y-axis is the log2 expression.

(PDF)

S5 Fig. Scatterplots comparing expression of all the genes in M and S strain across time-

point. The expression (log2 fold change t0) of each transcript for both S and M strain is shown

on the y-axis (labeled as S strain) and the x-axis (labeled as M strain), respectively. Blue dots

represent the expression of all transcripts at 30m in sporulation. Red dots represent their ex-

pression at all the other time-points during sporulation, as indicated. Red line indicates the

normal line expected if there was a 100% correlation between the x-axis and y-axis. In 30 min,

correlation of expression values between the two strains is high, but the spread keeps on in-

creasing as time progresses.

(PDF)

S6 Fig. Expression of sporulation genes in the presence ofMKT1(89G). Boxplot showing en-

richment of sporulation genes in M strain in comparison to S strain. P = 1.96 x 10–37 (permuta-

tion P = 0.16).

(PDF)

S7 Fig. Expression profiles for landmark meiotic genes: IME1, NDT80, CLB5 and DIT1. (A)

Sporulation cascade and temporal heat map of meiotic regulators in M and S strains. (B) The

expression (log2 fold change t0) for the meiotic landmark genes is given in the y-axis and the x-

axis denotes the time in sporulation medium. Blue line represents the expression of the respec-

tive gene in S strain and red line is the same in M strain.

(PDF)

S8 Fig. Expression profile for DAL82. The expression (log2 fold change t0) of DAL82 is given

in the y-axis and the x-axis denotes the time in sporulation medium. Blue line represents the

expression of DAL82 in S strain and red line is its expression in M strain.

(PDF)
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S9 Fig. Heatmaps showing differentially expressed target genes of DAL82 and RTG1.Heat-

maps showing expression profiles for the differentially expressed targets genes of DAL82 and

RTG1 in M and S strain during the course of sporulation (x-axis). These are the same genes as

shown Fig 4 and mentioned in S8 Table.

(PDF)

S10 Fig. Heatmaps showing all the target genes of PUF3, DAL82 and RTG1.Heatmap show-

ing expression profiles for all the known target genes of PUF3 as given in [44]. Only 13 of 214

genes are differentially expressed, and none of them during early time-points. Heatmaps show-

ing expression profiles for all the target genes of RTG3 and DAL82, in M and S strain. The list

of target genes was obtained from YEASTRACT [76]

(PDF)

S1 Table. Background SNPs.

(XLS)

S2 Table. Normalized expression data.

(XLS)

S3 Table. Smoothed normalised expression data (locfit).

(XLS)

S4 Table. Differentially expressed transcripts (EDGE).

(XLS)

S5 Table. Genes in each cluster (TimeClust).

(XLS)

S6 Table. Unique early (Cluster I) genes of the M strain.

(XLS)

S7 Table. Transcription factors regulating unique early (Cluster I) genes of the M strain.

(XLS)

S8 Table. Expression values of differentially expressed target genes of RTG1 and DAL82 in

early time points in the M and S strains.

(XLS)

S9 Table. Strain names.

(XLS)

S10 Table. Primer names.

(XLS)

S1 Text. Supporting methods.

(PDF)

S1 File. Modeling analysis for progression through meiotic phases.

(ZIP)

S2 File. Sporulation efficiency data and analysis.

(ZIP)

S3 File. R scripts for expression data analysis.

(ZIP)
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