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Abstract In this article, the compound Poisson process of order k (CPPoK) is introduced and

its properties are discussed. Further, using mixture of tempered stable subordinators (MTSS)

and its right continuous inverse, the two subordinated CPPoK with various distributional prop-

erties are studied. It is also shown that the space and tempered space fractional versions of

CPPoK and PPoK can be obtained, which generalize the process defined in [Statist. Probab.

Lett. 82 (2012), 852–858].
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1 Introduction

The Poisson process has been the conventional model for count data analysis, and

due to its popularity and applicability various researchers have generalized it in sev-

eral directions; e.g., compound Poisson processes, weighted Poisson distributions,

fractional (time-changed) versions of Poisson processes (see [6, 21, 13, 2, 1], and

references therein). A handful of researchers have also studied the distributions and

processes of order k in [11, 23, 18]. In particular, the discrete distribution of order

k, introduced by Philippou et al. (see [24]), includes binomial, geometric and nega-

tive binomial distributions of order k. These distributions play an important role in
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several areas, such as reliability, statistics, finance, and actuarial risk analysis (see

[19, 29, 4]).

In risk theory, the total claim amount is usually modeled by using a compound

Poisson process, say Zt =
∑N(t)

i=1 Yi , where the compounding random variables Yi

are iid and the number of claims N(t), which are independent of {Yi}i≥1, follows

the Poisson distribution. Due to the restriction of single arrival in each inter-arrival

time, the model is not suitable to use. Kostadinova and Minkova [10] introduced a

Poisson process of order k (PPoK), which allows us to model the arrival in a group of

size k. Recently, a time-changed version of Poisson processes of order k is studied by

[29], which allows group arrivals and also accommodates the case of extreme events,

which was not covered by [10]. In spite of its applicability, we observe that this model

does not cover the phenomenon of underdispersion, where the variance is less than

the mean (see [25, 32] and references therein). Therefore, a generalization of this

model is essentially required and is proposed in this article.

To the best of our knowledge, such a generalization is not yet studied. There-

fore, we introduce the compound Poisson process of order k (CPPoK) with the help

of the Poisson process of order k (PPoK) and study its distributional properties. Re-

cently, tempered stable processes and their inverses have been widely used for time-

change (subordination) as their moments are finite and hence various real-life sit-

uations can be modeled easily (see [12, 26, 20]). Various versions of Poisson pro-

cesses, using subordination like space and time-fractional Poisson processes have

been studied in the literature (see [22, 17]). Hence, it is worth exploring the time-

change of CPPoK with a special type of Lévy subordinator known as mixture of

tempered stable subordinators, its right continuous inverse, and analyze some prop-

erties of these time-changed processes. These processes also generalize the process

discussed in [22].

The article is organized as follows. In Section 2, we introduce CPPoK and de-

rive some of its general properties along with martingale characterization property.

In Section 3, we introduce two types of CPPoK with the help of MTSS and its

right continuous inverse. Further we derive some important distributional proper-

ties.

Acronym

PoK Poisson distribution of order k

PPoK Poisson process of order k

PP Poisson process

CPPoK Compound Poisson process of order k

FDD Finite-dimensional distribution

IID Independent and identically distributed

MTSS Mixture of tempered stable subordinators

TCPPoK Time changed compound Poisson process of order k

pmf Probability mass function

pgf Probability generating function

LRD Long-range dependence
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2 Compound Poisson process of order k and its properties

2.1 Compound Poisson process of order k

In this section, we introduce CPPoK and derive its distributional properties. First, we

define the Poisson distribution of order k.

Definition 1 ([23]). Let N (k) ∼ PoK(λ), the Poisson distribution of order k (PoK)

with rate parameter λ > 0, then the probability mass function (pmf) of N (k) is given

by

P[N (k) = n] =
∑

x1,x2,...,xk≥0
∑k

j=1 jxj =n

e−kλ λx1+x2+..+xk

x1!x2!...xk!
, n = 0, 1, . . . ,

where the summation is taken over all non-negative integers x1, x2, . . . , xk such that

x1 + 2x2 + · · · + kxk = n.

Philippou [23] showed the existence of PoK as a limiting distribution of negative

binomial distribution of order k. Kostadinova and Minkova [10] later generalized PoK

to evolve over time, in terms of a process which can be defined as follows.

Definition 2 ([10]). Let {N(t)}t≥0 denote PP(kλ), the Poisson process with rate pa-

rameter kλ, and {Xi}i≥1 be a sequence of independent and identically distributed

(IID) discrete uniform random variables with support on {1, 2, . . . , k}. Also, assume

that {Xi}i≥1 and {N(t)}t≥0 are independent. Then {N (k)(t)}t≥0, defined by N (k)(t) =
∑N(t)

i=1 Xi is called the Poisson process of order k (PPoK) and is denoted by PPoK(λ).

However, the clumping behavior associated with the random phenomenon in [8]

cannot be accommodated by PPoK [10]. Hence, there is a need to generalize this

notion as well. Now we propose the following generalization of PPoK.

Definition 3. Let {N (k)(t)}t≥0 be the PPoK(λ) and {Yi}i≥1 be a sequence of IID ran-

dom variables, independent of N (k)(t), with cumulative distribution function (CDF)

H . Then the process {Z(t)}t≥0 defined by Z(t) =
∑N (k)(t)

i=1 Yi is called the compound

Poisson process of order k (CPPoK) and is denoted by CPPoK(λ,H).

From the definition, it is clear that:

(i) for k = 1, {Z(t)}t≥0 is CPP(λ,H) the usual compound Poisson process.

