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Abstract 

Laminated polymer composite structures manufactured using conventional layup technique, are prone to edge delamination, 
which can be suppressed by wrap-around technique. Present study is in regard to understanding of the interlaminar normal 
stress distribution ahead of the delamination front with respect to delamination suppression. An initial delamination of 
symmetric composite laminates with and without wrap-around is considered for performing static analysis of these laminated 
composites structures using finite element analyses. Understanding of delamination parameter was further extended in terms of 
strain energy release rate utilizing modified crack closure integral technique for various virtual crack extension sizes. 
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1. Main text  

Delamination or interlaminar fracture of polymeric based structural composites is generally caused by high inter 
laminar stresses, that arises due to mismatch in elastic properties between plies and at free edge. Laminated 
composite structures manufactured by conventional lay-up technique are prone to edge delamination. The presence 
and growth of delamination in composite laminates may lead to severe reliability and safety problems, such as 
reduction of stiffness, strength and fatigue life, disintegration of the material etc. Therefore, understanding the 
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behaviour of stress and delamination is of critical importance in the assessment of structural integrity of composite 
materials and structures. Numerous investigators have studied free edge effects in finite width delaminated 
composite laminates subjected to uniaxial load because of the adverse effect of delamination on the structural 
integrity. Pagano et al. [1] and Pagano et al. [2] postulated that through the thickness stress or the interlaminar 
normal stress (ILNS) is the main cause of delamination for polymeric material based structural composites. The 
basis of this postulation is a combination of experiments and stress analyses for laminates with different stacking 
sequences. Sarvestani [3] have established an analytical method to exactly obtain the interlaminar stresses near the 
free edges of generally laminated composite plates under the extension and bending. Harikumar et al. [4] have 
studied the stress field ahead of the delamination tip and the strain-energy release rate (SERR) in symmetric 
composite laminates with mid-plane delamination subjected to mechanical and thermal strains with the aid of a 
modified form of the Whitney-Sun theory. The delamination is found to be sensitive to fiber orientation, laminate 
stacking sequence, and ply thickness as suggested by Herakovich [5], Herakovich [6], Rodin [7], and Kim [8]. For 
the prevention of edge delamination, several techniques have been proposed, such as free-edge cap reinforcement 
as suggested by Heyliger [9], free-edge stitching as suggested by Mignery [10] and Dransfield [11], hybridization 
as suggested by Kim [12], stacking method in balanced symmetrical laminates as suggested by Kim [13], wrap-
around technique as suggested by Rao [14], Choudhury et al. [15] and adhesive-layer reinforcement as suggested 
by Soni [16]. Raju [17] has obtained SERR for edge-delaminated composite laminates using quasi three-
dimensional finite element analysis and studied the problem of edge-delamination at the -35/90 interfaces of an 
eight ply [0/ 35/90]s, composite laminate subjected to uniform axial strain. Ye [18] has presented a representative 
model for delamination growth in composite laminates and a simple energy release rate model for delamination 
growth is established. Krueger [19] has presented an overview of the virtual crack closure technique. Schellekens 
et al. [20] have simulated free edge delamination of uniaxially stressed layered specimens using nonlinear finite 
element analysis. Venkatesha et al. [21] have proposed a generalized modified crack closure integral (GMCCI) 
algorithm for four and eight-noded isoparametric quadrilateral elements, which can estimate the SERR components 
for several sizes of virtual crack extension through a single finite element analysis. Haneef et al. [22] have carried 
out finite element analysis to analyze the delamination effect on composite structures with two models.  

In view of above, it is clear that excellent studies have been made on free edge effects and their suppression for 
uncapped and capped composite laminates. However, problems encountered with already delaminated composite 
structures (containing delamination at free edge) were not addressed properly. An understanding therefore is 
required to be developed on the behaviour of delaminated composite structures with and without wrap-around 

study is motivated by a requirement to develop an understanding on the above mentioned behavioural aspect. The 
present work aims at the studies of the effect of cap and wrap-around on reduction of stress concentration at crack 
tip which leads to the crack propagation. ANSYS has been used to develop models for laminates (+22/-22/90)s and 
perform Finite Element (FE) analyses. Although no formulation has been attempted for this study, an 
understanding on behavioural aspect of the delaminated composite structures is developed here. 