(ii) for H = δ1, the Dirac measure at 1, {Z(t)}t≥0 is PPoK(λ).

(iii) for k = 1 and H = δ1, {Z(t)}t≥0 is PP(λ).

Next, we present a characterization of CPPoK(λ,H), in terms of the finite-dimen-

sional distribution (FDD).

Theorem 1. Let {Z(t)}t≥0 be as defined in Definition 3. Then the FDD, denoted as

FZ(t1),...,Z(tn)(y1, . . . , yn) = P[Z(t1) ≤ y1, . . . , Z(tn) ≤ yn] has the following form

FZ(t1),...,Z(tn)(y1, . . . , yn) =
∑

j1,...jn

n
∏

l=1

pjl
(�tl)

∫ v1

−∞
. . .

∫ vn

−∞

n
∏

m=1

h
∗jm

Y1
(xm)dxm,

(1)
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where the summation is taken over all non-negative integers ji ≥ 0, i = 1, 2, . . . , n,

vk = yk −
∑k−1

l=1 xl, k = 1, . . . , n, �tl = tl − tl−1, h is the density/pmf of H , pjl
is

the pmf of PPoK(λ), and (∗jn) represents the jn-fold convolution.

Proof. Let 0 = t0 ≤ t1 ≤ · · · ≤ tn = t be the partition of [0, t]. Since, the

increments of {N (k)(t)} are independent and stationary, we can write N (k)(ti) =
∑i

l=1 N (k)(�tl), i = 1, . . . , n, and P[N (k)(t) = j ] = pj (t), j = 0, 1, . . ..

FZ(t1),...,Z(tn)(y1, . . . , yn) = P

[N (k)(t1)
∑

i=1

Yi ≤ y1, . . . ,

N (k)(tn)
∑

i=1

Yi ≤ yn

]

=
∑

j1,...jn

P

[ j1
∑

i=1

Yi ≤ y1, . . . ,

∑n
l=1 jl
∑

i=1

Yi ≤ yn

] n
∏

l=1

pjl
(�tl)

Let us denote
∑j1

i=1 Yi = Y(j1), . . . ,
∑j1+···+jn

i=j1+···+jn−1+1 Yi = Y(jn), then it becomes

FZ(t1),...,Z(tn)(y1, . . . , yn)

=
∑

j1,...jn

n
∏

l=1

pjl
(�tl)P

[

Y(j1) ≤ y1, . . . ,

n
∑

l=1

Y(jl) ≤ yn

]

=
∑

j1,...jn

n
∏

l=1

pjl
(�tl)

∫ y1

−∞
. . .

∫ yn−
∑n−1

l=1 xl

−∞

n
∏

m=1

h
∗jm

Y1
(xm)dxm

=
∑

j1,...jn

n
∏

l=1

pjl
(�tl)

∫ v1

−∞
. . .

∫ vn

−∞

n
∏

m=1

h
∗jm

Y1
(xm)dxm.

Remark 1. For n = 1, (1) reduces to P[Z(t) ≤ y] =
∑∞

j=0 pj (t)
∫ y

−∞ h
∗j

Y1
(x)dx,

which is the marginal distribution of CPPoK(λ, H).

Remark 2. For n = 1 and H has discrete distribution, the probability mass function

(pmf) of CPPoK(λ,H), denoted as P[Z(t) = n] = Pn(t) is given as

Pn(t) = P[Z(t) = n] =
∞
∑

m=0

pm(t)h∗m
Y1

(n),

where pm(t) = P[N (k)(t) = m], the pmf of PPoK(λ) and, h∗m
Y1

is the m-fold convolu-

tion of pmf of Y1. Difference-differential equation satisfied by the pmf of CPPoK(λ,H)

is given as

d

dt
Pn(t) =

∞
∑

m=0

h∗m
Y1

(n)
d

dt
pm(t) =

∞
∑

m=0

h∗m
Y1

(n)

[

−kλpm(t) + λ

m∧k
∑

j=1

pm−j (t)

]

with the initial condition Pn(0) = h∗m
Y1

(n), n = 1, 2, . . . and P0(0) = h∗m
Y1

(0) and

m ∧ k = min(m, k).
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Next, we present some examples of CPPoK(λ,H) by taking different distribution

of H .

Example 1. Let H has geometric distribution with parameter p ∈ (0, 1]. Then the

marginal distribution of CPPoK(λ,H) is given as

FZ(t)(y) = P[Z(t) ≤ y] =
∞
∑

j=0

pj (t)

∫ y

−∞
h

∗j
Y1

(x)dx

=
∞
∑

j=0

I1−p(j, y + 1)pj (t),

where Ix = B(x;a,b)
B(a,b)

, 0 < x < 1 is the regularized incomplete beta function,

B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1 is the incomplete beta function.

Example 2. Let H has exponential distribution with parameter μ > 0. Then the

marginal distribution of CPPoK(λ,H) is given as

FZ(t)(y) = P[Z(t) ≤ y] =
∞
∑

j=0

pj (t)

∫ y

−∞
h

∗j
Y1

(x)dx

=
∞
∑

j=0

γ (j, μy)

(j − 1)!
pj (t),

where γ (s, x) =
∫ x

0
e−t t s−1dt, x ≥ 0 is the incomplete gamma function.

Here we plot the pmf of the considered process when Yi ∼ Geo(p), p ∈ (0, 1].
Fix t = 1, λ = 1, p = 0.5, and k = 1.