 
Nomenclature 

2B ply width 
L ply length 
Be  element thickness 
E11 longitudinal young modulus  
E22 transverse young modulus  
F  element nodal force 
U  relative displacements between points on the crack faces 
Fz nodal force in Z-direction 
Fx nodal force in X-direction 
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Fy nodal force in Y-direction
G12 longitudinal shear modulus
G23 transverse shear modulus
G stain energy release rate
GI strain energy release rate corresponding to mode-I failure
GII strain energy release rate corresponding to mode-II failure
GIII strain energy release rate corresponding to mode-III failure
GT total strain energy release rate
Uz nodal displacement in Z-direction
Ux nodal displacement in X-direction
Uy nodal displacement in Y-direction
h ply thickness
a length of delamination

a crack front extension
μ12

axial stain in X-direction

2. Theoretical background

SERR is a material characteristic, which is often used for determination of resistance to delamination growth in
terms of fracture toughness and elastic modulus. SERR is the energy dissipated during fracture per unit of newly 
created fracture surface area. SERR can be determined according to three particular modes of crack action viz.
Mode-I or opening mode, Mode-II or shearing mode and Mode-III or tearing mode as shown in Fig. 1. In the
present study, for determination of SERR following assumptions were considered, (a) the material in the lamina
comprising the laminate is homogeneous and orthotropic even though the lamina material is usually a fibre
reinforced system, (b) +22 and -22 fibres woven layer separated out as two different layers and (c) delamination
propagates in a self similar manner

Fig. 1. Basic modes of delamination

A practical computational procedure uses the definition of SERR in terms of the crack closure integral as
described by Rybicki & Kanninen [24] according to which, for linear materials, crack closure integral results from 
fact that if a crack extends by a small amount a, the energy release rate can be defined in terms of the work 
required to close the crack to its original length. Moreover, modified crack closure integral (MCCI) technique

Kanninen [24] was 
utilized in the past to estimate the SERR components for several sizes of virtual crack extension through a single 
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FE analysis. This scheme however, does not require a special singular element or knowledge of a stress singularity 
in the solution. In the present study the simple expressions developed by Rybicki & Kanninen [24] for 2D element 
has been modified for 3D solid element. Evaluation of SERR can be facilitated by using finite elements with nodal 
forces and expressing the work to close the crack extension in a form consistent with nodal forces and nodal 
displacements of the elements. The expression for Mode-I, Mode-II and Mode-III strain energy release rates are 
modified in the following equations: 

 
GI=[ (Fz)c(Uz)oj + (Fz)d(Uz)pk + (Fz)e(Uz)ql + (Fz)f(Uz)rm]/ [2Be a]     (1) 
 
GII=[ (Fx)c(Ux)oj + (Fx)d(Ux)pk + (Fx)e(Ux)ql + (Fx)b(Ux)ni + (Fx)f(Ux)rm]/ [2Be a]   (2) 
 
GIII=[ (Fy)c(Uy)oj + (Fy)d(Uy)pk + (Fy)e(Uy)ql + (Fy)b(Uy)ni + (Fy)f(Uy)rm]/ [2Be a]   (3) 
 
Where G is the strain energy release rate, F is the element nodal force, U is the relative displacements between 

points on the crack faces, a is the crack front extension and Be is the element thickness. The Illustration of finite 
element interface nodes near crack front is shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Illustration of finite element interface nodes near crack front 

3. Results and Discussion 

3.1. Finite Element Representation and Analyses in ANSYS 

Two delaminated models (with and without wrap-around) have been developed to study the effectiveness of 
wrap-around on delaminated composite laminates. Considering initial finite size of delamination at the critical 
interface (-22/90), FE models were represented for the composite laminates having the following lay-up 
specification and material specification by simulating tension test coupons which were experimentally studied by 
Rao [14]. Edge delaminations in the delaminated models with and without wrap-around are shown in Fig. 3(a, b) 
Lay-up specification (+22/-22/90)s (a) Orthotropic material Model: E11=142.20x109 Pa, E22= 7.27x109 Pa, 
G12=3.43x109 Pa, G23 = 2.85x109 Pa; μ12= 0.246 . The other specifications of laminates are that has been 
considered are, ply thickness (h) = 0.00014 m, width (2B) =140 h, axial strain = 1%, length of delamination 
(a) = 6h. The decency of the models with wrap-around is that no extra material layer is provided for wrap-around. 
Outer two plies of +220 and -220 fibre orientation run around the inner 900 plies. U-shaped delaminations are seen 
at the interface between -220 and 900 layers of the delaminated models with wrap-around as shown in Fig. 3(b).  
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.
Fig. 3. (a) Delaminated model without wrap-around and (b) Delaminated model with wrap-around

Fig. 4. (a) One fourth model without wrap-around and (b) One fourth model with wrap around

Symmetric condition has been considered in the direction of thickness (z direction) and width (y direction) as
shown in Fig. 4 for the models. The runs accordingly are done by imposing uniform displacement boundary 
conditions, to the extent of zero on one end plane and a finite displacement of L on the other.

Fig. 5. Laminate geometry and loading

The finite element analysis was performed on the delaminated models with and without wrap-around are
basically modeled using Mechanical Ansys Parametric Design Language (APDL). Finite element meshing of the
models is done with three dimensional 20 noded isoperametric brick element (ANSYS element solid 95). 
Considering the symmetry, only one fourth of the laminate cross-section was analyzed. Each lamina was
represented with more than one row of elements so that stress variation within the lamina can be captured. Since
the use of many elements in the model may severely reduce the computational efficiency therefore, the number of 
elements was selected to achieve both the geometric and computational efficiency. Since singularity is expected
only at the delamination front, the number of elements per unit width of the laminate is large in the vicinity. Thus,
the mesh distribution system selected consists of three zones (Zone 1, Zone 2 and Zone 3 respectively) as shown in
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Fig. 6. Zone 1 having elements with a 1:1 aspect ratio (Width to thickness ratio) near the delamination front, zone 
2 having 5:4 ratios adjacent to the delamination front and zone 3 having 25:8 ratios. A maximum of 8:1 ratio is 
taken to decide on the number of elements in the length direction. The total number of elements used for the 
models are given in Table 1. The different mesh distribution system for all both the models after meshing is shown 
in Figs 7(a) and (b), where (a) represents without wrap-around and (b) represents with wrap-around.

Fig. 6. Zone distribution of one fourth delaminated model

Table 1. Depicting total numbers of element for both modelsm

Models No of elements

Delaminated Model without wrap-around 10248

Delaminated Model with wrap-around 10017

Fig. 7. Finite element representation of (a) without wrap-around laminates and (b) wrap-around laminate

 

 



1370   Subhankar Das et al.  /  Procedia Engineering   64  ( 2013 )  1364 – 1373 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) Contour of inter laminar normal stress distribution in without wrap around model,  (b) Enlarged view of normal stress variation 
around the crack tip (c) Contour of inter laminar normal stress distribution in wrap around model and (d) Enlarged view of normal stress

variation around the crack tip

3.2. Stress analysis of composite laminates:

Since the length of ply (L) is very large (approx 725h), it is difficult to carry out the entire numerical analyses
(3D) with this length. To minimize the computational time and memory required for obtaining the numerical
solution, length of the laminate models (simulating the tension test coupons) is decided as 7h since laminate length
of 7h serves the purpose of analyses without sacrificing the accuracy of results. Delaminated model with and
without wrap-around subjected to uniaxial strain is considered for the present study to see the effect of ILNS 
around the crack tip. Uniaxial strain of 1 % was applied in both the models. The contour plots of laminates with
and without wrap-around are shown in Fig. 8 (a, b, c and d). In Figs.8 b & d represents the enlarged contour plot 
near the crack tip.