Fig. 1. Plot for P[Z(t) = n]

Theorem 2. The mean, variance and covariance of the process {Z(t)}t≥0 can be

expressed as

(i) E[Z(t)] = E[Y ]E[N (k)(t)],

(ii) Var[Z(t)] = Var(Y )E[N (k)(t)] + E[Y ]2Var(N (k)(t)).

(iii) Cov[Z(s), Z(t)] = Var(Y )E[N (k)(s ∧ t)] +E[Y ]2Var[N (k)(s ∧ t)], where s ∧
t = min(s, t).



400 A.S. Sengar, N.S. Upadhye

Proof. E[Z(t)] = E[
∑N (k)(t)

i=1 Yi] = E[Y ]E[N (k)(t)] = k(k+1)
2

λtE[Y ]. Hence, part

(i) is proved.

Next, we derive the expression for variance of Z(t). Let pn(t) be the pmf of

PPoK(λ). Then

Var[Z(t)] = E[Z(t) − E[Z(t)]]2

=
∞
∑

n=0

E[[Z(t) − E[Z(t)]]2|Nk(t) = n]pn(t)

=
∞
∑

n=0

E

[

Sn − E[Y ]E[N (k)(t)]
]2

pn(t), where Sn =
n

∑

i=1

Yi

=
∞
∑

n=0

E[(Sn − nE[Y ]) + (nE[Y ] − E[Y ]E[N (k)(t)])]2pn(t)

=
∞
∑

n=0

[

Var(Sn) + E[Y ]2
E[n − E[N (k)(t)]]2

]

pn(t)

= Var(Y )E[N (k)(t)] + E[Y ]2Var(N (k)(t)),

which proves part (ii).

Now, in order to derive the covariance term, first we evaluate E[Z(s)Z(t)]. So

E[Z(s)Z(t)] = E[Z(s)]E[Z(t) − Z(s)] + E[Z(s)2]
= E[Z(s)]E[Z(t) − Z(s)] + Var[Z(s)] + E[Z(s)]2

Therefore,

Cov(Z(s), Z(t)) = E[Z(s)Z(t)] − E[Z(s)]E[Z(t)]
= Var(Y )E[N (k)(s ∧ t)] + E[Y ]2Var[N (k)(s ∧ t)],

hence, part (iii) is proved.

Remark 3. Now we present the mean and covariance formula for some specific cases

of CPPoK(λ,H) that we discussed in Definition 3.

S. No. CPPoK(λ, H) Mean Covariance Variance

1. For H = δ1 E[N (k)(t)] Var[N (k)(s ∧ t)] Var[N (k)(t)]
2. For k = 1 E[Y ]E[N(t)] E[Y 2]E[N(s ∧ t)] E[Y 2]E[N(t)]
3. For H = δ1 and k = 1 E[N(t)] Var[N(s ∧ t)] Var[N(t)]

From this table, we make the following observations.

1. For H = δ1, it reduces to mean and covariance formula for PPoK(λ) (see [29]).

2. For k = 1, it reduces to mean and covariance formula for CPP(λ,H).

3. For H = δ1 and k = 1, it reduces to mean and covariance formula for PP(λ).

Further we present the plots of mean and variance when Yi ∼ exp(μ), μ > 0 for

different setting of parameters. Fix t = 10.
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Fig. 2. Plots for mean and variance

2.2 Index of dispersion

In this subsection, we are going to discuss the index of dispersion of CPPoK(λ,H).

Definition 4 ([16]). The index of dispersion for a counting process {Z(t)}t≥0 is de-

fined by

I (t) =
Var[Z(t)]
E[Z(t)]

.

Then the stochastic process {Z(t)}t≥0 is said to be overdispersed if I (t) > 1, under-

dispersed if I (t) < 1, and equidispersed if I (t) = 1.

Alternatively, Definition 4 can be interpreted as follows. A stochastic process

{Z(t)}t≥0 is over(under)-dispersed if Var[Z(t)] − E[Z(t)] > 0(< 0). Therefore, we

first calculate

Var[Z(t)] − E[Z(t)] =
k(k + 1)

2
λt

[

Var[Y ] − E[Y ] +
(2k + 1)

3
E[Y ]2

]

=
k(k + 1)

2
λt

[

E[Y 2] − E[Y ] +
2k − 2

3
E[Y ]2

]

. (2)

From the above definition, the following cases arise:

(i) If Y ′
i s are over and equidispersed, then CPPoK(λ,H) exhibits overdispersion.

(ii) If Y ′
i s are underdispersed with non-negative integer valued random variable

i.e., [E(Y 2) − E(Y )] ≥ 0, then CPPoK(λ,H) shows overdispersion.

(iii) If Y ′
i s are underdispersed, then CPPoK(λ,H) may show over, equi and under-

dispersion.

Further we present some examples to discuss the index of dispersion.

Example 3. If Yi ∼ exp(μ), where μ > 0, then (2) becomes

Var[Z(t)] − E[Z(t)] =
k(k + 1)

2μ
λt

[

1

μ

(

2k + 4

3

)

− 1

]

.

(a) If 0 < μ ≤ 1, then CPPoK(λ,H) exhibits overdispersion.
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(b) If 1 < μ < 2k+4
3

, then CPPoK(λ,H) shows overdispersion.

(c) If μ = 2k+4
3

, then CPPoK(λ,H) shows equidispersion.

(d) If μ > 2k+4
3

, then CPPoK(λ,H) shows underdispersion.

Example 4. If Yi ∼ Geo(p), where p ∈ (0, 1], then (2) becomes

Var[Z(t)] − E[Z(t)] =
k(k + 1)λt

2

(

1 − p

p

)2 [

1 +
2k + 1

3

]

.

If 0 < p < 1, then CPPoK(λ,H) exhibits overdispersion.

2.3 Long range dependence

In this subsection, we prove the long-range dependence (LRD) property for the

CPPoK(λ,H). There are several definitions available in literature. We used the defi-

nition given in [15].

Definition 5 ([15]). Let 0 ≤ s < t and s be fixed. Assume a stochastic process

{X(t)}t≥0 has the correlation function Corr[X(s),X(t)] that satisfies

c1(s)t
−d ≤ Corr[X(s),X(t)] ≤ c2(s)t

−d ,

for large t, d > 0, c1(s) > 0 and c2(s) > 0. i.e.,

lim
t→∞

Corr[X(s),X(t)]
t−d

= c(s)

for some c(s) > 0 and d > 0. We say that, X(t) has the long-range dependence

(LRD) property if d ∈ (0, 1) and short-range dependence (SRD) property if d ∈
(1, 2).

Proposition 2.1. The CPPoK(λ,H) has the LRD property.

Proof. Let 0 ≤ s < t . Consider

Corr[Z(s), Z(t)] =
Cov[Z(s), Z(t)]

√
Var[Z(s)]Var[Z(t)]

,

=

√

√

√

√

k(k+1)
2

λsVar(Y ) + k(k+1)(2k+1)
6

λsE[Y ]2

k(k+1)
2

λtVar(Y ) + k(k+1)(2k+1)
6

λtE[Y ]2
, from Theorem 2

= c(s)t−1/2, (3)

where, 0 < c(s) =
√

k(k+1)
2 λsVar(Y )+ k(k+1)(2k+1)

6 λsE[Y ]2

k(k+1)
2 λVar(Y )+ k(k+1)(2k+1)

6 λE[Y ]2
, which decays like the power

law t−1/2. Hence CPPoK(λ,H) has LRD property.

Corollary 1. Let Yi ≡ 1, then CPPoK(λ,H) reduces to PPoK(λ) and Corr[Z(s),

Z(t)] becomes s1/2t−1/2. Hence LRD property also holds for PPoK (see

[29, Lemma 3.1]).
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2.4 Martingale characterization for CPPoK

It is well known that the martingale characterization for homogeneous Poisson pro-

cess is called Watanabe theorem (see [5]). Now, we extend this theorem for

CPPoK(λ,H), where H is discrete distribution with support on Z
+ and for this,

we need following two lemmas.

Lemma 1. Let D(t) =
∑N(t)

j=1 Xj , t ≥ 0 be the compound Poisson process, where

{N(t)}t≥0 is PP(kλ) and {Xj }j≥1 are non-negative IID random variable, indepen-

dent from {N(t)}t≥0, with pmf P(Xj = i) = αi, (i = 0, 1, 2, . . . , j = 1, 2, . . .).

Then {D(t)}t≥0 can be represented as

D(t)
d=

∞
∑

i=1

iZi(t), t ≥ 0,

where, Zi(t), i = 1, 2, . . . are independent PP(kλαi), and the symbol
d= denotes the

equality in distribution.

Proof. We prove this lemma by showing that the probability generating function

(pgf ) of L.H.S. and R.H.S. coincides. Let GD(t)(u) is the pgf of {D(t)}t≥0, then

GD(t)(u) = E[uD(t)] =
∞
∑

n=0

E[uX1 ]nP[N(t) = n]

= exp[−λkt (1 − E[uX])]

= exp

[

λkt

∞
∑

j=1

αj (u
j − 1)

]

.

Now we compute the pgf of
∑∞

i=1 iZi(t), i.e.,

E[u
∑∞

i=1 iZi (t)] =
∞
∏

i=1

E[uiZi(t)]

=
∞
∏

i=1

∞
∑

ni=0

uiniP[Zi(t) = ni]

=
∞
∏

i=1

∞
∑

ni=0

uini e−kλαi t
(kλαi t)

ni

ni !

= exp

[

λkt

∞
∑

i=1

αi(u
i − 1)

]

.

Hence, this lemma is proved.

Lemma 2. The pgf of Z(t) =
∑N (k)(t)

i=1 Yi, t ≥ 0 has the following form

GZ(t)(u) = exp

⎡

⎣λkt

∞
∑

j1=1

q
(1)
j1

+ q
(2)
j1

+ · · · + q
(k)
j1

k
(uj1 − 1)

⎤

⎦ ,
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where Yi, i = 1, 2, . . . are non-negative integer valued IID random variables with

P[Yi = n] = qn, n = 0, 1, . . ..

Proof. Let GN (k)(t)(u) is the pgf of {N (k)(t)}t≥0, which is given by (see [29, Remark

2.2])

GN (k)(t)(u) = exp[−kλt + λt{u + u2 + · · · + uk}].

The pgf of {Z(t)}t≥0, denoted as GZ(t)(u) = E[uZ(t)], is then given by

GZ(t)(u) = exp[λt{GY (u) + · · · + G∗k
Y (u)} − kλt], where GY (u) = E[uY ]

= exp

⎡

⎣λt

⎧

⎨

⎩

∞
∑

j1=0

qj1
uj1 +

∞
∑

j1=0

q∗2
j1

uj1 + · · · +
∞
∑

j1=0

q∗k
j1

uj1

⎫

⎬

⎭

− kλt

⎤

⎦

= exp

⎡

⎣λt

⎧

⎨

⎩

∞
∑

j1=0

qj1
uj1 + · · · +

∞
∑

j1=0

. . .

jk−1
∑

jk=0

qjk
. . . qj1−j2

uj1

⎫

⎬

⎭

− kλt

⎤

⎦

Let us denote q
(n)
j1

=
n

∏

m=2

jm−1
∑

jm=0

qjnqjn−1−jn . . . qj1−j2
, n = 1, . . . , k.