From Fig. 8 shows stress contour around the crack tip. The maximum stress of 1.97x10 8 Pa was observed at the 
crack tip which leads to the propagation of delamination, Pagano [1-2]. In Fig. 8(b) red contour represent the
maximum stress location and cyan represent the minimum stress location. Fig. 8(c) shows the contour of normal
stress in delaminated model with wrap-around where Fig 8 (d) represents the enlarged view of stress contour 
around the crack tip. It was interestingly observed that by using wrap-around technique the interlaminar normal 
stress at delamination front is reduced drastically. The magnitude of stress at the crack tip for wrap-around model
was observed as 0.13309 Pa which was phenomenal when compared to wrapped laminate (+22/-22/90) laminate.
The comparison of ILNS along the width ahead of the delamination front for these two models is shown in Fig. 10.
It was found that change in ILNS gradient was steep ahead of the crack tip. However this behaviour was observed
to be suppressed in the case where wrap around is considered. The values of ILNS and interlaminar shear stress at 
the crack tip are also shown in Table 2.
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Fig. 9. Distribution of the ILNS ahead of the crack 

      Table 2. Showing interlaminar normal Stress and interlaminar shear stress at the crack tip 

3.3. Delamination Analysis 

The composite laminates having width (2B), length (L), thickness (t) was subjected to a uniaxial extension by 
the application of a constant longitudinal strain ( xx). Delamination analysis which involves calculation of strain 
energy release rate use MCCI approach. The SERR components GI, GII and GIII of delaminated model with and 
without wrap-around have been calculated for various virtual crack extensions using single finite element analysis. 
The finite element mesh used had a crack front element size equal to 0.0000175a (highest refinement) and a/a 
was varied from 0.0000175 to 0.00007 for MCCI procedure. All these were used to study the convergence aspects 
of G components. With increase in number of elements (1 2 3 & 4) around the crack tip, both GI and GII values are 
converged to a stable values whereas GIII remains unchanged as shown in Fig. 10 (a, b). Fig. 11(a) shows the 
comparison values of GI, GII, GIII and GT (summation of all the SERR components) between both the models 
(without wrap around and with wrap around). From the Fig. 11(a) it is clear that GI and GII are the dominant modes 
of failure where GIII has minimal effect on delamination in composite structures. A significant reduction in SERR 
components are observed with wrap-around laminates compared to unwrapped laminates as shown in Fig. 11(a). 
This behavior highlights the importance of wrap around technique on the suppression of free edge delamination in 
polymer composite laminates. Fig. 11(b) shows the magnitude of percentage reduction in GI, GII and GT. 
percentage reduction GIII is not shown in Fig. 11 (b) since Mode-III has negligible effects on delamination.  

Model Name Interlaminar Normal Stress (Pa) Interlaminar Shear Stress (Pa) 

Delaminated Model without wrap-around        1.97Ex108 -1.105x107 

Delaminated Model with wrap-around             0.13309 -2.66x107 
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Fig. 10. (a) Convergence study of SEER components of without wrap-around model and (b) Convergence study of SEER components of wrap-
around model

Fig. 11. (a) Strain Energy Release Rate for both models and (b) Percentage of reduction of Strain Energy Release Rate with wrap-around
model.

4. Conclusion:

FE representation of laminates with and without wrap around in laminated composites has been devloped in ANSYS. ILNS and 
interlaminar shear stress were analysed for both the models. It was found that by wrap around technique the stress around crack 
tip was significantly suppressed. The SERR for both the laminates are computed using FE analysis. Mixed mode delamination 
analysis was carried out by evaluating SERR, used as the delamination parameter. MCCI technique was utilized to estimate the
SERR components for several sizes of virtual crack extension through a single FE analysis. A significant reduction of 
percentage in SERR components were observed when wrap-around is used. This behaviour highlights the importance of wrap 
around technique on the suppression of free edge delamination of polymer composite laminates. However, this is a part of an
ongoing work towards the development of an approach to the design of wrap around for delamination suppression.t
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