= exp

⎡

⎣λt

∞
∑

j1=0

q
(1)
j1

(uj1 − 1) + · · · + λt

∞
∑

j1=0

q
(k)
j1

(uj1 − 1)

⎤

⎦

= exp

⎡

⎣λkt

∞
∑

j1=1

q
(1)
j1

+ q
(2)
j1

+ · · · + q
(k)
j1

k
(uj1 − 1)

⎤

⎦ .

Remark 4. Set αj1
=

q
(1)
j1

+···+q
(k)
j1

k
, j1 = 0, 1, 2, . . .. Substituting αj1

in Lemma 1, we

get the following relation

D(t)
d=

∞
∑

i=1

iZi(t)
d=

N (k)(t)
∑

i=1

Yi, t ≥ 0, (4)

where Y ′
i s are non-negative integer valued random variables and N (k)(t) is PPoK(λ).

Theorem 3. Let {Z(t)}t≥0 be the Ft -adapted stochastic process, where {Ft } is non-

decreasing family of sub-sigma algebras. Then {Z(t)}t≥0 is a CPPoK(λ,H), where

H is discrete distribution with support on Z
+ iff process M(t)= Z(t)− k(k+1)

2
λtE[Y ],

t ≥ 0 is an Ft martingale.

Proof. Let {Z(t)}t≥0 be the Ft adapted stochastic process. If {Z(t)}t≥0 is a com-

pound Poisson process of order k, then

E[M(t)|Fs] = E[Z(t) −
k(k + 1)

2
λtE[Y ]|Fs], 0 ≤ s ≤ t.
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= E[Z(t)|Fs] −
k(k + 1)

2
λtE[Y ]

= E[Z(t) − Z(s)|Fs ] + E[Z(s)|Fs] − k(k + 1)

2
λtE[Y ]

= E[Z(t) − Z(s)] + Z(s) −
k(k + 1)

2
λtE[Y ]

= Z(s) −
k(k + 1)

2
λsE[Y ] = M(s).

Hence, the process {M(t)}t≥0 is Ft martingale.

Since in Remark 4 it is shown that
∑∞

i=1 iZi(t)
d=

∑N (k)(t)
i=1 Yi , then the other part

easily follows using [31, Theorem 5.2].

Remark 5. We know that CPP is a Lévy process and in (4) it is proved that CPPoK

is equal in distribution to {D(t)}t≥0. Hence, CPPoK is also a Lévy process and hence

infinitely divisible.

Remark 6. The characteristic function of CPPoK(λ,H) can be written as

E[eiwZ(t)] = exp

[

t

∞
∑

j=1

(eiwj − 1)kλαj

]

, (5)

where, αj , j = 1, 2, . . . are as defined in Remark 4, and kλαj = νj is called the Lévy

measure of CPPoK(λ,H).

1. For K = 1, (5) reduces to E[eiwZ(t)] = exp[t
∑∞

j=1(e
iwj − 1)λαj ], which is

the characteristic function of CPP(λ,H).

2. For H = δ1, (5) reduces to E[eiwZ(t)] = exp[λkt
∑k

j=1(
eiwj

k
− 1)], which is

the characteristic function of PPoK(λ).

3. For H = δ1 and k = 1, (5) reduces to E[eiwZ(t)] = exp[λt(eiw − 1)], which is

the characteristic function of PP(λ).

3 Main results

In this section, we recall the definitions of Lévy subordinator and its first exit time.

Further, we define the subordinated versions of CPPoK(λ,H) and discuss their prop-

erties.

3.1 Lévy subordinator

A Lévy subordinator {Df (t)}t≥0 is a one-dimensional non-decreasing Lévy process

whose Laplace transform (LT) can be expressed in the form (see [3])

E[e−λDf (t)] = e−tf (λ), λ > 0,

where the function f : [0,∞) → [0,∞) is called the Laplace exponent and

f (λ) = bλ +
∫ ∞

0

(1 − e−λx)ν(dx), b ≥ 0.
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Here b is the drift coefficient and ν is a non-negative Lévy measure on positive half-

line satisfying

∫ ∞

0

(x ∧ 1)ν(dx) < ∞ and ν([0,∞)) = ∞,

which ensures that the sample paths of Df (t) are almost surely (a.s.) strictly in-

creasing. Also, the inverse subordinator {Ef (t)}t≥0 is the first exit time of the Lévy

subordinator {Df (t)}t≥0, and it is defined as

Ef (t) = inf{r ≥ 0 : Df (r) > t}, t ≥ 0.

Next, we study CPPoK(λ,H) by taking subordinator as mixture of tempered stable

subordinators (MTSS).

3.2 CPPoK time changed by mixtures of tempered stable subordinators

The mixtures of tempered stable subordinators (MTSS) {Sμ1,μ2
α1,α2

(t)}t≥0 is a Lévy pro-

cess with LT (see [7])

E[e−sS
μ1,μ2
α1,α2

(t)] = exp{−t (c1((s + μ1)
α1 − μ

α1

1 ) + c2((s + μ2)
α2 − μ

α2

2 ))}, s > 0,

where c1 + c2 = 1, c1, c2 ≥ 0, μ1, μ2 > 0 are tempering parameters and α1, α2 ∈
(0, 1) are stability indices. The function f (s) = c1((s + μ1)

α1 − μ
α1

1 ) + c2((s +
μ2)

α2 − μ
α2

2 ) is the Laplace exponent of MTSS. It can also be represented as sum of

two independent tempered stable subordinators S
μ1
α1

(t) and S
μ2
α2

(t) as

Sμ1,μ2
α1,α2

(t) = Sμ1
α1

(c1t) + Sμ2
α2

(c2t), c1, c2 ≥ 0.

The mean and variance of MTSS are given as

E[Sμ1,μ2
α1,α2

(t)] = t (c1α1μ
α1−1
1 + c2α2μ

α2−1
2 ), (6)

Var[Sμ1,μ2
α1,α2

(t)] = t (c1α1(1 − α1)μ
α1−2
1 + c2α2(1 − α2)μ

α2−2
2 ). (7)

Definition 6. Let {Sμ1,μ2
α1,α2

(t)}t≥0 be the Lévy subordinator satisfying

E[Sμ1,μ2
α1,α2

(t)ρ] < ∞ for all ρ > 0. Then the time-changed CPPoK(λ,H), denoted by

TCPPoK(λ,H, S
μ1,μ2
α1,α2

) is defined as

Z1(t) = Z(Sμ1,μ2
α1,α2

(t)) =
N (k)(S

μ1,μ2
α1,α2

(t))
∑

i=1

Yi, t ≥ 0,

where {Z(t)}t≥0 is CPPoK(λ,H), independent from {Sμ1,μ2
α1,α2

(t)}t≥0.

Remark 7. If α1 = α2 = α, and μ1 = μ2 = 0, then MTSS becomes α-stable sub-

ordinator, reducing Z1(t) to TCPPoK(λ,H, Sα), which we call as space fractional

CPPoK and written as

Z(Sα(t)) =
N (k)(Sα(t))

∑

i=1

Yi, t ≥ 0.
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Let Y ′
i s ≡ 1, then Z(Sα(t)) reduces to space fractional PPoK, denoted as

PPoK(λ, Sα). Its pgf is given as

GZ1(t)(u) = e
[−tλα(k−

∑k
j=1 uj )α]

, t ≥ 0.

It can be seen as extension of space fractional Poisson process (see [22]).

Remark 8. If α1 = α2 = α, and μ1 = μ,μ2 = 0, then MTSS reduces to tempered α-

stable subordinator and Z1(t) becomes tempered space fractional CPPoK, denoted

as TCPPoK(λ,H, S
μ
α ), can be written as

Z(Sμ
α (t)) =

N (k)(S
μ
α (t))

∑

i=1

Yi, t ≥ 0,

where μ > 0 is tempering parameter. Substituting Y ′
i s ≡ 1, it becomes tempered

space fractional PPoK, denoted as PPoK(λ, S
μ
α ).

Theorem 4. The finite dimensional distribution of TCPPoK(λ,H, S
μ1,μ2
α1,α2

) has the

following form

FZ1(t1),...,Z1(tn)(y1, . . . , yn) =
∑

j1,...jn

n
∏

l=1

qjl
(�tl)

∫ v1

−∞
. . .

∫ vn

−∞

n
∏

m=1

h
∗jm

Y1
(xm)dxm,

(8)

where the summation is taken over all non-negative integers ji ≥ 0, i = 1, 2, . . . , n,

�tl = tl − tl−1, vk = yk −
∑k−1

l=1 xl, k = 1, . . . , n, h is the density of H , and

qj (t) = P[N (k)(S
μ1,μ2
α1,α2

(t)) = j ], where {Sμ1,μ2
α1,α2

(t)}t≥0 is the MTSS and {N (k)(t)}t≥0

is PPoK(λ).

Proof. The result easily follows from the proof of Theorem 1.

Now, we present some distributional properties of TCPPoK(λ,H, S
μ1,μ2
α1,α2

).

Theorem 5. Let 0 < s ≤ t < ∞. Then the mean and covariance function of

TCPPoK(λ,H, S
μ1,μ2
α1,α2

) are given as

(i) E[Z1(t)] = E[Z(1)]E[Sμ1,μ2
α1,α2

(t)],

(ii) Cov[Z1(s), Z1(t)] = E[Z(1)]2Var[Sμ1,μ2
α1,α2

(s)] + E[Sμ1,μ2
α1,α2

(s)]Var[Z(1)].

On putting s = t in part (ii), we can get the expression for variance of TCPPoK(λ,H,

S
μ1,μ2
α1,α2

).

Proof. The proof follows from (see [14, Theorem 2.1]).

Remark 9. Here are some specific cases of mean and covariance for CPPoK(λ,H,

S
μ1,μ2
α1,α2

) that we discussed in Definition 3.

(a) For H = δ1, (i) reduces to E[Z1(t)] = E[N (k)(1)]E[Sμ1,μ2
α1,α2

(t)] and (ii) reduces

to Cov[Z1(s), Z1(t)]=E[N (k)(1)]2Var[Sμ1,μ2
α1,α2

(s)]+E[Sμ1,μ2
α1,α2

(s)]Var[N (k)(1)]
which is mean and covariance of TCPPoK-I as discussed in (see [29, Theorem

3.2]).
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(b) For k = 1, (i) reduces to E[Z1(t)] = λE[Y ]E[Sμ1,μ2
α1,α2

(t)] and (ii) reduces to

Cov[Z1(s), Z1(t)] = (λE[Y ])2Var[Sμ1,μ2
α1,α2

(s)] +E[Sμ1,μ2
α1,α2

(s)]λE[Y 2] which is

the mean and covariance of time-changed CPP(λ,H).

(c) For H = δ1 and k = 1, (i) reduces to E[Z1(t)] = E[N(1)]E[Sμ1,μ2
α1,α2

(t)]
and (ii) reduces to Cov[Z1(s), Z1(t)] = E[N(1)]2Var[Sμ1,μ2

α1,α2
(s)] +

E[Sμ1,μ2
α1,α2

(s)]Var[N(1)] which is the mean and covariance of time-changed

PP(λ).

Now, we discuss the index of dispersion for TCPPoK(λ,H, S
μ1,μ2
α1,α2

). For this, we

evaluate

Var[Z1(t)] − E[Z1(t)] = E[Z(1)]2Var[Sμ1,μ2
α1,α2

(t)]
+ E[Sμ1,μ2

α1,α2
(t)] {Var[Z(1)] − E[Z(1)]} . (9)

Since {Sμ1,μ2
α1,α2

(t)}t≥0 is a Lévy subordinator, therefore E[Sμ1,μ2
α1,α2

(t)] > 0. Thus the

following cases arises:

(i) If Z(1) is over/equidispersed, then TCPPoK(λ,H, S
μ1,μ2
α1,α2

) exhibits overdisper-

sion.

(ii) If Z(1) is underdispersed, then TCPPoK(λ,H, S
μ1,μ2
α1,α2

) may show over, under

and equidispersion.

Moreover, we discuss the index of dispersion by taking some example of

TCPPoK(λ,H, S
μ1,μ2
α1,α2

).

Example 5. When H has exponential distribution with parameter μ > 0, (9) be-

comes

Var[Z1(t)] − E[Z1(t)] =Var[Sμ1,μ2
α1,α2

(t)]
[

k(k + 1)λ

2μ

]2

+ E[Sμ1,μ2
α1,α2

(t)]× (10)

k(k + 1)λ

2μ

[

2k + 4

3μ
− 1

]

.

1. If 0 < μ ≤ 1, then Z(1) is overdispersed. Since the sample paths of Lévy sub-

ordinator S
μ1,μ2
α1,α2

(t) are strictly increasing (see [28, Theorem 21.3]), so

E[Sμ1,μ2
α1,α2

(t)] is positive, and both the terms of (10) is positive. Therefore Z1(t)

shows overdispersion.

2. If μ = 2k+4
3

, then Z(1) is equidispersed. Second term becomes zero but the

first terms of (10) is positive. Therefore Z1(t) shows overdispersion.

3. If μ > 2k+4
3

, then Z(1) is underdispersed. So the second term in (10) becomes

negative and the following cases arises

(a) if
[

k(k+1)λ
2μ

]2
Var[Sμ1,μ2

α1,α2
(t)] > E[Sμ1,μ2

α1,α2
(t)] k(k+1)λ

2μ

[

1 − 2k+4
3μ

]

, then

Z1(t) shows overdispersion.
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(c) if
[

k(k+1)λ
2μ

]2
Var[Sμ1,μ2

α1,α2
(t)] = E[Sμ1,μ2

α1,α2
(t)] k(k+1)λ

2μ

[

1 − 2k+4
3μ

]

, then

Z1(t) shows equidispersion.

(b) if
[

k(k+1)λ
2μ

]2
Var[Sμ1,μ2

α1,α2
(t)] < E[Sμ1,μ2

α1,α2
(t)] k(k+1)λ

2μ

[

1 − 2k+4
3μ

]

, then

Z1(t) shows underdispersion.

3.3 Long-range dependence

Now we analyze the LRD property for TCPPoK(λ,H, S
μ1,μ2
α1,α2

).

Theorem 6. Let {Z1(t)}t≥0 be the time-changed CPPoK(λ,H). It has the LRD prop-

erty.

Proof. We have E[Sμ1,μ2
α1,α2

(t)n] ∼ (c1α1λ
α1−1
1 + c2α2λ

α2−1
2 )ntn, as t → ∞, from [7].

Therefore

Var[Z1(t)] ∼ E[Sμ1,μ2
α1,α2

(t)]Var[Z(1)] ∼ Kt, (11)

where K = (c1α1λ
α1−1
1 + c2α2λ

α2−1
2 )Var[Z(1)].

Let 0 < s < t < ∞, then

Corr[Z1(s), Z1(t)] =
Cov[Z1(s), Z1(t)]√
Var[Z1(s)]Var[Z1(t)]

,

∼
√

Cov[Z1(s), Z1(t)]
t1/2

√
K

, from (11)

= c(s)t−1/2,

where c(s) =
√

Cov[Z1(s),Z1(t)]√
K

> 0. Hence from the Definition 5, TCPPoK(λ,H,

S
μ1,μ2
α1,α2

) captures LRD property.

3.4 CPPoK time changed by the first exit time of mixtures of tempered stable subor-

dinators

In this subsection, we consider CPPoK(λ,H) subordinated with first exit time of

MTSS and discuss the asymptotic behavior of its moments.

The first exit time of Lévy subordinator S
μ1,μ2
α1,α2

(t) also known as inverse subordi-

nator is defined as

Eμ1,μ2
α1,α2

(t) = inf{r ≥ 0 : Sμ1,μ2
α1,α2

(r) > t}, t ≥ 0.

Definition 7. Let {Z(t)}t≥0 be the CPPoK(λ,H) as discussed in Definition 3, then

the subordinated CPPoK with first exit time of MTSS, denoted as TCPPoK(λ,H,

E
μ1,μ2
α1,α2

) is defined as

Z2(t) = Z(Eμ1,μ2
α1,α2

(t)) =
N (k)(E

μ1,μ2
α1,α2

(t))
∑

i=1

Yi, t ≥ 0

where the process {Z(t)}t≥0 is independent from {Eμ1,μ2
α1,α2

(t)}t≥0.
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Remark 10. If μ1 = μ2 = 0, then E
λ1,λ2
α1,α2

(t) becomes inverse mixed stable subor-

dinator as discussed in [9], reducing Z2(t) to TCPPoK(λ,H,Eα1,α2
), which we call

as mixed fractional CPPoK and written as

Z2(t) =
N (k)(Eα1,α2

(t))
∑

i=1

Yi, t ≥ 0.

Proposition 3.1. The marginal distribution of TCPPoK(λ,H,E
μ1,μ2
α1,α2

) is given as

FZ2(t)(y) =
∫ ∞

0

FZ(x)(y)gE(x, t)dx,

where FZ(x)(y) =
∑∞

j=0 pj (x)
∫ y

−∞ h
∗j

Y1
(z)dz is the marginal distribution of

CPPoK(λ,H), and gE(x, t) is the density function of E
μ1,μ2
α1,α2

(t).

Proof. We prove this proposition by using the conditioning argument on E
μ1,μ2
α1,α2

(t).

Then the rest follows from Theorem 1.

Theorem 7. The mean and covariance function of TCPPoK(λ,H,E
μ1,μ2
α1,α2

) are given as

1. E[Z2(t)] = E[Z(1)]E[Eμ1,μ2
α1,α2

(t)],

2. Cov[Z2(s), Z2(t)] = Var[Z(1)]E[Eμ1,μ2
α1,α2

(s)] + E[Z(1)]2Cov[Eμ1,μ2
α1,α2

(s),

E
μ1,μ2
α1,α2

(t)].
Proof. The proof follows as given in [14, Theorem 2.1].

Now, we discuss the asymptotic behavior of moments of TCPPoK(λ,H,E
μ1,μ2
α1,α2

).

First we need the following Theorem (see [3, 30]).

Theorem 8 (Tauberian Theorem). Let l : (0,∞) → (0,∞) be a slowly varying

function at 0 (respectively ∞) and let ρ ≥ 0. Then for a function U : (0,∞) →
(0,∞), the following are equivalent.

1. U(x) ∼ xρ l(x)/Ŵ(1 + ρ), x → 0 (respectively x → ∞).

2. Ũ(s) ∼ s−ρ−1l(1/s), s → ∞ (respectively s → 0), where Ũ (s) is the LT of

U(x).

We know that LT of pth order moment of inverse subordinator {Ef (t)}t≥0 is given

by (see [16])

L [E(Ef (t))p] =
Ŵ(1 + p)

s(f (s))p
, p > 0,

where f (s) is the corresponding Bernstein function associated with Lévy subordina-

tor.

Proposition 3.2. The asymptotic form of mean and variance of {Z2(t)}t≥0 is given

as

E[Z2(t)] ∼ E[Z(1)]
t

c1α1λ
α1−1
1 + c2α2λ

α2−1
2

, as t → ∞.

Var[Z2(t)] ∼ Var[Z(1)]
t

c1α1λ
α1−1
1 + c2α2λ

α2−1
2

, as t → ∞.
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Proof. Let M̃(s) be the LT of E[Eμ1,μ2
α1,α2

(t)]. Then

M̃(s) = L [E[Eμ1,μ2
α1,α2

(t)]] =
1

s(c1((s + λ1)α1 − λ
α1

1 ) + c2((s + λ2)α2 − λ
α2

2 ))

∼
1

s2(c1α1λ
α1−1
1 + c2α2λ

α2−1
2 )

, as s → 0, (see [7]).

Then, by using Theorem 8, we have that

E[Z2(t)] = E[Z(1)]E[Eμ1,μ2
α1,α2

(t)]

∼ E[Z(1)]
t

c1α1λ
α1−1
1 + c2α2λ

α2−1
2

, as t → ∞.

Now we compute the asymptotic behavior of variance of {Z2(t)}t≥0. So

L [E(Eμ1,μ2
α1,α2

(t))2] =
2

s(c1((s + λ1)α1 − λ
α1

1 ) + c2((s + λ2)α2 − λ
α2

2 ))2

∼
2

s3(c1α1λ
α1−1
1 + c2α2λ

α2−1
2 )2

, as s → 0.

Therefore

VarZ2(t) = Var[Z(1)]E[Eμ1,μ2
α1,α2

(t)] + E[Z(1)]2Var[Eμ1,μ2
α1,α2

(t)]
= Var[Z(1)]E[Eμ1,μ2

α1,α2
(t)] + E[Z(1)]2{E[Eμ1,μ2

α1,α2
(t)2] − E[Eμ1,μ2

α1,α2
(t)]2}

∼ Var[Z(1)]
t

c1α1λ
α1−1
1 + c2α2λ

α2−1
2

, as t → ∞.

There are few studies available in the literature which consider underdispersion

phenomenon such as [27] uses hyper-Poisson regression model, [25] uses weighted

Poisson distribution, and [21] uses compound weighted Poisson distributions. In this

work, we have proposed a model accomodating more number of parameters, which

makes this model more flexible to use.
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